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ABSTRACT  

The world today faces unprecedented environmental challenges, including climate change, clean water 

scarcity, ocean contamination, and groundwater pollution, largely due to inadequate technology for tracking 

environmental pollutants. This study introduces a Supervised Machine Learning (SML) framework using 

multi-class classification to assess porosity and pollutant tracking in Ilorin, Kwara State, Nigeria. The study 

area is located within latitudes 8°44'6''N and 7°59'40''N and longitudes 4°09'40''E and 5°14'8''E, all within 

Nigeria's basement complex. 

This research formulates a robust SML model for multi-class classification, categorizing different 

environmental suitability levels based on porosity, pollutant tracking, and environmental factors. The case 

study in Ilorin demonstrates the model's effectiveness, contributing significantly to the field of engineering 

geology. 

A comprehensive approach integrates geological, geotechnical, geophysical, and environmental datasets. 

Surface and subsurface investigations, combined with supervised SML methods, predict suitability for 

porosity and pollutant tracking, providing insights into complex relationships impractical for manual 

analysis. 

The study area includes Sokoto1, Sokoto2, Malete, Oke Oyi, Jimba, Omu Aran, and Ijagbo, all within Kwara 

State, which experiences cyclical dry and rainy seasons. Environmental factors considered include 

geological, geotechnical, geophysical, land use, water surface, and slope aspects. 

The predictive model, utilizing multi-factorial analysis, categorizes outcomes into Highly Suitable, 

Moderately Suitable, and Not Suitable. Key factors influencing porosity and pollutant tracking include 

Suitability, Environmental Factors, Sub-Factors, Rating, Percentage of Influence, and Class. Model 

performance evaluation includes a fit analysis and confusion matrix. 

The predictive model, trained on diverse environmental datasets, effectively categorizes suitability levels for 

porosity and pollutant tracking. The study identifies candidate sites with higher porosity and lower 

permeability, demonstrating practical applicability in decision-making processes for environmental analysis 
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and engineering geology related to surface and underground pollutant tracking. 

Keywords: Supervised Machine Learning, Artificial Intelligence, Classification, Environmental, Porosity, 

Pollutant Tracking, Engineering Geology modelling, Nigeria. 

INTRODUCTION  

The profound interrelation between geological characteristics and environmental quality emphasizes the 

critical need for advanced technological integration in the field of engineering geology. This research work 

seeks to introduce a pioneering approach — a Supervised Machine Learning (SML) framework — for the 

integrated assessment of porosity and pollutant tracking within the geological landscape of Ilorin, Kwara 

State, Nigeria. Notably, Convolutional Neural Networks (CNN) have demonstrated success in pattern 

recognition for signals and images, with applications ranging from music genre classification (Li et al., 2010) 

to diverse everyday scenarios. 

The central aim of this study is to formulate and execute a robust Supervised Machine Learning (SML) 

model tailored for multi-class classification. The primary focus is on effectively categorizing geological 

formations based on their suitability for porosity and pollutant tracking, with a simultaneous consideration of 

other relevant environmental factors. To illustrate the effectiveness of this approach, we conduct an in-depth 

case study in Ilorin, Kwara State, aiming to unveil nuanced insights into the intricate geological and 

environmental dynamics of the region. 

The practical application of Artificial Intelligence (AI) has become widespread, extending beyond theoretical 

concepts to impact various fields. In contrast to human brains, which can discern between numerous items 

through deductive learning, AI algorithms require exposure to thousands of patterns before making 

appropriate decisions (Gurney, 2018). Addressing the challenges posed by the escalating human population's 

demand for natural resources, particularly in the face of geohazards, necessitates a comprehensive 

understanding of physical principles. AI's integration into geology, including mineral exploration, is 

underway, as evidenced by its applications in addressing challenges like associative memory, classification, 

pattern recognition, and optimization within geotechnical engineering using the Hopfield network (Saliu et 

al., 2020).  

Machine learning algorithms, with their versatility, have significantly contributed to various earth science 

domains. In landslide assessments, (Marjanovic et al., 2011) showcase the impact of advanced algorithms in 

predicting, understanding, and mitigating landslide risks. Zhao and Wang (2020) demonstrate the 

advancement in soil property analysis through machine learning, aiding in enhanced land management and 

environmental planning. Geophysics benefits from machine learning in lithology classification based on 

geophysical data, as illustrated by (Bressan et al.,2020), facilitating geological mapping and exploration. 

In the oil and gas industry, machine learning optimizes production processes, resource recovery, and 

operational efficiency (Attanasi et al., 2020; Gaurav, 2017; Mohaghegh, 2020; Snodgrass & Milkov, 2020). 

Multi-class classification, a pivotal concept, enhances the understanding of complex datasets, categorizing 

samples based on existing information (Farid et al., 2014). 

Ilorin, Nigeria, presents a diverse geological and environmental landscape, demanding a sophisticated 

methodology to assess the impact of these factors on porosity and pollutant dispersion. Waste management 

practices, including collection, storage, treatment, handling, and disposal, pose inherent risks of 

environmental pollution. Uncontrolled groundwater, particularly in landfill sites, adds complexity due to the 

challenging regulation of leachate migration, potentially leading to groundwater contamination and broader 

environmental consequences. A holistic strategy is imperative, as highlighted by Akinrinmade et al. (2020), 

to mitigate pollution and ensure environmental sustainability in the intricate interplay between waste 

management and groundwater dynamics. 
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Porosity stands as a pivotal indicator, offering insights into the permeability and fluid flow dynamics within 

geological formations. Its significance lies in its role in evaluating critical aspects like groundwater 

movement, soil stability, and the potential migration of pollutants. The effective tracking of pollutants within 

the geological matrix holds paramount importance for environmental conservation, safeguarding human 

health, and fostering sustainable development. 

Given the inherent challenges in quantifying groundwater on a large scale, the utilization of artificial 

intelligence (AI)-based algorithms emerges as a valuable solution to generate essential data and forecasts for 

effective groundwater management. Machine learning (ML) has demonstrated its effectiveness in producing 

maps for groundwater management, as evidenced by the work of Barzegar et al. (2018). These AI-driven 

algorithms prove particularly beneficial in tracking groundwater pollutants, addressing hazards such as 

nitrate contamination and other associated risks. 

Recent advancements in machine learning methods have contributed to the enhancement of pollutant 

prediction, specifically for O3 and NO2. Notably, Support Vector Machines (SVM) have outperformed 

Neural Networks (NN) in predicting daily maximum O3 concentrations, showcasing the sophistication and 

efficacy of these algorithms in environmental forecasting (Chelani, 2010). This supports the role of AI-based 

approaches in improving our understanding and management of groundwater quality, thereby contributing to 

more effective environmental stewardship and risk mitigation. 

Despite recent strides in the field of artificial intelligence (AI) and its application in earthquake prediction, 

incorporating sophisticated deep learning (DL) into this realm remains a challenge. This challenge is 

attributed to the limited availability of features for training complex models, coupled with the fact that a 

majority of earthquake catalogues are stored in simplistic tabular formats. The constraints in data 

representation and feature richness pose obstacles to the effective application of deep learning in earthquake 

prediction, as highlighted by Mignan and Broccardo (2020). 

