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ABSTRACT  

This paper discusses local interpolation by the generalized multiquadric radial basis functions. The 

convergence rate for local scattered data interpolation by the generalized multiquadric radial basis function 

has been presented. The multiquadric interpolant is presented in Lagrange form and used to prove the 

convergence of the multiquadric interpolation.  

INTRODUCTION  

Data interpolation is a technique used in data analysis to estimate values between known data points. It 

involves filling in missing data points or estimating values at points where data is not directly measured. The 

aim of interpolation is to create a continuous representation of a dataset, which can be useful for various 

purposes like smoothing out irregularities in data, creating visualizations, and making predictions (Amidror, 

2002). Data interpolation can be global or local. Local interpolation uses a sample of known data points to 

estimate the unknown value. It fits the specified order polynomial using points only within the defined 

neighbourhood. Local interpolation techniques apply a single mathematical function repeatedly to subsets of 

the total set of observed data points, then link these regional surfaces to create a composite surface covering 

the whole study area (Steffensen, 2006).  

Scattered data interpolation, especially on irregular domains or higher dimensional geometry, is an 

important problem in science and engineering. Methods such as trigonometric, algebraic, and spline 

interpolations have been employed for a wide range of problems but have not been so efficient in higher 

dimensions or scattered nodes problems on irregular domains. Radial basis function interpolation is an 

alternative method for such problems (Chen and Cao, 2021; Kazem and Hatam, 2017).  

The origin of radial basis functions can be traced back to Hardy (1971) when he introduced RBF 

multiquadric to solve surface fitting on topography and irregular surfaces. Thorough investigation by Hardy 

(1971) led to the discovery of the multiquadric. Hardy’s multiquadric interpolation scheme was unnoticed 

till 1979 when a mathematician, Richard Franke compared various methods of solving the scatter data 

interpolation problem which he found Hardy’s multiquadric method to be the most impressive. It is 

consistently best or near best in terms of accuracy, and always results in visually pleasant surfaces. He found 

also that the system matrix of the method was invertible, and the method was well posed (Madych and 

Nelson, 1988; Micchelli, 1984; Meinguet, 1979).  

Micchelli (1984) developed the theory behind the multiquadric method. He proved that the system matrix 

for the multiquadric method was invertible. Kansa (1990) was the first to apply the multiquadric method to 

solve differential equations. Madych and Nelson (1990) showed the spectral convergence rate of 

multiquadric interpolation. Since Kansa’s discovery, research in RBF methods, and particularly the 
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multiquadric has grown rapidly. Recently, RBF methods have gained attention in scientific computing and 

engineering applications such as function interpolation, numerical solutions to partial differential equations, 

and multivariate scattered data processing. The main advantage of this method are spectral convergence 

rates that can be achieved using infinitely smooth functions, geometric flexibility, and ease of 

implementation (Aràndiga et al., 2020; Rippa, 1999).  

The generalized multiquadric RBFs take the form  

𝜙(𝑟) = (1 + (𝜀𝑟)2)𝛽,     𝛽 = ⋯ , −
3

2
, − 

1

2
,   

1

2
,
3

2
, ⋯ 

The generalized multiquadric RBF covers a wide range of infinitely differentiable RBFs including the 

Hardy’s multiquadric function with 𝛽 =
1

2
, the inverse multiquadric function with  𝛽 = −

1

2
, and the inverse 

quadrics with 𝛽 = −1. For convenience, we will refer to multiquadric functions with  𝛽 > 0  as the 

generalized multiquadric functions while those with 𝛽 < 0  as the generalized inverse multiquadric (GIMQ) 

functions.  

For  𝛽 < 0, the GIMQ function is strictly positive definite, and for  0 < 𝛽 < 1, the generalized multiquadric 

function is conditionally positive definite of order one. In either case, the system matrix for the interpolation 

problem is invertible. For 𝛽 > 1, the generalized multiquadric function is conditionally positive definite of 

order  ⌈𝛽⌉ (where ⌈∙⌉ denotes the ceiling function), and to show that the system matrix is invertible, it is 

necessary to attach low order polynomials to the RBF interpolant (Alipanah, 2016; Chenoweth and Sarra, 

2009).   

