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ABSTRACT 

This paper focuses on the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) 

equation, which serves as a notable model for various phenomena such as water wave mechanics, shallow water 

waves, quantum mechanics, ion-acoustic waves in plasma, electro-hydro-dynamical models for local electric 

fields, and signal processing waves through optical fibers. We employ the 𝑒𝑥𝑝( − 𝜏(𝜉)) -expansion approach, 

aided by travelling wave transformations, to ascertain the helpful and more comprehensive accurate travelling 

wave solutions to those above nonlinear differential equations (NLDEs). Additionally, we elucidate the physical 

relevance of the acquired solutions by determining the precise values of the relevant parameters and representing 

them graphically to gain insight into the underlying physical processes. Finally, we demonstrate that the 𝑒𝑥𝑝( −
𝜏(𝜉)) -expansion approach is advantageous, potent, uncomplicated, and yields more comprehensive answers. It 

can also assist in analyzing a wide range of travelling wave solutions for various types of nonlinear differential 

equations.   

Keywords: The space-time fractional ZKBBM equation, the 𝑒𝑥𝑝( − 𝜏(𝜉)) -expansion method, travelling wave, 

solitary wave. 

INTRODUCTION 

Differential equations are a crucial and significant field within contemporary mathematics. Differential equations 

may be classified into two main types: ordinary differential equations and partial differential equations, which 

are commonly used in classical mechanics. Generally, fractional differential equations constitute a significant 

component of differential equations. Nonlinear differential equations (NLDEs) and fractional nonlinear 

differential equations (FNLDEs) have substantial applications in integer and fractional calculus. They are of 

great importance to researchers in various fields such as mathematical physics, engineering, signal processing, 

control theory, fractal dynamics, optical fibres, chemical kinematics, physics, applied physics, medicine, 

aerodynamics, hydrology, pharmacy, material science, earthquake modelling, electricity, biological science, 

population modelling, projectile motion, rocket dynamics, planetary motion, charge or current in electric circuits, 

chemical reactions, population growth rates, spring-mass systems, beam bending, and heat distribution in rods 

or slabs.  The mathematical expressions for the difficulties above result in differential and fractional differential 

equations. Generally, most differential equations pertaining to physical events exhibit nonlinearity. Solving linear 

differential equations is straightforward, but solving nonlinear equations can be time-consuming and, in many 

instances, analytically unsolvable. During complex expansion processes, researchers endeavor to solve nonlinear 

differential equations. Nonlinear wave phenomena manifest in diverse scientific and engineering domains, 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/
https://doi.org/10.51584/IJRIAS.2024.907016


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue VII July 2024 

 

 

 

 

 

Page 165 www.rsisinternational.org 

  
                      

 

including fluid mechanics, plasma physics, high energy physics, condensed matter physics, quantum mechanics, 

elastic media, biology, solid state physics, chemical kinetics, optical fibers, biophysics, geochemistry, electricity, 

propagation of shallow water waves, and chemical physics, among others. To get a deeper understanding of 

nonlinear events and their potential applications in real-world scenarios, exploring more precise solutions in the 

form of travelling waves is crucial. The basic equations in physical sciences are nonlinear, and in general, solving 

nonlinear partial differential equations (NLPDEs) explicitly for precise solutions is frequently quite complex. 

However, these exact solutions of NLPDEs play a crucial role in studying nonlinear physical phenomena.   

Therefore, in the past three decades, many significant methods have been enhanced and development to get exact 

solutions of NLPDEs, such as, integer and fractional types NLDEs [1–3]. Most of these methods are the 

homogeneous balance method, likely,  the Kudryashov method [4], the generalized Kudryashov method [5], the 

Modified Kudryashov Method [6], the first integral method [7], the improved modified extended tanh-function 

method [3,8], the (G′/G,1/G)-expansion technique [9,10], advanced exp(−∅(ξ))-expansion method [1,11,12], 

the modified extended tanh-function method [13–15], the Jacobi elliptic function method [16], the (G′/G2)-

expansion technique [17,18], the sine–cosine methods [19,20], the tanh-coth method [21], the simplified Hirota's 

method [22], the Hirota bilinear method [23–25], Soret and Dufour effects [26], the modified simple equation 

method [27], the exp function method [28], the sine-Gordon expansion method [29], the rational sine-Gordon 

expansion method [2,30], Wang's Bäcklund transformation-based method [31], the variational iteration method 

[32–34], the new auxiliary equation method [35], Variational method [36], Deep Learning approach [37], the 

method of characteristics [38], Dixon resultant method [39], the three-dimensional molecular structure model 

[40], etc. 