Nevertheless, there is a positive trend in the development of more reliable and efficient seismic monitoring 

algorithms, thanks to the integration of DL approaches. The work of Mousavi et al. (2020) attests to the 

acceleration of advancements in seismic monitoring, facilitated by the adoption of deep learning techniques. 

Despite the challenges, the evolving landscape of AI-based earthquake prediction promises to overcome 

existing limitations and contribute to more accurate and timely seismic assessments. 

The emergence of Supervised Machine Learning (SML) marks a significant paradigm shift in the evaluation 

of geological parameters. SML algorithms, trained on diverse datasets encompassing geological, 

geotechnical, geophysical, and environmental information, possess the capability to reveal intricate 

relationships and patterns that might elude traditional analyses. This research advocates for the innovative 

and efficient application of SML to integrate porosity and pollutant tracking on trained data, showcasing its 

potential in advancing the understanding of geological phenomena. Despite the widespread applications of 

machine learning algorithms in various earth science disciplines, there is a noticeable scarcity of studies on 

multi-class classification in the context of water exploration and groundwater pollutant tracking, as 

exemplified by the limited work conducted by Engle & Brunner (2019). This research gap underscores the 

need for further exploration and development of machine learning methodologies specifically tailored to 

address challenges in the realm of porosity and pollutant tracking. 

STUDY AREA DESCRIPTION 

The scope of this study encompasses the regions of Sokoto1, Sokoto2, Malete, Oke Oyi, Jimba, Omu Aran 

and Ijagbo within Kwara state, Nigeria. These geographical areas are positioned between latitudes 8°44'6''N 

and 7°59'40''N and longitudes 4°09'40''E and 5°14’8''E. Geographically located in the southwestern part of 

Nigeria, these regions are in close proximity to the central part of the country. The climate in this area 

follows a cyclical pattern of dry and rainy seasons, with an annual rainfall ranging from 1270 mm to 1524 
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mm. The rainy season predominantly occurs from April to October, with peak rainfall observed in June/July 

and October. According to Michaelaschloegl (2023), the highest monthly temperature is recorded in March, 

reaching around 32°C, while the lowest temperature occurs in August, approximately at 25°C. 

Noteworthy rivers in the region include Asa, Agba, Alalubosa, Okun, Osere, and Aluko, with some of these 

rivers draining into either the River Niger or River Asa, as documented by Oyegun (1985). The general 

elevation of the land in the western part varies from 273 m to 364 m above sea level.  

Geology of Study Area  

The study area is situated within Nigeria's Basement Complex, as depicted in Figure 1. Geological mapping 

has unveiled the presence of three primary rock types underlying the region: Granite Gneiss, Biotite Gneiss, 

and Migmatite. The detailed geology can be further classified into surface and subsurface geology. Surface 

geology comprises clay, lateritic soil, and the crustal top layer, exhibiting variations across different 

locations. Often, the lateritic soil dominates the surface, concealing much of the underlying geological 

features of the region. 

To construct the geological map of the area, a synthesis of data from field mapping, literature reports, maps 

from the Nigeria Geological Survey Agency, and IKONOS imagery was employed. The compiled geology 

map underwent a sequence of processes, including scanning, processing, and digitization. A robust database 

was established and seamlessly integrated into the map, consolidating information on lithology, icons, and 

interpretations. Various lithologies were identified at the sampling sites, and a Geographic Information 

System (GIS)-based database was meticulously crafted, encapsulating icons, lithology details, and 

interpretations. These lithologies underwent classification and ranking based on their suitability as a landfil l 

site, adhering to the standards delineated in Table 1. Subsequently, the lithology vector map underwent 

conversion into a raster map for in-depth analysis, as illustrated in the diagram in Figure 1. 

 

Figure 1: Geological Map of the study area 
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Geological Criteria  

The geological characteristics of the area are intricately linked to the parent rock material, serving as the 

source of soil distribution. The suitability of the land for landfill and the movement of leachate hinge upon 

the strength and permeability of the soil. The structure of the rock body plays a pivotal role in influencing 

soil characteristics, parent rock permeability, and overall suitability, as illustrated in Table 1. The geological 

structure is also a critical factor in determining the movement of leachate and the potential for rock-slope 

failure, particularly along joints and inclined bedding. 

To ensure the selection of appropriate parent rock materials and identify suitable areas for solid waste 

landfill, a thorough geological mapping process was undertaken. This mapping aimed to assess and 

understand the geological composition of the region, ensuring that the chosen parent rock materials meet the 

necessary criteria for effective and environmentally responsible solid waste disposal.  

Table 1: Landfill suitability of bedrock (Oweis and Khera, 1998) 

ROCK TYPE  SUITABILITY 

Unfractured crystalline Very high 

Shale and clay High 

Limestone Fair to poor 

Sandstone Poor to very poor 

Unconsolidated sand/gravel Unsuitable 

The prevalent rock types in the area consist mainly of migmatite granite gneiss and biotite granite, exhibiting 

a coarse to medium-grained texture. In accordance with EPA guidelines from 2006, granite rock is deemed 

highly suitable for landfill, while the Migmatite-Gneiss complex is considered moderately suitable, and 

Quartzite is identified as the least suitable for landfill purposes. Notably, all the mapped sites satisfy the 

geological criteria necessary for the establishment of a sanitary landfill and other environmentally friendly 

sites, as detailed in Table 2. 

Table 2: Rock Suitability Level     

SITE  LOCATION ROCK  SUITABILITY LEVEL  

S1&2  SOKOTO    

 1  Migmatite Granite Gneiss Highly Suitable  

S3  MALETE    

 1  Migmatite Granite Gneiss Highly Suitable  

S4   OKE OYI    

 1  Biotite Granite  Highly Suitable  

 2  Granite Gneiss  Highly Suitable  

 3  Porphyroblastic Gneiss Moderately suitable 

S5  JIMBA    

 1  Granite Gneiss  Highly Suitable  

 2  Biotite and Honrnblend Gneiss Moderately suitable 

S6  OMU ARAN    

 1  Migmatite Granite Gneiss  Highly Suitable  

 2  Granite Gneiss  Highly Suitable  
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 3  Quartzite Least suitable  

S7  IJAGBO  Biotite Gneiss   

  Biotite and Biotite Hornblende Gneiss Moderately suitable 

 

MATERIALS AND METHODS 

The initial phase of the study involved a reconnaissance survey of selected sample locations, aiming to 

identify suitable areas for sanitary landfill site locations and areas for porosity and pollutants tracking in 

consultation with local relevant agencies. Subsequent steps included an environmental impact assessment, 

geological fieldwork, geophysical survey, and geotechnical soil sample collection for laboratory material 

testing and analysis. Site visits were conducted to ascertain soil thickness, lithology, and subsurface rock 

mass conditions. 

The procedures for porosity and pollutant tracking for sanitary landfill site selection, as well as other 

environmental purposes and the availability of construction material, were divided into two categories: 

Surface and Sub-surface investigations. Surface investigations included desk studies, remote sensing for 

spatial data acquisition, and detailed geological mapping of the entire area to assess rock distribution, surface 

soil material, and environmental impact. Subsurface investigations involved geophysical and geotechnical 

data collection. The aeromagnetic and electrical resistivity techniques were employed for the study and 

delineation of geological subsurface structures. Vertical Electrical Sounding (VES) using the Schlumberger 

array was employed in geophysical investigations. For geotechnical data collection, soil samples were 

collected, labelled accordingly, and assessed for conditions based on British Standard International, 

1377(1990). Twenty exploratory test pits were dug, and 60 soil samples were collected and analyzed. 