In this paper, we will concentrate on generalized multiquadric RBFs of the form   

𝜙(𝑟) = (1 + (𝜀𝑟)2)𝛽,     𝛽 =
1

2
,
3

2
,
5

2
, … 

The advantages of the generalized multiquadric RBFs over other RBFs like the Thin Plate Splines are: they 

are infinitely differentiable, they can conveniently interpolate scattered data in many dimensions and have 

been found to produce the best results when applied on scattered data, and they contain a shape parameter 

which have great effects on the accuracy of the solution. Interpolation by the generalized multiquadric RBF 

produces pleasant surfaces, and a system matrix that is invertible and well posed (Issa et al., 2020; Luga et 

al., 2019). The generalized multiquadric RBFs have been applied by many researchers to develop numerical 

methods for the solution of partial differential equations (PDEs) (Bustamante et al., 2010; Misra and Kumar, 

2013; Luga and Alechenu, 2019).  

The rest of the paper is organized as follows: section 2 discusses radial basis function interpolation and the 

generalized multiquadric RBF interpolation, as well as the Lagrange representation of the multiquadric 

interpolant. In section 3, the local approximation order of the generalized multiquadric interpolant is 

presented. Section 4 is the conclusion. 

RADIAL BASIS FUNCTION INTERPOLATION  

Suppose we are given data in the form (𝒙𝑖, 𝒇𝑖), where, 𝒇𝑖 = 𝑓(𝒙𝑖), 𝑖 = 1, 2, … , 𝑛. Our goal is to find an 

interpolant  𝑠(𝒙), 𝒙 ∈ ℝ𝑑 , satisfying  

(2.1)                                                                𝑠(𝒙𝒊) = 𝒇𝑖 ,       𝑖 = 1, 2, … , 𝑛.  

For a strictly positive definite radial basis function interpolant, it is required that  𝑠(𝒙)  be a linear 
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combination of translates of  𝜙(𝒙), that is  

(2.2)                                                       𝑠(𝒙) = ∑ 𝑐𝑖𝜙(‖𝒙 − 𝒙𝑖‖)

𝑛

𝑖=1

,      𝒙 ∈ ℝ𝑑 .  

For a conditionally positive definite RBF interpolant, a low order polynomial  𝑝 ∈ Π𝑚−1
𝑑 , is added to Eq. 

(2.2). This means that we let  𝑠(𝒙)  have the form 

(2.3)                                              𝑠(𝒙) = ∑ 𝑐𝑖𝜙(‖𝒙 − 𝒙𝑖‖)

𝑛

𝑖=1

+ ∑ 𝑑𝑗𝑝𝑗(𝒙)

𝑞

𝑗=1

,      𝒙 ∈ ℝ𝑑 ,    

where  Π𝑚−1
𝑑   is the space of polynomials from  ℝ𝑑  to  ℝ  of degree at most  𝑚 − 1, 𝑞 ∈ ℕ  is the degree of  

Π𝑚−1
𝑑 , ‖∙‖  is the Euclidean norm and  𝜙 is the radial basis function, with the additional constraints 

(2.4)                                                     ∑ 𝑐𝑖𝑝𝑗(𝒙𝑖)

𝑛

𝑖=1

= 0,     𝑗 = 1, 2, … , 𝑞.    

Adding the extra constraints and the polynomial conditions to the interpolant, we have the system of linear 

equations  

(2.5)                                                                        [
Ф 𝑃

𝑃𝑇 0
] [

𝒄

𝒅
] = [

𝒇

0
],    

𝐴 ∙ 𝒃 = 𝒇𝑿 , 

alternatively 

(2.6)                                                                            Ф𝒄 + 𝑃𝒅 = 𝒇,      

(2.7)                                                                                𝑃𝑇𝒄 = 𝟎,   

𝑃 = (𝑝𝑗(𝒙𝑖))
1≤𝑖≤𝑛,1≤𝑗≤𝑞

. 