The solutions obtained include a remarkable mathematical model for turbulent motion, an electro-hydro-

dynamical model for local electric fields, ion-acoustic waves in plasma, fluid flow motion in shallow water 

waves under gravity, propagation waves, the noteworthy phenomenon of wave-particle duality, signal processing 

waves through optical fibres, variation over time of a physical structure in the fractional fluid mechanics system, 

ion acoustic waves, temperature variations between different locations, conservation of mass and acceleration 

due to gravity, viscoelasticity waves, and a traffic flow model. We have examined the physical outcomes of the 

obtained solutions by assigning specific values to the relevant parameters and representing them graphically.  We 

also have established that the 𝑒𝑥𝑝(−𝜏(𝜉))  -expansion method is potential, efficient, straightforward, further 

general, and rising method to search huge amount of traveling wave solutions to the NLDEs and FNLDEs. 

DESCRIPTION OF THE 𝒆𝒙𝒑(−𝝉(𝝃))-EXPANSION METHOD 

Here we briefly discuss the major characteristics of the 𝒆𝒙𝒑( − 𝝉(𝝃)) -expansion method. Let us suppose the 

general nonlinear partial differential equation of the form: 

𝐻(𝑢, 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , 𝑢𝑡, 𝑢𝑥𝑥 , 𝑢𝑥𝑦………) = 0,                       (2.1) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is an unknown function, 𝐻 is a polynomial in 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and its derivatives in which 

highest order derivatives and nonlinear terms are occupied and the subscripts indicate partial derivatives. 

Also, we consider the general nonlinear fractional partial differential equation of the form: 

𝐻(𝑢, 𝐷𝑡
𝛼 𝑢, 𝐷𝑥

𝛽
𝑢, 𝐷𝑦

𝛾
𝑢, 𝐷𝑧

𝜀 𝑢, 𝐷𝑡
2𝛼 𝑢, 𝐷𝑥

2𝛽
𝑢, …) = 0,        (2.2) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is an unidentified function, 𝐻 is a polynomial in 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and its fractional derivatives, 

which include the highest order derivative and nonlinear terms of the highest order where in 𝛼, 𝛽, 𝛾, 𝜀 are non-

integer and the subscripts denote the partial derivatives. 

To obtain exact wave solutions of Eq. (2.1) or Eq. (2.2) by applying the 𝑒𝑥𝑝( − 𝜏(𝜉)) -expansion method, we 

have to execute the following noteworthy steps: 

Step-1. We combine the real variables x, y and t by a compound variable 𝜉 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue VII July 2024 

 

 

 

 

 

Page 166 www.rsisinternational.org 

  
                      

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 + 𝑦 ± 𝑤𝑡,                     (2.3) 

where 𝑤 is the velocity of the traveling wave and we consider the following traveling wave variable, 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉),
𝜉

=
𝑘𝑡𝛼

𝛤(1 + 𝛼)
+

𝑚𝑥𝛼

𝛤(1 + 𝛼)
+

𝑛𝑦𝛾

𝛤(1 + 𝛾)

+
𝑙𝑧𝜀

𝛤(1 + 𝜀)
.                                                                            (2.4) 

for fractional differential equations. 

Now by making use of the traveling wave transformation Eq. (3.3) or Eq. (3.4) the partial differential Eq. (2.1) 

or Eq. (2.2) turns into ordinary differential equation (ODE) as below: 

𝐺( 𝑢, 𝑢’, 𝑢’’𝑢’’’, ………… . ) = 0,                                       (2.5) 

where G is a polynomial of u and its derivatives, and the superscripts refer to the ordinary derivatives with 

respect to 𝜉. 