In addition, a Supervised Machine Learning (SML) study on multi-class classification was utilized to predict 

the suitability of the area based on porosity and pollutant tracking, considering different environmental 

factors. Machine learning employed diverse methodologies to construct predictive models, excelling in 

tackling high-dimensional problems and categorizing rocks, soil, and environments. This methodology 

provided invaluable insights into complex relationships within datasets, which may be impractical or 

laborious to analyze through traditional, manual means. 

These machine learning approaches were broadly categorized into two types: supervised and unsupervised 

learning methods. Supervised learning involved training models and making predictions based on rock types 

identified by geologists using labelled datasets. This method relied on labelled datasets where the algorithm 

learned from examples provided by experts, enabling it to make predictions or classifications when presented 

with new, unlabelled data. The utilization of supervised learning in geology facilitated the development of 

predictive models that aligned with expert knowledge, enhancing the understanding of rock classifications 

within the field. 

Data Collection: Data Acquisition for GIS Database  

The research utilized a diverse range of data and materials to comprehensively study the geological and 

environmental aspects of the region. The sources include IKONOS Imagery, Toposheets – RO1C07 to 

R18C13 (scaled at 1:50,000), LANDSAT ETM+ (2017, with a resolution of 28.5m, path and row wrs2- 190, 

53) as outlined in Table 3. Additionally, ASTER imagery (with a resolution of 30m) covering the study area 

was employed to generate elevation and slope data. Geological information for the areas was gathered 

through geological fieldwork, satellite imagery, and data from the Nigeria Geological Surveys. 

Geotechnical soil data were collected during site investigations and integrated with Soil maps to extract 
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details on soil types and their distribution. Topographical maps at a scale of 1:50,000 were utilized to outline 

the river systems within the area. IKONOS imagery played a crucial role in extracting information related to 

the built-up area, geological features, road networks, and validating water bodies in the study area. 

Furthermore, electrical resistivity surveys were conducted to delineate lithology and aquifer characteristics. 

Geometric data was collected through field surveys using a Global Positioning System (GPS Garmin-12). 

This comprehensive approach ensured a robust and multi-faceted dataset for the research. 

Table 3: The Adopted Data and their Attributes 

S/n Data Source Year  Resolution Relevance  

1 Ikonos Imagery  Sat Imaging  2017 90m 2D Base Map 

2 LANDSAT ETM USGS 2016/2017 28.5m Land use cover 

3 ASTER DEM Sat Imaging  2017 30.0m 3D Image 

(Terrain Analysis) 

4 Geological map NGSA 2017 Not applicable Base Map 

5 Aeromagnetic map  NGSA 2017 Not applicable Inclination, 

Lineation fault  

6 Topographical map OSGF 2017 Not applicable Base Maps 

7 Drainage map OSGF 2017 Not applicable Drainage  

8 Soil map Field work 2017/2018 Not applicable Soil distribution  

9 GPS coordinates  Field 2017/2018 3m Location 

Coordinates 

 

Data Selection for Environmental Decision Factors  

To construct the digital database for the sanitary landfill model in parts of South-West Nigeria, a diverse 

array of sources was employed. These sources encompassed geological, geotechnical, geophysical, 

environmental field data, and hydrological data of varying scales, as delineated in Table 4. The integration of 

data from these sources facilitated the development of a comprehensive and robust digital database, 

enhancing the accuracy and reliability of the sanitary landfill and pollutant tracking model for the specified 

region. 

Table 4: Field and Spatial data used for porosity and pollutants tracking for sanitary landfill Modelling  

S/N Factors  Sub-factors  Sources  Information 

Used to create 

layers  

Format Scale or 

Resolution  

Date  

1 Geology Distance to 

Faults 

Rock 

Exposure  

 

Porosity  

Aeromagnetic 

Survey 

 

Ikonos 

Imagery/Field 

Mapping  

Geophysical 

Survey  

Structures 

Geological/ 

Geotechnical 

 

Lithology 

Digital 

Digital 

 

Digital 

 

1:500,000 

 

 

 

2017 

2 Geotechnical/Soil  Type of Soil  Field work and 

Geotechnical Lab 

test 

Type of Soil  Digital 1:500,000 2017 
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3 Geomorphology Slope ASTER Image Elevation Digital 1:500,000 2017 

4 Water-Surface Distance to 

Rivers  

Hydrology 

Report: 

Ikonos Image 

River, stream 

and Dams 

 

Digital 

 

 

1:500,000 

 

2017 

5 Water-Underground/ 

Geophysics  

Distance to 

Wells 

Aquifer Flow 

Aquifer 

Vulnerability 

Hydrology 

Report 

Field 

Geophysical 

survey 

Aquifer Flow 

Classes 

Aquifer 

Vulnerability 

Classes 

Digital 

 

Digital 

 

Digital 

1:500,000 

 

 

 

 

2018 

6 Road road IKONOS Road Network Image 1:500,000 2017 

7 Build-up Area Build-up are IKONOS Settlement, land 

use and water 

body 

Image 1:500,000 2017 

Definition of Classes, Rating and Ranking  

In this meticulous analytical study, the assignment of classes was executed with precision, considering the 

specific and pertinent conditions within the research area. The allocation process, detailed in Tables 5 and 6, 

carefully considered the unique contextual factors and parameters relevant to the research environment. This 

thorough approach to class assignment ensures a nuanced and contextually accurate representation of the 

studied phenomena, contributing to the robustness and reliability of the analysis within the specified research 

framework. 

The eighteen sub-factors used in the Environmental Suitability Model (ESM) were categorized into classes 

for the Sanitary Landfill Environmentally Suitable Model. Ratings were placed on a scale of 1 to 10, as 

depicted in Table 7, where 1 represented the lowest level of suitability, and 10 indicated the maximum level 

of suitability for impact on the environment. The chosen measurement cycles of 1 to 10 were based on 

existing scales by Alavi et al. (2012), Hughes et al. (2005), and other relevant literature. However, it is 

noteworthy that the significance of each class may vary based on the location of interest and the unique 

features of the area, as highlighted by Al-Hanbali et al. (2011). 