We call  𝑚  the order of the radial basis function (Fasshauer, 2007; Iske, 2003). 

To guarantee the existence of a solution to Eq. (2.6) and Eq. (2.7), we require the matrix  Ф, for any finite 

set                 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} of interpolation points, to be positive definite on the linear subspace of  

ℝ𝑑 containing all vectors         𝒄 ∈ ℝ𝑛 satisfying Eq. (2.7). This can be restated as  

(2.8)                                𝒄𝑇 ∙ Ф ∙ 𝒄 > 0  for all  𝑋  and  𝑐 ∈ ℝ𝑁 ∖ {0}  with  𝑃𝑇 ∙ 𝒄 = 0.   

Definition 1: Conditionally positive definite radial function  

A continuous radial function  𝜙: [0, ∞) → ℝ  is said to be conditionally positive definite of order  𝑚  on ℝ𝑑 

if Eq. (2.8) holds for all possible choices of finite set points  𝑋 ⊂ ℝ𝑑 .  

Theorem 1 (Iske, 2003) 

Let  𝜙  be a conditionally positive definite radial function. The interpolation problem, Eq. (2.1) has under 
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constraints, 

𝑝(𝒙𝑗) = 0,   𝑗 = 1, … , 𝑛 ⇒ 𝑝 = 0  for   𝑝 ∈ Π𝑚−1
𝑑  

a unique solution  𝑠  of the form, Eq. (2.3) provided Eq. (2.8) is satisfied.  

Generalized multiquadric radial basis function interpolation  

To extend the concept of radial basis function interpolation for finite volume methods, we generalize the 

concept of interpolation. Let  Ω = {𝜆1, 𝜆2, … , 𝜆𝑛} denote a set of linear differentials and 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ ℝ are 

certain given function values, then the RBF approximation, augmented by a polynomial is given by  

𝑠(𝒙) = ∑ 𝑐𝑖𝜆𝑖
𝑦

𝜙(‖𝒙 − 𝒚‖)

𝑛

𝑖=1

+ ∑ 𝑑𝑗𝑝𝑗(𝒙)

𝑞

𝑗=1

 

where  𝜆𝑖
𝑦

 denotes the functional applied to 𝜙(‖𝒙 − 𝒚‖) as a function of 𝑦 with 𝑥 fixed. The interpolation 

problem is  

𝜆𝑖(𝑠) = 𝜆𝑖𝑓, 𝑖 = 1, 2, … , 𝑛 

where  𝜆𝑖𝑓 = 𝒇𝑖 , 𝑖 = 1, 2, … , 𝑛. Since the problem is underdetermined, we add the constraints  

∑ 𝑐𝑗𝜆𝑖𝑝𝑗

𝑛

𝑗=1

= 0,    𝑗 = 1,2, … , 𝑞. 

In matrix terms, the problem is to find a solution to the (𝑛 + 𝑞) × (𝑛 + 𝑞) system of equations  

 (2.9)                                                                     [
Ф 𝑃

𝑃𝑇 0
] [

𝒄

𝒅
] = [

𝒇

0
],    

where  

Ф = (𝜆𝑖
𝑥𝜆𝑗

𝑦
 𝜙(‖𝒙 − 𝒚‖))

1≤𝑖,𝑗≤𝑛
∈ ℝ𝑛×𝑛 

𝑃 = (𝜆𝑖𝑝𝑗)
1≤𝑖≤𝑛,   1≤𝑗≤𝑞

∈ ℝ𝑛×𝑞 

and 𝒄 = (𝑐1, … , 𝑐𝑛)𝑇 , 𝒅 = (𝑑1, … , 𝑑𝑚)𝑇 , 𝒇 = (𝑓𝑖)𝑖=1,…,𝑛 = (𝜆𝑖𝑓) ∈ ℝ𝑛. The unique solvability of the 

system, Eq. (2.9) is based on the theory of conditionally positive definite matrices.  