Step-2. We advise that the solution of Eq. (3.5) can be exposed in the form: 

𝑢(𝜉) =∑𝐴𝑖

𝑁

𝑖=0

(𝑒𝑥𝑝( − 𝜏(𝜉)))𝑖,                                 (2.6) 

where   𝐴𝑖(0≤ 𝑖 ≤ 𝑁) are constants to be determined, such that𝐴𝑁 ≠ 0 and𝜏 = 𝜏(𝜉) and satisfied the following 

ordinary differential equation: 

𝜏′(𝜉) = 𝑒𝑥𝑝(−𝜏(𝜉)) + 𝜇 𝑒𝑥𝑝(𝜏(𝜉)) + 𝜆,               (2.7) 

Eq. (2.7) documented the following solutions: 

Set-1: When 𝜇 ≠ 0, 𝜆2 − 4𝜇 > 0, 

𝜏(𝜉) = 𝑙𝑛(
−√(𝜆2 − 4𝜇) 𝑡𝑎𝑛ℎ(

√(𝜆2 − 4𝜇)
2 (𝜉 + 𝑐)) − 𝜆

2𝜇
).  (2.8) 

Set-2: When 𝜇 ≠ 0, 𝜆2 − 4𝜇 < 0, 

𝜏(𝜉) = 𝑙𝑛(
√(4𝜇 − 𝜆2) 𝑡𝑎𝑛(

√(4𝜇 − 𝜆2)
2 (𝜉 + 𝑐)) − 𝜆

2𝜇
),      (2.9) 

Set-3: When 𝜇 = 0, 𝜆 ≠ 0, and 𝜆
2 − 4𝜇 > 0, 

𝜏(𝜉) = − 𝑙𝑛 (
𝜆

𝑒𝑥𝑝( 𝜆(𝜉 + 𝑐)) − 1
),                         (2.10) 

Set-4: When 𝜇 ≠ 0𝜆 ≠ 0, and 𝜆
2 − 4𝜇 = 0, 
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𝜏(𝜉) = 𝑙𝑛 (−
2(𝜆(𝜉 + 𝑐) + 2)

𝜆2(𝜉 + 𝑐)
),                  (2.11) 

Set-5: When 𝜇 = 0,𝜆 ≠ 0, and 𝜆2 − 4𝜇 = 0,  

𝜏(𝜉) = 𝑙𝑛( 𝜉 + 𝑐),                                             (2.12) 

Step-3. The positive integer 𝑁 can be calculated by considering the homogeneous balance between the highest 

order derivatives and the nonlinear terms of the highest order appearing in Eq. (2.5). 

Step-4. We utilize Eq. (2.6) into Eq. (2.5) and then we consider the function 𝑒𝑥𝑝(−𝜏(𝜉)). Therefore, of this 

substitution, we attain a polynomial in 𝑒𝑥𝑝(−𝜏(𝜉))and equalize to zero express a system of algebraic equations 

whichever can be solved to find 𝐴𝑁 ,  … …,𝑤 , 𝜆 ,𝜇 The values of 𝐴𝑁 ,  …….,𝑤 ,𝜆 ,𝜇  in company with general 

solution of Eq. (3.7) inclusive the determination of the solution of Eq. (2.1) or Eq. (2.2). 

Application for the Zkbbm Equation 

In this sub-section, we have considered the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony 

equation in the form: 

𝐷𝑡
𝛼𝑢 + 𝐷𝑥

𝛼𝑢 − 2𝑎𝑢𝐷𝑥
𝛼𝑢 − 𝑏𝐷𝑡

𝛼(𝐷𝑥
2𝛼𝑢) = 0,          (3.1) 

Now, making use of the traveling wave transformation Eq. (2.4) which reduces Eq. (3.1) into the following 

ordinary differential equation 

𝑘𝑢′ + 𝑚𝑢′ − 2𝑎𝑚𝑢 𝑢′ − 𝑏𝑘𝑚2𝑢′′′ = 0,            (3.2) 

Integrating Eq. (4.4.2) with respect to𝜉 and choosing the integrating constant zero, we obtain 

(𝑘 +𝑚)𝑢 − 𝑎𝑚𝑢2 − 𝑏𝑘𝑚2𝑢" + 𝐶 = 0,              (3.3) 

where 𝐶 is an integrating constant.  