Table 5: Environmental Criteria for Buffer Zones rating interval  

S/NO CRITERIA 

(with respect to distance) 

RECOMMENDATIONS 

 (With References) 

1 LAKE ≥ 60m (Nathanson, 2007) 

≥ 300m (Bagchi, 1994; USEPA, 2005 

2  SLOPE  ≤ 15° EPA., 2006, Flat area (Bagchi,1994; Montgomery, 2000; 

Gentle slope 10° -20° (Hughes et al., 2005) 

3 FLOWING STREAM >90m (Bagchi, 1994); ≥150 (World Bank, 2004) 

4 HIGHWAY ≥150m(Howard and Remson, 1978) 

≥167m(WRSC, 1992); 

≥500m(Zuquette etal,2005) 

5 WATER SUPPLY WELL ≥500(World Bank, 2004) 

≥800m(bell,1999) 

6 AIRPORT ≥330m(WRSC, 1992) 

≥3048m(Bagchi,1994) 

7 FLOODING FREQUENCY  
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Table 6 Suitability classes for different criteria under study (Sener 2005; EPA 2006; Leao et al. 2004) 

Criteria Class/ buffer zone Suitability 

Proximity to faults (m) 0-60 Very Low 

 60-500 Low 

 500-4000 Moderate 

 4000-8000 High 

 >8000 Very High 

Proximity to roads (m) 0-100 Very Low 

 100-700 Low 

 700-1500 Moderate 

 1500-4000 High 

 4000-7000 Very High 

Proximity to airports (m) 0-3000 Very Low 

 3000-4000 Low 

 4000-5000 Moderate 

 5000-7000 High 

 7000-30000 Very High 

Proximity to Residential area (m) 0-3000 Very Low 

 3000-5000 Low 

 5000-6000 Moderate 

 6000-8000 High 

 >8000 Very High 

Proximity to Wadies (m) 0-300 Very Low 

 300-400 Low 

100years (WRSC, 1992; Bagchi, 1994) 

8 NEAREST SETTLEMENT >500m(Bagchi 1994) 

>250m(World Bank, 2004)  

1000m (Allen 2001) 

9 DEPTH TO WATER 

TABLE (From the base of 

Mineral seal) 

>0.6m(Howard and Ramson, 1978) 

1.57(WRSC, 1992); 

≥3.0(Frempong, 1999) 

>6.0m(Zuquette et al,2001) 

>1.5m(Nathanson, 2000; World Bank, 2004) 

10 DEPTH TO BASEMENT 

ROCK 

3.3m (WRSC, 1992) 

>5m(Zuguette et al,2005) 

11 PROXIMITY TO  FAULT ≥33m(WRSC, 1992);  

60m (Nathanson, 2007) 

12 PROXIMITY TO 

SINKHOLE 

≥250m (WRSC, 1992) 

13 PROXIMITY TO SOCIAL 

AMENITIES (POLES,GAS, 

WATER PIPES etc) 

167m(WRSC, 1992; World Bank, 2004) 

14 ACCESSIBILITY 30minutes drive or 10km from source (World Bank,2004) 
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 500-1000 Moderate 

 1200-2000 High 

 >2000 Very High 

Proximity to Coast (m) 0-5000  Low  

 5000-7000 Moderate 

 >7000 High 

Proximity to GW wells (m) 0-500 Very Low 

 500-800 Low 

 800-1200 Moderate 

 1200-2000 High 

 >2000 Very High 

Proximity to Surface water (m) 0-500 Very Low 

 500-1000 Moderate 

 >1000 High 

Permeability of strata Coarse texture  Very Low 

 Moderately coarse texture  Low 

 Medium texture Moderate 

 Moderately fine texture High 

 Fine texture Very High 

Ground Water Depth (m) 0-10m Very Low 

 10-20m Low 

 20m-40m Moderate 

 40m-50m High 

 >50m Very High 

Geology Dunite & schist Very High 

 Limestone & dolostone Low 

 Alluvial fans and terraces Very Low 

Table 7: Rating classes for sub-factors in the Modelling  

Factors  Sub-factors  Class Rating  % of 

Influence 

Geology  Distance to faults <500 m 

500 – 1000 m 

1000 – 1500 m 

1500 – 2000 m 

2000- 2500 m 

2500– 3000 m 

3000– 3500 m 

3500– 4000 m 

4000– 4500 m 

>4500 m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

No 

Applicable 

Porosity of Rock Highly weathered rock 

Moderately weathered 

rock Fresh rock 

1 

5 

10 
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Geotechnical/Soil Type of Soil No soil 

Peat 

Gravel 

Gravely sand 

Sand 

Loamy sand 

Sandy clay 

Silty clay 

Clay 

1 

2 

3 

4 

5 

6 

7 

8 

10 

20 

Water Resources - 

Surface 

Rivers and Stream  <500 m 

500 – 1000 m 

1000 – 1500 m 

1500 – 2000 m 

2000- 2500 m 

2500– 3000 m 

3000– 3500 m 

3500– 4000 m 

4000– 4500 m 

>4500 m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

22 

Water Resources - 

Underground/ 

Geophysical survey 

Water Body: Lake, 

Dam and other man 

made water  

<500 m 

500 – 1000 m 

1000 – 1500 m 

1500 – 2000 m 

2000- 2500 m 

2500– 3000 m 

3000– 3500 m 

3500– 4000 m 

4000– 4500 m 

>4500 m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

21 

Depth to rock 1m 

2m 

3m 

4m 

5m 

6m 

7m 

8m 

9m 

10m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

20 

Aquifer 

Vulnerability 

High 

Medium 

Low 

2 

6 

10 

Land use  Road/High way <300m 

>300m 

 

4 

10 

3 

Built up Area <300m 

500m 

1 

2 

10 
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700m 

900m 

1000m 

1200m 

1400m 

1600m 

1800m 

>2000m 

3 

4 

5 

6 

7 

8 

9 

10 

Slope Elevation  <2° 

4°  

6° 

8° 

10° 

12° 

14° 

16° 

18° 

>20° 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

4 

Data Pre-processing  

The identified problem is framed as a multi-class classification task, aiming to predict porosity and pollutant 

tracking based on a diverse set of environmental factors. The primary objective is to categorize or classify 

the levels of porosity and pollutant tracking into distinct classes or categories. The predictive modelling 

considers various environmental factors, spanning geological, geotechnical, geophysical, surface water, land 

use, and slope considerations. 

The specific aspects of data pre-processing can be outlined as follows: 

1. Environmental Factors 

The dataset encompasses an extensive array of environmental factors, providing a thorough representation of 

various aspects. These factors include geological features, such as the proximity to fault lines, the presence 

of unconsolidated sand and gravel, the nature of sandstone, shale and clay porosity, and the characteristics of 

unfractured crystalline formations. Additionally, geotechnical information is incorporated, featuring the 

presence of different soil types like peat, gravel, gravely sand, sandstone, loamy sand, sandy clay, silty clay, 

and clay. 

Geophysical parameters are considered in the dataset, including the proximity to boreholes and the depth to 

the rock strata. Surface water attributes, such as the distance to dams, lakes, and rivers, are included, 

alongside land use factors encompassing distances to residential areas, airports, roads, and farmlands. 

Moreover, slope-related information, specifically elevation, is incorporated into the dataset.  

2. Sub-factor Classification 

Each sub-factor within the environmental factors undergoes a meticulous classification process, segregating 

them into distinct classes based on their suitability measured in meters. This classification is executed by 

assigning a rating to each class on a percentage scale that spans from 1 to 10. A higher rating signifies an 

elevated level of importance for the respective sub-factor.  
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3. Suitability Levels:  

The focal variable in the multi-class classification task is "POROSITY AND POLLUTANTS TRACKING." 

This variable is systematically categorized into distinct classes, namely Highly Suitable, Moderately 

Suitable, and Not Suitable.  

5. Model Objective 

The principal aim of the multi-class classification model is to achieve precise predictions of the class or 

category associated with porosity and pollutant tracking. This entails harnessing the collective influence of 

diverse environmental factors to construct a robust predictive model.  

6. Target Variable Definition: 

The target variable, "Porosity and Pollutants Tracking," is distinctly and precisely defined, demonstrating 

clarity in its formulation. The criteria for the multi-class classification are thoroughly established, outlining 

specific parameters and categories that serve to categorize and differentiate within the defined target 

variable. 