Lagrange representation of interpolant (Iske, 2003) 

Sometimes it is useful to work with the Lagrange representation of the interpolant  

𝑠(𝒙) = ∑ 𝐿𝑖(𝒙)𝑓(𝒙𝑖)

𝑛

𝑖=1

 

where the Lagrange basis function  𝐿1(𝑥), … , 𝐿𝑛(𝑥) satisfy  
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𝐿𝑖(𝒙𝑗) = {
1,   𝑖 = 𝑗,

0,   𝑖 ≠ 𝑗
 

𝑖, 𝑗 = 1, 2, … , 𝑛  and so  

𝑠(𝒙𝑗) = 𝑓(𝒙𝑗).  

For a fixed point 𝒙 ∈ ℝ𝑑 , the vector 𝐿(𝒙) = (𝐿1(𝑥), … , 𝐿𝑛(𝑥))
𝑇

∈ ℝ𝑛 and   𝜇(𝒙) = (𝜇1(𝑥), … , 𝜇𝑛(𝑥))
𝑇

∈

ℝ𝑛  are the unique solution of the linear system 

[
Ф 𝑃

𝑃𝑇 0
] [

𝐿(𝒙)

𝜇(𝒙)
] = [

𝑅(𝒙)

𝑆(𝒙)
],  

where 𝑅(𝒙) = (𝜙(‖𝒙 − 𝒙𝑗‖))
𝑗=1,…,𝑛

∈ ℝ𝑛 and  𝑆(𝒙) = (𝑝1(𝑥), … , 𝑝𝑚(𝑥)) ∈ ℝ𝑛 . 

We can write the above linear system as  

𝐴𝝊(𝒙) = 𝒃(𝒙) 

by letting  

𝐴(𝒙) = [
Ф 𝑃

𝑃𝑇 0
] ,   𝝊(𝒙) = [

𝐿(𝒙)

𝜇(𝒙)
] ,   𝒃(𝒙) = [

𝑅(𝒙)

𝑆(𝒙)
]. 

Therefore   

𝑠(𝒙) = ⟨𝐿(𝒙), 𝒇⟩ = ⟨𝝊(𝒙), 𝒇𝑿⟩ 

= ⟨𝐴−1 ∙ 𝒃(𝒙), 𝒇𝑿⟩ 

= ⟨𝒃(𝒙),   𝐴−1 ∙ 𝒇𝑿⟩ 

= ⟨𝒃(𝒙), 𝑏⟩ 

where ⟨∙, ∙⟩ denoted the inner product of the Euclidean space ℝ𝑑 and where we let  

𝒇𝑿 = [
𝒇

0
] ∈ ℝ𝑛+𝑚 ,   𝑏 = [

𝒄

𝒅
] ∈ ℝ𝑛+𝑚 . 

LOCAL APPROXIMATION ORDER OF THE GENERALIZED MULTIQUADRIC 

INTERPOLANT  

Following the approach of Iske (2003), the convergence rate of the generalized multiquadric RBF 

interpolation and the approximation order of the local multiquadric RBF interpolant is thus, given. 

As regards the approximation order of the generalized multiquadric interpolant, we consider solving, for 

some fixed point  𝑥0 ∈ ℝ𝑑 and any ℎ > 0 

 (3.1)                                                        𝑢(𝑥0 + ℎ𝑥𝑖) = 𝑠ℎ(𝑥0 + ℎ𝑥𝑖),     1 ≤ 𝑖 ≤ 𝑛    
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where  𝑋 = {𝑥1, … , 𝑥𝑛} ⊂ ℝ𝑑 is a  Π𝑚−1
𝑑  – unisolvent point set of moderate size, that is, 𝑛 is small. 