Now balancing between the highest order nonlinear term and linear terms occurring in Eq. (4.4.3), gives 𝑁 =
1.Therefore, the solution of equation Eq. (4.4.3) takes the following form 

𝑢(𝜉) = 𝐴0+𝐴1(𝑒𝑥𝑝( − 𝜏(𝜉))) + 𝐴2(𝑒𝑥𝑝( − 𝜏(𝜉)))
2, (3.4) 

Where 𝐴0, 𝐴1, 𝐴2 are arbitrary constants such that𝐴2 ≠ 0. 

We substitute Eq. (3.4) into Eq. (3.3) and taking consideration Eq. (3.4), it generates a polynomial and then 

setting the coefficients of 𝑒𝑥𝑝( − 𝜏(𝜉)) to zero, yield 

𝐶 + 𝑘𝐴0 +𝑚𝐴0 − 𝑎𝑚𝐴
2
0 − 𝑏𝑘𝑚

2𝜆𝜇𝐴1 − 2𝑏𝑘𝑚
2𝜇2𝐴2 = 0,                                                           (3.5) 

𝑘𝐴1 +𝑚𝐴1 − 𝑏𝑘𝑚
2𝜆2𝐴1 − 2𝑏𝑘𝑚

2𝜇𝐴1 − 2𝑎𝑚𝐴0𝐴1 − 6𝑏𝑘𝑚
2𝜆𝜇𝐴2 = 0,                              (3.6) 

−3𝑏𝑘𝑚2𝜆𝐴1 − 𝑎𝑚𝐴
2
1 + (𝑘 +𝑚)𝐴2 − 4𝑏𝑘𝑚

2(𝜆2 + 2𝜇)𝐴2 − 2𝑎𝑚𝐴0
= 0,                                                         (3.7) 

−2𝑏𝑘𝑚2𝐴1 − 10𝑏𝑘𝑚
2𝜆𝐴2 − 2𝑎𝑚𝐴1𝐴2 = 0,          (3.8) 

−6𝑏𝑘𝑚2𝐴2 − 𝑎𝑚𝐴2
2 = 0,                              (3.9) 

Solving from Eq. (3.5) – Eq. (3.9) we have obtained one set of solution: 
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Set -1 

𝐴0 =
𝑚 − 𝑘(−1 + 𝑏𝑚2(𝜆2 + 8𝜇))

2𝑎𝑚
, 𝐴1 =−

6𝑏𝑘𝑚𝜆

𝑎
, 𝐴2 = −

6𝑏𝑘𝑚

𝑎
,

𝐶 = −
2𝑘𝑚 +𝑚2 + 𝑘2(1 − 𝑏2𝑚4(𝜆2 − 4𝜇)2)

4𝑎𝑚
. 

where 𝜆, 𝜇 are arbitrary constants. 

Therefore, we have discussed the solutions Set -1 of the mentioned equation arranged. 

Now substituting the value of Set-1 into Eq. (3.4) yields 

𝑢(𝜉) =
𝑚 − 𝑘(−1 + 𝑏𝑚2(𝜆2 + 8𝜇))

2𝑎𝑚
−
6𝑏𝑘𝑚𝜆

𝑎
(𝑒𝑥𝑝( − 𝜏(𝜉))) −

6𝑏𝑘𝑚

𝑎
(𝑒𝑥𝑝(

− 𝜏(𝜉)))2,                                                  (3.10) 

When 𝜇 ≠ 0, 𝜆2 − 4𝜇 > 0, 

𝑢1(𝜉) =
𝑚 − 𝑘(−1 + 𝑏𝑚2(𝜆2 + 8𝜇))

2𝑎𝑚
−
6𝑏𝑘𝑚𝜆

𝑎

(

 
−2𝜇

(√𝜆2 − 4𝜇) 𝑡𝑎𝑛ℎ(
√𝜆2 − 4𝜇

2 (𝜉 + 𝐶)) + 𝜆)

 

−
6𝑏𝑘𝑚

𝑎

(

 
−2𝜇

(√𝜆2 − 4𝜇) 𝑡𝑎𝑛ℎ(
√𝜆2 − 4𝜇

2 (𝜉 + 𝐶)) + 𝜆)

 

2

. 