7. Model Selection 

To achieve precise predictions of "Porosity and Pollutants Tracking," a deliberate adoption of a supervised 

machine learning approach was implemented. The designated algorithm for this multi-class classification 

task is the Decision Trees classifier. This specific algorithm offers notable advantages, notably in furnishing 

interpretable insights into the intricate relationships among diverse environmental factors and the targeted 

outcome, as illustrated in Table 9a and 9b. 

8. Data Splitting 

In the creation of the Porosity and Pollutants Tracking model, a pivotal stage is the division of the dataset 

into training and testing sets. This step is vital to enable the model to grasp patterns from the training data 

and evaluate its effectiveness on unseen data. Employing a conventional 80-20 split, 80% of the data was 

designated for training purposes, while the remaining 20% was reserved for testing. 

9. Model Training 

The model underwent training with the training dataset to forecast suitability levels pertaining to porosity 

and pollutant tracking. Hyperparameter tuning was applied to enhance the model's performance, fine-tuning 

its parameters for optimal results. Cross-validation techniques were employed to fortify the model's 

robustness, ensuring its consistent and reliable performance across different subsets of the data as shown in 

Table 8a and 8b. 

Table 8a: Model 80-20 Testing and Training Prediction  

Train_Test_Type Predicted Label Predicted Probability Predicted Correctness 

test Not Suitable 1 correct 

test Not Suitable 1 correct 

test Moderately Suitable 1 correct 

test Not Suitable 1 correct 

test Not Suitable 1 correct 

test Highly Suitable 1 correct 
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test Highly Suitable 1 correct 

test Not Suitable 1 correct 

test Moderately Suitable 1 correct 

test Not Suitable 1 correct 

test Moderately Suitable 1 correct 

test Highly Suitable 1 correct 

test Highly Suitable 1 correct 

test Not Suitable 1 correct 

test Highly Suitable 1 correct 

test Moderately Suitable 1 correct 

test Not Suitable 1 correct 

test Moderately Suitable 1 correct 

test Not Suitable 1 correct 

    

Table 8b: Model 80-20 Testing and Training Prediction  

ENVIRONMENTAL 

FACTOR 

SUB-

FACTORS 

CLASS 

(M) 

RATING % OF 

INFLUENCE 

SUITABILITY POROSITY 

AND 

POLLUTANTS 

TRACKING 

LAND USE Distance to 

Road 

500 2 10 Very Low Not Suitable 

GEOTECHNICAL No Soil 1 1 20 Very Low Not Suitable 

WATER SURFACE Distance to 

Dam, Lake 

and Rivers 

3000 6 22 Moderate Moderately 

Suitable 

SLOPE Elevation 16 2 4 Very Low Not Suitable 

GEOTECHNICAL Gravely 

Sand 

60 4 20 Low Not Suitable 

LAND USE Distance to 

Road 

7000 9 10 Very High Highly Suitable 

GEOPHYSICAL Proximity to 

Borehole 

5500 10 21 Very High Highly Suitable 

WATER SURFACE Distance to 

Dam, Lake 

and Rivers 

1500 3 22 Low Not Suitable 

WATER SURFACE Distance to 

Dam, Lake 

and Rivers 

3500 7 22 Moderate Moderately 

Suitable 

LAND USE Distance to 

Farm Land 

1000 2 10 Very Low Not Suitable 

GEOPHYSICAL Proximity to 

Borehole 

3000 5 21 Moderate Moderately 

Suitable 

GEOLOGICAL Unfractured 

Crystaline 

2000 10 5 Very High Highly Suitable 
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GEOPHYSICAL Proximity to 

Borehole 

5000 9 21 Very High Highly Suitable 

LAND USE Distance to 

Residential 

Area 

1000 3 10 Low Not Suitable 

GEOLOGICAL Distance to 

Fault 

6000 8 5 Very High Highly Suitable 

GEOPHYSICAL Aquifer 

Depth to 

Rock 

7 7 20 Moderate Moderately 

Suitable 

LAND USE Distance to 

Farm Land 

100 1 10 Very Low Not Suitable 

GEOTECHNICAL Silty Clay 70 8 20 High Moderately 

Suitable 

LAND USE Distance to 

Residential 

Area 

100 1 10 Very Low Not Suitable 

WATER SURFACE Distance to 

Dam, Lake 

and Rivers 

1500 3 22 Low Not Suitable 

10. Model Evaluation 

The effectiveness of the Porosity and Pollutants Tracking Model was rigorously assessed using a set of 

pertinent metrics tailored for multi-class classification. Key metrics included Accuracy, Precision, Recall, 

and F1-score for each class, accompanied by a detailed examination through a Confusion Matrix. The 

evaluation process exclusively leveraged the testing dataset, ensuring a comprehensive understanding of the 

model's generalization performance. 

RESULT AND DISCUSSION  

In the realm of Engineering Geological research, the development of an accurate predictive model for 

porosity and pollutant tracking is of paramount importance. This endeavour seeks to utilize a comprehensive 

dataset encompassing a myriad of environmental factors, including geological, geotechnical, geophysical, 

surface water, land use, and slope, to construct a robust model capable of providing insightful predictions. 

The first set of factors considered falls under the geological category. These include the distance to fault, 

unconsolidated materials, and specific porosity-related attributes such as Sand and Gravel, Sandstone, Shale, 

and Clay Porosity. Additionally, Unfractured Crystalline formations are considered. Each sub-factor is 

meticulously assessed based on their suitability, rated in percentage from 1 to 10, with 1 being of least 

importance and 10 being of utmost significance. The resulting suitability levels are then categorized into 

very low, low, moderate, high, and very high classes. 

Moving on to the geotechnical factors, considerations involve the presence or absence of specific soil types 

such as peat, gravel, gravely sand, sandstone, loamy sand, sandy clay, silty clay, and clay. Similarly, the 

suitability of these factors is determined and categorized into classes. 

Geophysical factors, such as proximity to borehole and aquifer depth to rock, are also considered. Their 

suitability is assessed and classified accordingly. 
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Surface water factors, including Distance to Dam, Lake, and Rivers, are evaluated for their impact on 

porosity and pollutant tracking. The suitability of these factors is then rated and grouped into classes. 

Land use factors, comprising Distance to Residential Area, distance to airport, distance to road, and distance 

to farm land, are examined for their influence on the outcomes. Suitability assessments are made, and classes 

are assigned accordingly. 

Slope, measured in degrees, is the final factor under consideration. Its impact on the predictions is analysed, 

and suitability classes are assigned based on the degree of slope. 

In the end, the predictive model aims to determine the suitability of the combined environmental factors for 

porosity and pollutant tracking. The outcomes are categorized into Highly Suitable, Moderately Suitable, and 

Not Suitable, providing valuable insights and actionable recommendations for informed decision-making in 

the field of Engineering Geological research. 

1. SUITABILITY: 

a. Feature name: SUITABILITY 

b. Importance: Very important 

c. Analysis and insights: Suitability is a critical factor significantly influencing the outcomes of porosity and 

pollutant tracking. A "Very High" suitability level enhances the likelihood of achieving the target outcome 

by a substantial multiplier of 34.0x. 

d. Actionable insights to meet the goal: To attain the goal, prioritize environmental factors contributing to a 

"Very High" suitability level. Focus on creating conditions that align with the desired outcome, emphasizing 

the importance of suitability in the decision-making process. 