Moreover, 𝑠ℎ denotes the unique generalized multiquadric interpolant of the form  

(3.2)                                                    𝑠ℎ(ℎ𝑥) = ∑ 𝑐𝑖
ℎ𝜙𝛽(‖ℎ𝒙 − ℎ𝒙𝑖‖)

𝑛

𝑖=1

+ ∑ 𝑑𝑗𝑝𝑗(ℎ𝑥)

𝑞

𝑗=1

 

Definition 2 

Let  𝑠ℎ denotes the generalized multiquadric interpolant, using  𝜙𝛽  satisfying Eq. (3.2). We say that the 

approximation order of local generalized multiquadric interpolation at 𝑥0 ∈ ℝ𝑑  and with respect to the 

function space  ℱ is 𝑝 if and only if for any 𝑢 ∈ ℱ 

𝑢(𝑥0 + ℎ𝑥) − 𝑠ℎ(𝑥0 + ℎ𝑥) = 0(ℎ𝑝), ℎ → 0 

holds for any 𝑥 ∈ ℝ𝑑, and any finite  Π𝑚−1
𝑑  – unisolvent point set 𝑋 ⊂ ℝ𝑑 . 

We let 𝑥0 = 0. Now 𝑐ℎ = (𝑐1
ℎ , … , 𝑐𝑛

ℎ) ∈ ℝ𝑛 , 𝑑ℎ = (𝑑1
ℎ , … , 𝑑𝑞

ℎ) ∈ ℝ𝑞  can be found by solving the linear 

system  

[
𝐴ℎ 𝑃ℎ

𝑃ℎ
𝑇 0

] [
𝒄ℎ

𝒅ℎ
] = [

𝒖|ℎ𝑥

0
] 

where we let  

𝐴ℎ = (𝜙𝛽(‖ℎ𝒙𝑖 − ℎ𝒙𝑗‖))
1≤𝑖,𝑗≤𝑛

∈ ℝ𝑛×𝑛 , 

𝑃ℎ = (𝑝𝑗(𝑥𝑖))
1≤𝑖≤𝑛,1≤𝑗≤𝑞

∈ ℝ𝑛×𝑞, 

𝒖|ℎ𝑥
= (𝑢(ℎ𝑥𝑖))

1≤𝑖≤𝑛
∈ ℝ𝑛 . 

We can write the above system as  

𝐴 ∙ 𝑏ℎ = 𝑢ℎ 

that is, for notational brevity, we let 

𝐴ℎ = [
𝐴ℎ 𝑃ℎ

𝑃ℎ
𝑇 0

],   𝑏ℎ = [
𝒄ℎ

𝒅ℎ
] ,   𝑢ℎ = [

𝒖|ℎ𝑥

0
]. 

We assume that the interpolant  𝑠ℎ has a Lagrange type representation  

𝑠ℎ(ℎ𝑥) = ∑ 𝐿𝑖
ℎ(ℎ𝑥)𝑢(ℎ𝑥𝑖)

𝑛

𝑖=1

 

where  

∑ 𝐿𝑖
ℎ(ℎ𝑥)𝑝(ℎ𝑥𝑖)

𝑛

𝑖=1

= 𝑝(ℎ𝑥)  for all 𝑝 ∈  Π𝑚−1
𝑑  . 
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For 𝑥 ∈ ℝ𝑑, the vector 𝐿ℎ(ℎ𝑥) = (𝐿1
ℎ(ℎ𝑥), … , 𝐿𝑛

ℎ (ℎ𝑥))
𝑇

∈ ℝ𝑛 together with  𝜇ℎ(ℎ𝑥) =

(𝜇1
ℎ(ℎ𝑥), … , 𝜇𝑞

ℎ(ℎ𝑥))
𝑇

∈ ℝ𝑞  is the unique solution of the linear system  

(3.3)                                                                    [
𝐴ℎ 𝑃ℎ

𝑃ℎ
𝑇 0

] [
𝐿ℎ(ℎ𝑥)

𝜇ℎ(ℎ𝑥)
] = [

𝑅ℎ(ℎ𝑥)

𝑆ℎ(ℎ𝑥)
] 

where  

𝑅ℎ(ℎ𝑥) = (𝜙𝛽(‖ℎ𝒙 − ℎ𝒙𝑗‖))
1≤𝑗≤𝑛

∈ ℝℎ ,     

𝑆ℎ(ℎ𝑥) = (𝑝1(ℎ𝑥), … , 𝑝𝑞(ℎ𝑥)) ∈ ℝ𝑞 

and can be written as  

𝐴ℎ ∙ 𝜐ℎ(ℎ𝑥) = 𝑏ℎ(ℎ𝑥). 