While 𝜇 ≠ 0, 𝜆2 − 4𝜇 < 0, 

𝑢2(𝜉) =
𝑚 − 𝑘(−1 + 𝑏𝑚2(𝜆2 + 8𝜇))

2𝑎𝑚
−
6𝑏𝑘𝑚𝜆

𝑎

(

 
2𝜇

(√4𝜇 − 𝜆2) 𝑡𝑎𝑛(
√4𝜇 − 𝜆2

2 (𝜉 + 𝐶)) − 𝜆)

 

−
6𝑏𝑘𝑚

𝑎

(

 
2𝜇

(√4𝜇 − 𝜆2) 𝑡𝑎𝑛(
√4𝜇 − 𝜆2

2 (𝜉 + 𝐶)) − 𝜆)

 

2

. 

When 𝜇 = 0, 𝜆 ≠ 0, 𝜆2 − 4𝜇 > 0, 

𝑢3(𝜉) =
𝑚 − 𝑘(−1 + 𝑏𝑚2(𝜆2 + 8𝜇))

2𝑎𝑚
−
6𝑏𝑘𝑚𝜆

𝑎
(

1

(𝑒𝑥𝑝( 𝜆(𝜉 + 𝐶)) − 1
) −

6𝑏𝑘𝑚

𝑎
(

1

(𝑒𝑥𝑝( 𝜆(𝜉 + 𝐶)) − 1
)

2

. 

Applying 𝜇 ≠ 0, 𝜆 ≠ 0, 𝜆2 − 4𝜇 > 0, 

𝑢4(𝜉) =
𝑚 − 𝑘(−1 + 𝑏𝑚2(𝜆2 + 8𝜇))

2𝑎𝑚
−
6𝑏𝑘𝑚𝜆

𝑎
(−

𝜆2(𝜉 + 𝐶)

2(𝜆(𝜉 + 𝐶)) + 2
) −

6𝑏𝑘𝑚

𝑎
(−

𝜆2(𝜉 + 𝐶)

2(𝜆(𝜉 + 𝐶)) + 2
)

2

. 

Using 𝜇 = 0, 𝜆 = 0, 𝜆2 − 4𝜇 = 0, 

𝑢5(𝜉) =
𝑚 − 𝑘(−1 + 𝑏𝑚2(𝜆2 + 8𝜇))

2𝑎𝑚
−
6𝑏𝑘𝑚𝜆

𝑎
(
1

𝜉 + 𝐶
) −

6𝑏𝑘𝑚

𝑎
(
1

𝜉 + 𝐶
)
2

. 
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where 𝐶 is an arbitrary constant. 

It is remarkable to notice that the traveling wave solutions of the space-time Zakharov-Kuznetsov-Benjamin-

Bona-Mahony (ZKBBM) equation by means of the 𝑒𝑥𝑝( − 𝜏(𝜉)) -expansion method is fresh, practical and more 

general and have not been available in the previous literature. The attained solutions are to be convenient to 

search the nature the wave profile as the demandable model of the ion-acoustic waves in plasma, the water waves 

mechanics, the shallow water waves, the quantum mechanics, the electro-hydro-dynamical model for local 

electric field, the waves of electromagnetic field, the sound waves, the signal processing waves through optical 

fibers, etc. 

RESULT AND DISCUSSION 

A.  Graphical Presentation 

In this section, we have delineated the shape of figures of the obtained solutions to the space-time fractional 

Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation which are given below: 

The shape of the figure of the obtained solution 𝑢1(𝜉) for   𝜆 = 3, 𝜇 = 3, 𝐺 = 1.5,𝑚 = 𝑘 = 2, 𝛼 = .1, 𝑎 = 𝑏 =
1  of the parameters is shown below:  

 

Figure 1. 3D and 2D plot of solution 𝑢1(𝜉) within the interval 0 ≤ 𝑥, 𝑡 ≤ 5for 3D and 𝑡 = 0  for 2D. 