2. ENVIRONMENTAL FACTOR: 

a. Feature name: ENVIRONMENTAL FACTOR 

b. Importance: Relatively important 

c. Analysis and insights: Geological and geophysical factors positively impact outcomes, while water 

surface, slope, and land use have negative influences. Prioritizing positive factors through meticulous 

assessments can enhance porosity and pollutant tracking. 

d. Actionable insights to meet the goal: Concentrate on geological and geophysical factors that have positive 

multipliers, addressing the negative impact of water surface, slope, and land use through targeted 

interventions. This involves a strategic focus on factors that contribute positively to achieve desired results. 

3. SUB-FACTORS: 

Analysis and insights: Sub-factors related to geology, geotechnical, geophysics, surface water, land use, and 

slope play a crucial role in influencing outcomes. Prioritizing favourable sub-factors, such as distance to 

fault and aquifer depth to rock, during site selection or project planning is essential. 

4. RATING: 

Higher ratings positively impact outcomes, underscoring the need to select sites or areas with favourable 

ratings. 
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5. Percentage (%) INFLUENCE: 

Higher percentages of influence positively impact outcomes. Prioritizing environmental factors with higher 

percentages is crucial for optimizing porosity and pollutant tracking.  

6. CLASS (M): 

Sub-factor classification based on suitability in meters significantly impacts outcomes. Prioritizing higher 

classes is essential for achieving improved porosity and pollutant tracking. 

Implementing these insights has enhance the suitability of porosity and pollutant tracking, ultimately 

achieving the desired outcome of Highly Suitable. Further analysis of remaining features will provide a more 

comprehensive understanding for additional strategies. 

Performance Analysis 

In the evaluation of model performance, the identification of key drivers becomes pivotal, as it sheds light on 

the significance of each column or feature in making accurate predictions. The reliance of the model on 

specific columns, termed as key drivers, plays a crucial role in determining their importance. To quantify this 

importance, a permutation feature importance method was employed for calculation. 

Among the various features considered, SUITABILITY emerged as the most crucial key driver in predicting 

POROSITY AND POLLUTANTS TRACKING. The parameters utilized during the model training 

encompass suitability level, environmental factors, sub-factors, rating, % of influence, and class. These 

parameters collectively contribute to the model's ability to accurately forecast outcomes related to porosity 

and pollutant tracking. Furthermore, it is observed that changes in SUITABILITY values directly impact 

POROSITY AND POLLUTANTS TRACKING outcomes. For instance, when the SUITABILITY is 

assessed as "very high," there is a corresponding increase in the likelihood of POROSITY AND 

POLLUTANTS TRACKING being classified as highly suitable by a specific numerical factor.  

Suitability Level Impact Analysis 

Understanding the impact of alterations in each individual feature is paramount, particularly in influencing 

the target feature – POROSITY AND POLLUTANTS TRACKING. Figure 2 provides a visual 

representation, offering insights into the current depiction of SUITABILITY's impact on POROSITY AND 

POLLUTANTS TRACKING.  

The graphical representation utilizes a chart that vividly illustrates various suitability counts, namely highly 

suitable, moderately suitable, and not suitable, along the Y-axis. Simultaneously, it captures different 

suitability levels, including high, low, moderate, very high, and very low, along the X-axis. This visual 

depiction serves as a powerful tool for comprehending how the POROSITY AND POLLUTANTS 

TRACKING feature responds to diverse conditions of SUITABILITY. 

By examining the chart, one can glean valuable insights into the intricate relationship between 

SUITABILITY and the POROSITY AND POLLUTANTS TRACKING feature. The varying levels of 

SUITABILITY are effectively mapped against different outcomes, providing a comprehensive 

understanding of how changes in SUITABILITY conditions influence the target feature. This analysis serves 

as a foundation for informed decision-making processes related to porosity and pollutant tracking, offering a 

nuanced perspective on the nuanced relationship between SUITABILITY levels and the ultimate outcomes 

of the model. 
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Figure 2: Suitability Level 

Environmental Factor Impact Analysis 

A thorough exploration of the model's analysis reveals a comprehensive understanding of how alterations in 

each environmental feature or factor, spanning geological, geophysical, geotechnical, land use, slope, and 

water surface, intricately influence the target feature – POROSITY AND POLLUTANTS TRACKING. The 

insights gleaned from this analysis serve to illuminate the nuanced relationships between various 

environmental elements and the ultimate outcomes of POROSITY AND POLLUTANTS TRACKING. 

In Figure 3, a chart is presented to visually depict the impactful role of ENVIRONMENTAL FACTOR on 

POROSITY AND POLLUTANTS TRACKING. This chart serves as a graphical representation that vividly 

captures how variations in the ENVIRONMENTAL FACTOR, representing a collective amalgamation of 

geological, geophysical, geotechnical, land use, slope, and water surface factors, contribute to the 

fluctuations observed in the POROSITY AND POLLUTANTS TRACKING feature. The visual 

representation offered by this chart enhances the comprehension of the specific influences exerted by the 

ENVIRONMENTAL FACTOR on the target outcome. 

This insightful visual analysis provides a foundation for understanding the intricate interplay between 

diverse environmental factors and their impact on the POROSITY AND POLLUTANTS TRACKING 

feature. It serves as a valuable tool for decision-makers, offering a clear understanding of the multifaceted 

influences that environmental factors can have on the predictive model. This clarity aids in the formulation 

of informed decisions and strategies aimed at optimizing POROSITY AND POLLUTANTS TRACKING 

based on the complex relationships identified through this comprehensive environmental factor impact 

analysis. 

 

Figure 3: Environmental Factor 
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Sub-Factor Impact Analysis 

The model analysis, as depicted in Figure 4, delves into a detailed examination of how alterations in each 

feature exert influence on the target feature, namely, POROSITY AND POLLUTANTS TRACKING. This 

analytical insight holds paramount importance for unravelling the intricate dynamics and dependencies 

between various features and the ultimate outcome of POROSITY AND POLLUTANTS TRACKING. 

In Figure 4, a comprehensive chart is presented, visually representing the impactful role of SUB-FACTORS 

on POROSITY AND POLLUTANTS TRACKING. The SUB-FACTORS considered in this analysis 

encompass a diverse array, ranging from depth to rock, clay content, and distance to various landmarks (such 

as airport, dam, lake, rivers, farm land, fault, residential area, road) to elevation, gravel content, gravely sand, 

absence of soil, peat, proximity to borehole, sandstone, sandy clay, shale and clay porosity, silty clay, 

unconsolidated sand and gravel, and unfractured crystalline. This comprehensive chart vividly illustrates 

how variations in these SUB-FACTORS impact the POROSITY AND POLLUTANTS TRACKING feature. 

Moreover, the chart goes a step further by categorizing the suitability level of these SUB-FACTORS, 

differentiating between highly suitable, moderately suitable, and not suitable. This classification provides a 

nuanced understanding of the intricate relationship between each SUB-FACTOR and its suitability in 

influencing the target outcome. Analyzing this visual representation becomes instrumental in making 

informed decisions and devising strategies to optimize POROSITY AND POLLUTANTS TRACKING. The 

specific characteristics of these SUB-FACTORS, as unveiled by the chart, serve as a valuable guide for 

refining strategies and interventions to achieve optimal outcomes in the realm of porosity and pollutant 

tracking. 