Now,  

𝐷𝛼𝑠ℎ(ℎ𝑥) = ∑ 𝐷𝛼𝐿𝑖
ℎ(ℎ𝑥)𝑢(ℎ𝑥𝑖)

𝑛

𝑖=1

  

where  𝐷𝛼𝐿𝑖
ℎ(ℎ𝑥) and  𝐷𝛼𝜇ℎ(ℎ𝑥) are the unique solution of the linear system  

[
𝐴ℎ 𝑃ℎ

𝑃ℎ
𝑇 0

] [
𝐷𝛼𝐿ℎ(ℎ𝑥)

𝐷𝛼𝜇ℎ(ℎ𝑥)
] = [

𝐷𝛼𝑅ℎ(ℎ𝑥)

𝐷𝛼𝑆ℎ(ℎ𝑥)
]. 

Let  ℎ = 1, then  

(3.4)                                           ∑ 𝐿𝑗
1(𝑥)𝜙(‖𝒙𝑖 − 𝒙𝑗‖)

𝑛

𝑗=1

+ ∑ 𝜇𝑘
1 (𝑥)𝑝𝑘(𝑥𝑗)

𝑞

𝑘=1

= 𝜙(‖𝒙 − 𝒙𝑖‖)  

and  

∑ (𝐷𝛼𝐿𝑗
1(𝑥)) 𝜙(‖𝒙𝑖 − 𝒙𝑗‖)

𝑛

𝑗=1

+ ∑(𝐷𝛼𝜇𝑘
1 (𝑥))𝑝𝑘(𝑥𝑗)

𝑞

𝑘=1

= 𝐷𝛼𝜙(‖𝒙 − 𝒙𝑖‖). 

Note that if   

𝜙(‖𝒙 − 𝒚‖) = [1 + ‖𝒙 − 𝒚‖2]𝛽, 

𝜙(‖ℎ𝒙 − ℎ𝒚‖) = [1 + ℎ2‖𝒙 − 𝒚‖2]𝛽 = [ℎ2 (
1

ℎ2
+ ‖𝒙 − 𝒚‖2)]

𝛽

, 

= ℎ2𝛽(𝑐 + ‖𝒙 − 𝒚‖2)𝛽        where   𝑐 =
1

ℎ2
 , 

                                   = ℎ2𝛽�̃�(‖𝒙 − 𝒚‖)      where   �̃�(‖𝒙 − 𝒚‖) = (𝑐 + ‖𝒙 − 𝒚‖2)𝛽 . 
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(3.5)                                                 𝑝𝑙(𝑥) = ∑ 𝐿𝑗
1(𝑥)𝑝𝑙(𝑥𝑗)

𝑛

𝑗=1

,    𝑙 = 1, 2, … , 𝑞.     

From Eq. (3.4) 

(3.6)                                             ∑ 𝐿𝑗
1(𝑥)𝜙(‖𝒙𝑖 − 𝒙𝑗‖)

𝑛

𝑗=1

+ ∑ 𝜇𝑘
1 (𝑥)𝑝𝑘(𝑥𝑖)

𝑞

𝑘=1

= 𝜙(‖𝒙 − 𝒙𝑖‖) 

∑ 𝐿𝑗
1(𝑥)[ℎ2𝛽𝜙(‖𝒙𝑖 − 𝒙𝑗‖)]

𝑛

𝑗=1

+ ℎ2𝛽 ∑ 𝜇𝑘
1 (𝑥)𝑝(𝑥𝑖)

𝑞

𝑘=1

= ℎ2𝛽𝜙(‖𝒙 − 𝒙𝑖‖) 

Let  𝑡(𝑥 − 𝑦) = [�̃�(‖𝒙 − 𝒚‖) − 𝜙(‖𝒙 − 𝒚‖)] and  

∑ 𝐿𝑗
1(𝑥)𝑡(𝒙𝑖 − 𝒙𝑗)