The shape of the figure of the obtained solution 𝑢2(𝜉) for 𝜆 = 3, 𝜇 = 3, 𝐺 = 1.5,𝑚 = 𝑘 = 2, 𝛼 = .1, 𝑎 = 𝑏 =
1 of the parameters is shown below:  

 

Figure 2. 3D and 2D plot of solution 𝑢2(𝜉) within the interval 0 ≤ 𝑥, 𝑡 ≤ 5for 3D and 𝑡 = 0  for 2D. 

The shape of the figure of the obtained solution 𝑢3(𝜉)  for  𝜆 = 3, 𝜇 = 3, 𝐺 = 1.5,𝑚 = 𝑘 = 2, 𝛼 = .1, 𝑎 = 𝑏 =
1; of the parameters is shown below: 
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Figure 3. 3D and 2D plot of solution 𝑢3(𝜉) within the interval 0 ≤ 𝑥, 𝑡 ≤ 5for 3D and 𝑡 = 0  for 2D. 

The shape of the figure of the obtained solution 𝑢4(𝜉) for 𝜆 = 3, 𝜇 = 3, 𝐺 = 1.5,𝑚 = 𝑘 = 2, 𝛼 = .1, 𝑎 = 𝑏 =
1  of the parameters is shown below: 

 

Figure 4. 3D and 2D plot of solution 𝑢4(𝜉)  within the interval 0 ≤ 𝑥, 𝑡 ≤ 5for 3D and 𝑡 = 0  for 2D. 

The shape of the figure of the obtained solution 𝑢5(𝜉)   for 𝜆 = 3, 𝜇 = 3, 𝐺 = 1.5,𝑚 = 𝑘 = 2, 𝛼 = .1, 𝑎 = 𝑏 =
1  of the parameters is shown below: 

 

Figure 5. 3D and 2D plot of solution 𝑢5(𝜉)   within the interval 0 ≤ 𝑥, 𝑡 ≤ 5for 3D and 𝑡 = 0  for 2D. 

B.  Discussion and Physical Implications 

It is remarkable to observe that the obtained solutions play a significant role in revealing the obscurity of the 

tangible events. On the other hand, by using the 𝑒𝑥𝑝( − 𝜏(𝜉))  -expansion method, we have obtained five 

solutions which are new, distinct and useful and have not been found by the fractional sub-equation method. 

Furthermore, the different choices of the integral constant from Eq. (3.8) – Eq. (3.12) give many exact wave 

solutions by the help of the 𝑒𝑥𝑝( − 𝜏(𝜉)) -expansion method. The attained solutions by this method might be 

useful to analyze the physical significance for its definite values of the parameters and help us to know the 

internal matters. Therefore, we have observed that the 𝑒𝑥𝑝( − 𝜏(𝜉))  -expansion method is simple, much 
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effective, useful and more general and give huge amount of new exact travelling wave solutions than the 

fractional sub-equation method.  

The ZKBBM equation is a sophisticated mathematical model employed to elucidate diverse physical processes 

in fluid dynamics and plasma physics, specifically when wave propagation occurs. Including space-time 

fractional derivatives into this equation makes it possible to represent anomalous diffusion or dispersion. These 

phenomena are commonly seen in physical systems with non-locality and memory effects. Let's explore the 

physical consequences of the answers to this equation:  

Anomalous diffusion and dispersion: Fractional derivatives introduce a more comprehensive type of diffusion 

and dispersion, distinct from the conventional integer-order derivatives. The ZKBBM equation enables the 

representation of intricate wave propagation phenomena, including super diffusion (characterized by faster 

particle spreading than in regular diffusion) and sub diffusion (characterized by slower particle spreading). This 

refers to physical scenarios in which the characteristics of the medium result in the wave encountering different 

levels of resistance, resulting in more precise depictions of real-life occurrences. Effects that occur outside of a 

specific location or region. The presence of fractional derivatives indicates that the wave propagation is affected 

by the complete past behavior of the system rather than simply its local characteristics. Non-locality is essential 

in several physical systems, such as turbulent flows, where interactions across scales are critical. Plasma physics 

uses fractional models to represent the long-range interactions between charged particles accurately. 