 

Figure 4: Sub-Factor 

Ratting Impact Analysis 

The model analysis depicted in Figure 5 offers a comprehensive examination of the dynamic interplay 

between individual features and the target feature, POROSITY AND POLLUTANTS TRACKING. This 

analytical representation is instrumental in unravelling the intricate relationships and dependencies that 

influence the final outcome of POROSITY AND POLLUTANTS TRACKING. 

Within Figure 5, the chart intricately illustrates the impact of the feature "RATING" on POROSITY AND 

POLLUTANTS TRACKING. The feature "RATING" is assessed on a scale ranging from 1 to 10, with 1 

denoting the lowest level of suitability and 10 signifying the utmost level of suitability for its impact on the 

environment. This scaling system provides a nuanced perspective, allowing one to discern the varying 

degrees of influence that different ratings exert on the POROSITY AND POLLUTANTS TRACKING 
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outcome. 

The chart visually categorizes the different rating levels, creating a clear representation of how each level 

contributes to the overall suitability and impact on the environment. One can use this information to make 

informed decisions about prioritizing areas with higher ratings and strategically selecting sites or regions that 

align with the desired level of suitability for POROSITY AND POLLUTANTS TRACKING. 

This analytical insight aids in formulating targeted strategies and interventions to optimize POROSITY AND 

POLLUTANTS TRACKING based on the specific rating assigned to environmental conditions. The visual 

clarity provided by Figure 5 enhances the understanding of the role of the "RATING" feature in influencing 

the ultimate environmental outcome. 

 

Figure 5: Rating  

Percentage of Influence Impact Analysis  

The model analysis presented in Figure 6 delves into the intricate dynamics of how alterations in individual 

features contribute to the overall impact on the target feature, POROSITY AND POLLUTANTS 

TRACKING. This detailed examination sheds light on the nuanced relationships and influences that shape 

the final outcome of POROSITY AND POLLUTANTS TRACKING. 

Within Figure 6, the chart meticulously portrays the influence of the "PERCENTAGE OF INFLUENCE" 

feature on POROSITY AND POLLUTANTS TRACKING. The chart visually represents varying 

percentages of influence, offering a comprehensive understanding of how each percentage range affects the 

ultimate environmental outcome. The percentages are categorized into different bands, enabling one to 

discern the magnitude of influence exerted by each range on POROSITY AND POLLUTANTS 

TRACKING. 

This graphical representation serves as a valuable tool for decision-makers, providing a clear depiction of the 

factors that wield the most significant influence on the environmental outcome. One can utilize this 

information to prioritize environmental features with higher percentages of influence, thereby optimizing 

strategies to enhance POROSITY AND POLLUTANTS TRACKING. 

By focusing on the chart in Figure 6, stakeholders can formulate targeted interventions and actions to 

mitigate any negative impact associated with higher negative percentages of influence. The insights gained 

from this analysis empower stakeholders in making informed decisions to improve the overall suitability of 

POROSITY AND POLLUTANTS TRACKING based on the intricate interplay of the "PERCENTAGE OF 
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INFLUENCE" feature. 

 

Figure 6: Percentage of Influence 

Class Impact Analysis 

The model analysis thoroughly examines the impact of alterations in each feature on the target feature, 

POROSITY AND POLLUTANTS TRACKING. Figure 7 visually represents this analysis, specifically 

focusing on the influence of the "CLASS (M)" feature. 

In Figure 7, the chart elucidates the relationship between the "CLASS (M)" feature, displayed on the X-axis, 

and its impact on POROSITY AND POLLUTANTS TRACKING, illustrated on the Y-axis with various 

suitability levels. This visual representation allows one to discern how different classes within the "CLASS 

(M)" feature contribute to the overall environmental outcome. 

By examining this chart, one can make informed decisions regarding the selection and prioritization of 

specific classes that align with the desired suitability levels for POROSITY AND POLLUTANTS 

TRACKING. This analysis provides a valuable tool for optimizing strategies and interventions, ultimately 

enhancing the overall environmental outcome based on the nuanced dynamics of the "CLASS (M)" feature. 

 

Figure 7: Class 

The Model Fit depicted in Figure 8 gauges the performance of the model, revealing its effectiveness. By 

scrutinizing the outcomes for 19 rows in the test dataset, the comparison between the Model's accurate and 

inaccurate predictions for the POROSITY AND POLLUTANTS TRACKING column is illustrated. 

A superior model fit is indicated by a higher percentage of correct predictions. The effectiveness of the 
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model is quantified by the accuracy of its predictions, emphasizing the importance of a higher correct 

percentage as an indicator of a well-performing model. Stakeholders can rely on this evaluation in Figure 8 

to assess and validate the model's precision in predicting POROSITY AND POLLUTANTS TRACKING 

outcomes, contributing to informed decision-making in the context of environmental analysis. 

 

Figure 8: Model Fit 

Confusion Matrix Analysis 

The Confusion Matrix, depicted in Figure 9, serves as a powerful tool for unveiling classification errors 

within the model. It offers a clear visualization of whether the Model is encountering challenges in 

distinguishing between classes. For each class, the Confusion Matrix succinctly presents the number of 

correct and incorrect predictions. In this analysis, the Model predicted the column POROSITY AND 

POLLUTANTS TRACKING for a test dataset comprising 19 rows, and the predicted outcomes were 

compared to the historical outcomes. 

The Confusion Matrix and corresponding model metrics collectively paint a picture of a highly accurate and 

precise model. The absence of incorrect predictions and the perfect F1 score signify a strong foundation, 

showcasing the reliability and effectiveness of the model in predicting POROSITY AND POLLUTANTS 

TRACKING. 

 

Figure 9: Model Accuracy Overview  

Prediction with Trained Model 

Having undergone successful training and deployment, the model is poised to execute predictions on specific 

datasets. To harness the predictive capabilities of this Model, a dataset must be chosen, adhering to the 
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following column requirements: ENVIRONMENTAL FACTOR, SUB-FACTORS, CLASS (M), RATING, 

% OF INFLUENCE, and SUITABILITY. Once the dataset is selected, the model will be applied to it, 

ushering in a transformative process where new columns will be appended to the dataset. These new 

columns will house the model's predictions and corresponding scores for each row. 

This predictive phase is a culmination of the model's learning and training, now actively contributing to 

decision-making processes. The selected dataset's features, spanning environmental factors, sub-factors, 

class, rating, percentage of influence, and suitability, will be meticulously assessed by the model. Following 

this evaluation, the model will generate predictions, offering insights and predictions tailored to each row 

within the dataset as shown in Table 9 and 10. The table contains data with predicted probability.  

The appended columns, showcasing the model's predictions and scores, will serve as valuable additions to 

the existing dataset. These additions not only provide the predicted outcomes but also offer a quantitative 

measure of the model's confidence or certainty in its predictions. 

In essence, the prediction phase marks the practical application of the trained model's knowledge, translating 

it into actionable insights based on the specific dataset's characteristics as shown in Figure 10. This process 

empowers users to leverage the model's capabilities for informed decision-making, enhancing the overall 

utility and effectiveness of the predictive model in addressing queries related to environmental factors, 

suitability, and the intricate relationships within the dataset. 