𝑛

𝑗=1

= 𝑡(𝒙𝑖 − 𝒙) 

(3.7)                                                        ℎ2𝛽 ∑ 𝐿𝑗
1(𝑥)𝑡(𝒙𝑖 − 𝒙𝑗)

𝑛

𝑗=1

= ℎ2𝛽𝑡(𝒙𝑖 − 𝒙) 

Adding Eq. (3.6) and Eq. (3.7) gives us 

∑ (𝐿𝑗
1(𝑥)) [ℎ2𝛽�̃�(‖𝒙 − 𝒚‖)]

𝑛

𝑗=1

+ ∑(ℎ2𝛽𝜇𝑘
1 )𝑝(𝑥𝑖)

𝑞

𝑘=1

= ℎ2𝛽�̃�(‖𝒙 − 𝒙𝑖‖). 

Now, if we define  �̃�𝑘
ℎ  as  

�̃�𝑘
ℎ = ℎ2𝛽𝜇𝑘

1 ,   𝑘 = 1, 2, … , 𝑞, 

then, for each 𝒙 ∈ ℝ𝑑, the vector 

(
(𝐿𝑗

1(𝑥))
𝑗=1,…,𝑛

(�̃�𝑘
ℎ)

𝑘=1,…,𝑞

) 

solves the linear system, Eq. (3.3). Since the solution is unique,  

𝐿𝑗
ℎ(𝑥) = 𝐿𝑗

1(𝑥),   𝑗 = 1, 2, … , 𝑛 

or  

𝐿ℎ(𝑥) = 𝐿1(𝑥). 

We now draw conclusions on the approximation order of the local multiquadric interpolation with respect to 

𝐶𝑝. To this end, let us consider  𝑢 ∈ 𝐶𝑝, the 𝑝th order Taylor polynomial of  𝑢 and ℎ𝑥 is given as  
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𝑇𝑝(𝑦) = ∑
1

𝛼!
𝐷𝛼𝑢(ℎ𝑥)(𝑦 − ℎ𝑥)𝛼

|𝛼|<𝑝

 

where  𝑝 = ⌈𝛽⌉. By using  

𝑢(ℎ𝑥) = 𝑇𝑝(𝑦) − ∑
1

𝛼!
𝐷𝛼𝑢(ℎ𝑥)(𝑦 − ℎ𝑥)𝛼

0<|𝛼|<𝑝

 

so that  

𝑢(ℎ𝑥) = 𝑇𝑝(ℎ𝑥𝑖) − ∑
1

𝛼!
𝐷𝛼𝑢(ℎ𝑥)(ℎ𝑥𝑖 − ℎ𝑥)𝛼

0<|𝛼|<𝑝

. 

This leads to  

𝑢(ℎ𝑥) − 𝑠(ℎ𝑥) = ∑ 𝐿𝑖
ℎ(ℎ𝑥)[𝑇𝑝(ℎ𝑥𝑖) − 𝑓(ℎ𝑥𝑖)]

𝑛

𝑖=1

. 

Now, by our result, the Lebesgue constant  

Ʌ = 𝑆𝑢𝑝
ℎ→0

∑|𝐿𝑖
ℎ(ℎ𝑥)|

𝑛

𝑖=1

= ∑|𝐿𝑖
1(ℎ𝑥)|

𝑛

𝑖=1

 

is bounded so that  

|𝑢(ℎ𝑥) − 𝑠(ℎ𝑥)| = 𝑂(ℎ𝑝),   ℎ → 0. 

Therefore, the approximation order of the generalized multiquadric interpolant using 𝜙𝛽  with respect to  𝐶𝑝 

is 𝑝, where  𝑝 = ⌈𝛽⌉.  

CONCLUSION  

The local approximation order of the generalized multiquadric radial basis function interpolation has been 

presented. Firstly, the generalized multiquadric radial basis function has been defined, then radial basis 

function interpolation has been described with particular interest to the generalized multiquadric radial basis 

function interpolation. The Lagrange representation of the interpolant is also presented and used to prove the 

convergence of the multiquadric interpolation.    
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