Wave Damping and Dispersion Relations: 

The ZKBBM equation is commonly used to represent the equilibrium between nonlinearity, dispersion, and 

dissipation in the propagation of waves. When fractional derivatives are incorporated, the equilibrium of this 

system undergoes a transformation, which impacts the dissipation and dispersion of waves throughout time and 

space. Understanding the mechanisms of energy and information transmission in a medium is crucial since it 

directly impacts the design of materials and systems that depend on regulated wave propagation. 

Elaborate Wave Patterns: The solutions to the space-time fractional ZKBBM equation can display a more diverse 

range of wave shapes compared to their integer-order counterparts. This encompasses solitary waves, shock 

waves, and several other nonlinear waveforms. These intricate wave formations directly relate to physical 

systems with similar characteristics, such as coastal and ocean engineering, atmospheric research, and even 

biological systems. 

Practical Implementation: Plasma Physics: The equation may accurately represent wave events in magnetized 

plasma by considering the fractional kinetics of particle interactions. Fluid dynamics is a branch of physics that 

may provide a detailed description of waves in shallow water, considering the effects of anomalous dispersion 

caused by the features of the medium. Signal Processing: Fractional models are employed in signal processing 

to account for non-local effects and memory, making them useful for building and comprehending wave-based 

communication systems. The solutions to the space-time fractional ZKBBM equation offer a more detailed and 

precise explanation of wave phenomena in different physical situations. This is achieved by considering the 

influences of abnormal diffusion, non-local interactions, and intricate wave structures. By studying the 

underlying physics of systems that display these behaviors, we may better comprehend and contribute to 

improving models and technology in several domains, including fluid dynamics and plasma physics.  

The exp(−τ(ξ))-expansion method is a technique that involves searching for solutions in the form of an 

exponential function with an argument that includes a new variable ξ. This technique is employed to acquire 

precise solutions for nonlinear differential equations. 

Advantages: 

1. The technique, reassuringly, is generally easy to implement, often using algebraic operations and familiar 

transformations. 

2. It can provide precise solutions for many nonlinear equations, especially those that describe wave processes. 

3. It can be adjusted to accommodate a wide range of nonlinear equations, including fractions. 
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Limitation:  

1. It may not be universally applicable to all categories of nonlinear differential equations. The efficacy of the 

procedure frequently relies on the structure of the equation. 

2. The solutions obtained are usually restricted to exponential forms, which may not encompass all potential 

behaviors of the system. 

3. The approach necessitates the selection of suitable parameters and transformations, which can occasionally 

be challenging to determine. 

CONCLUSION 

This study focuses on identifying novel and significant precise traveling wave solutions of the space-time 

fractional ZKBBM problem. We do this by employing the 𝑒𝑥𝑝( − 𝜏(𝜉))  -expansion approach and utilizing 

traveling wave transformations. Most of the solutions obtained are expressed as trigonometric, hyperbolic, and 

rational functions. The achieved solutions may be applicable to various physical phenomena, such as fluid 

motion in shallow water waves, gravity-driven water waves in the long-wave regime, ion acoustic waves in 

plasma, quantum mechanics, electro-hydro-dynamical models for local electric fields, and signal processing 

through optics. In addition, we have examined the physical implications of the answers discovered by 

representing them graphically. Various well-known forms of solution shapes are analyzed, including kink-shaped 

wave solutions, singular kink-shaped wave solutions, singular periodic-shaped wave solutions, and so on. The 

obtained answers demonstrated that the 𝑒𝑥𝑝( − 𝜏(𝜉))  -expansion approach is simple, effective, robust, and 

versatile. It can be applied to analyze precise wave solutions for various nonlinear differential equations (NLDEs) 

and fractional nonlinear differential equations (FNLDEs) encountered in diverse areas of mathematics and 

engineering. In order to acquire these particular answers, there are often challenges in determining the balance 

number and the most effective approach to use. The existing methods are not always easy and clear, and they do 

not provide a direct solution to the Nonlinear Differential Equations (NLDEs) and Fractional Nonlinear 

Differential Equations (FNLDEs). Our future work involves applying the 𝑒𝑥𝑝( − 𝜏(𝜉)) -expansion method and 

other methods to solve NLDEs and FNLDEs for balance number. Additionally, we aim to utilize these methods 

to identify complex and highly nonlinear DEs for non-integer balance number, without the need for a new 

transformation.  
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