 

Figure 10: Multi—Class Classification Model Interface 
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Table 9: Multi-Class Classification on Environmental Suitability Model Machin Learning predicted 
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Not Suitable 100% 10 500 LAND USE Not Suitable correct 2 Distance to 

Road 

Very Low test 

Not Suitable 100% 20 1 GEOTECHNICAL Not Suitable correct 1 No Soil Very Low test 

Moderately 

Suitable 

100% 22 3000 WATER SURFACE Moderately 

Suitable 

correct 6 Distance to 

Dam, Lake 

and Rivers 

Moderate test 

Not Suitable 100% 4 16 SLOPE Not Suitable correct 2 Elevation Very Low test 

Not Suitable 100% 20 60 GEOTECHNICAL Not Suitable correct 4 Gravely Sand Low test 

Highly 

Suitable 

100% 10 7000 LAND USE Highly Suitable correct 9 Distance to 

Road 

Very High test 

Highly 

Suitable 

100% 21 5500 GEOPHYSICAL Highly Suitable correct 10 Proximity to 

Borehole 

Very High test 

Not Suitable 100% 10 500 LAND USE Not Suitable correct 2 Distance to 

Road 

Very Low test 

Not Suitable 100% 22 1500 WATER SURFACE Not Suitable correct 3 Distance to 

Dam, Lake 

and Rivers 

Low test 

Moderately 

Suitable 

100% 22 3500 WATER SURFACE Moderately 

Suitable 

correct 7 Distance to 

Dam, Lake 

and Rivers 

Moderate test 

Not Suitable 100% 10 1000 LAND USE Not Suitable correct 2 Distance to 

Farm Land 

Very Low test 

Moderately 

Suitable 

100% 21 3000 GEOPHYSICAL Moderately 

Suitable 

correct 5 Proximity to 

Borehole 

Moderate test 

           

Highly 

Suitable 

100% 5 2000 GEOLOGICAL Highly Suitable correct 10 Unfractured 

Crystalline 

Very High test 

Highly 

Suitable 

100% 21 5000 GEOPHYSICAL Highly Suitable correct 9 Proximity to 

Borehole 

Very High test 

Not Suitable 100% 10 1000 LAND USE Not Suitable correct 3 Distance to 

Residential 

Area 

Low test 

Highly 

Suitable 

100% 5 6000 GEOLOGICAL Highly Suitable correct 8 Distance to 

Fault 

Very High test 

Moderately 

Suitable 

100% 20 7 GEOPHYSICAL Moderately 

Suitable 

correct 7 Aquifer 

Depth to 

Rock 

Moderate test 

Not Suitable 100% 10 100 LAND USE Not Suitable correct 1 Distance to 

Farm Land 

Very Low test 

Moderately 

Suitable 

100% 20 70 GEOTECHNICAL Moderately 

Suitable 

correct 8 Silty Clay High test 

Not 

Suitable 

100% 10 100 LAND USE Not Suitable correct 1 Distance to 

Residential 

Area 

Very Low test 
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Table 10: Suitability Level Summary of the Study Area 

S/N Site Name  Site No  Suitability Level 

1 Sokoto1 S1  Not Suitable 

2 Sokoto2 S2  Moderately suitable  

3 Malete S3  Moderately suitable 

4 Oke Oyi S 4  Not suitable 

5 Jimba S 5  Moderately suitable 

6 Ijagbo S 6  Not suitable 

7 Omu Aran S 7  Moderately Suitable 

8 Outside Research Scope S 8  Suitable 

9 Outside Research Scope S9  Suitable 

10 Outside Research Scope S10  Suitable 

11 Outside Research Scope S11  Suitable 

12 Outside Research Scope S11  Suitable 

 

Upon completion of the predictive analysis, the model  result in the study area, show sites that were 

classified as the most suitable landfill among several sites outside the scope of this research having met all 

the environmental criteria, four candidate sites were identified as moderately suitable landfill sites (Sokoto2, 

Malete, Jimba and Omuaran) among several sites within the scope of this research, while three candidate 

sites were identified as not suitable landfill sites (Sokoto1, Ijagbo, and Oke Oyi). The trained model was 

used in real world scenario and can be deployed for similar investigations.  

CONCLUSION 

The study presents a comprehensive and innovative approach to porosity and pollutant tracking in 

engineering geology, utilizing a multi-class classification supervised machine learning model. The research 

focused on the regions of Sokoto1, Sokoto2, Malete, Oke Oyi, Jimba, Omu Aran and Ijagbo within Kwara 

State, Nigeria, using an extensive dataset covering geological, geotechnical, geophysical, surface water, land 

use, and slope factors. 

The importance of the suitability factor emerged as a key driver, significantly influencing the outcomes of 

porosity and pollutant tracking. The study revealed that a "Very High" suitability level enhances the 

likelihood of achieving the target outcome by a substantial multiplier of 34.0x. This underscores the critical 

role of suitability in decision-making processes, urging a strategic focus on factors contributing to a "Very 

High" suitability level. 

Environmental factors, including geological and geophysical elements, positively impacted outcomes, while 

water surface, slope, and land use had negative influences. The actionable insights derived from this analysis 

recommend concentrating on positive geological and geophysical factors while addressing challenges 

associated with negative impacts through targeted interventions. 

Sub-factors related to geology, geotechnical, geophysics, surface water, land use, and slope were found to 

play a crucial role in influencing outcomes. The study suggests enhancing porosity and pollutant tracking by 

prioritizing favourable sub-factors and addressing challenges associated with negative impacts. 

Rating, percentage of influence, and sub-factor classification based on suitability in meters were identified as 

relatively important features. The study emphasizes the significance of considering higher ratings, higher 
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percentages of influence, and sub-factors falling under higher classes in decision-making processes to 

improve overall porosity and pollutant tracking. 

The impact analysis of suitability levels, environmental factors, sub-factors, rating, percentage of influence, 

and class provided a nuanced understanding of their influence on porosity and pollutant tracking. Visual 

representations in figures 2 to 7 facilitated a comprehensive exploration of the relationships, aiding decision-

makers in optimizing strategies based on environmental conditions. 

The model fit analysis demonstrated a highly accurate and precise model, with a 100% accuracy rate and no 

incorrect predictions. The confusion matrix and corresponding metrics further validated the model's 

reliability, showcasing its effectiveness in predicting porosity and pollutant tracking outcomes. 

In the prediction phase, the trained model successfully executed predictions on specific datasets, providing 

valuable insights and predictions tailored to each row. Four candidate sites were identified as highly suitable 

landfill sites, four as moderately suitable, and three as not suitable, based on the environmental criteria. 

The deployment of the trained model in a real-world scenario showcased its applicability and effectiveness 

for similar investigations. The study's findings contribute significantly to the field of engineering geology, 

providing a robust framework for porosity and pollutant tracking, coupled with actionable insights for 

informed decision-making. Furthermore, four candidate sites were identified for moderately suitable landfill 

and other environmental purposes (Sokoto2, Malete, Jimba and Omuaran) amongst several sites within the 

scope of this research while three sites are not suitable (sokoto1, Ijagbo and Oke oyi) due to their degree of 

porosity and other environmental factors.  
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