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ABSTRACT 

This work presents a flexible lifetime distribution with increasing, increasing and decreasing and non-

monotonic hazard rate called Type II Top-Leone Exponentiated Weibull (𝑇𝐼𝐼𝑇𝐿𝐸𝑊) distribution. The density 

function of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 model has right-skewed and symmetrical shapes. Descriptive properties such as quantile 

function, moments, incomplete moments, probability weighted moments, moment generating functions, Renyl 

and Shannon entropies are theoretically established. Parameters of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 distribution are estimated using 

maximum likelihood method. The potentiality/tractability of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 distribution is demonstrated by its to 

cancer stem cell data. 

Keywords: Quantile, Renyl and Shannon entropies, Probability Weighted Moments, Incomplete Moments. 

INTRODUCTION 

The Weibull (W) and exponentiated Weibull (EW) distributions give a close form solution to several problems 

in reliability studies. However, they do not possess a good/ reasonable parametric fit for real life applications; 

for example, when modeling phenomenon with non-monotonic failure rates, the Weibull distribution should 

not be considered because it does not provide a reasonable parametric fit. The unimodal and bathtub failure 

rate which are commonly observed in biological and reliability studies which cannot be modeled using the 

Weibull distribution. In recent decade, several attempts have been made to develop new families of distribution 

that extent the well-known families of distribution and also inducing flexibility which improves its modeling 

potentials of the baseline distribution in modeling real life data. Such work includes: the exponentiated Weibull 

distribution by Mudholkar and Srivastava (1993), Weibull-geometric (WG) distribution by Barreto-Souza et al. 

(2011), Exponentiated Weibull-geometric (EWG) distribution by Mahmoudi and Shiran (2012). Further, 

complementary versions of the Exponential Geometric and Weibull Geometric distributions, so-called 

Complimentary Exponential Geometric and Complimentary Weibull Geometric distribution, respectively, have 

been introduced by Louzada et a (2011) and Tojeiro et al. (2014). Marshall-Olkin Exponentiated Weibull 

distribution by Bidram et al. (2015), Transmuted Exponentiated Weibull distribution by Khan et al. (2019). 

Motivation of study 

The main purpose of the modification and extension forms of the Weibull distribution is to describe and fit the 

data sets with non-monotonic hazard rate, such as the bathtub, unimodal and modified unimodal hazard rate. 

Many modifications of the Weibull distribution have achieved the above purpose. On the other hand, 

unfortunately, the number of parameters has increased, the forms of the survival and hazard functions have 

been complicated and estimation problems have risen. 

EW distribution; A brief review 

The EW distribution is an extension of the Weibull family and was developed by Mudholkar and Srivastava 

(1993). The EW distribution exhibits a non-monotone failure rate which makes it a reliable model in modeling 
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lifetime data. Mudholkar et al. (1993), Mudholkar and Huston (1996), Gupta and Kundu (2001), Nassar and 

Eissa (2003) and Choudhury (2005) applied the EW model to modeling reliability and survival data. 

The random variable 𝑋 follows an 𝐸𝑊 distribution if its cumulative density function (cdf) is given by  

𝐹(𝑥; 𝛼, 𝛽, 𝜃) = (1 − 𝑒−(𝛽𝑥)𝜃
)

𝛼

    , 𝑥 > 0                                                                       (1) 

Where 𝛼 and 𝜃 are positive shape parameters and 𝛽 is a positive scale parameter. The associated probability 

density function (pdf) corresponding to (1) is given as 

  

𝑓(𝑥; 𝛼, 𝛽, 𝜃) = 𝛼𝛽𝜃𝑥𝜃−1𝜃𝑒−(𝛽𝑥)𝜃
(1 − 𝑒−(𝛽𝑥)𝜃

)
𝛼

    , 𝑥 > 0                                                       (2) 

The reliability, 𝑅(𝑥; 𝛼, 𝛽, 𝜃) and hazard rate ℎ(𝑥; 𝛼, 𝛽, 𝜃) functions of the EW distribution are respectively 

given as 

𝑅(𝑥; 𝛼, 𝛽, 𝜃) = 1 − (1 − 𝑒−(𝛽𝑥)𝜃
)

𝛼

  .                                                                           (3) 

And  

ℎ(𝑥; 𝛼, 𝛽, 𝜃) =
𝛼𝛽𝜃𝑥𝜃−1𝜃𝑒−(𝛽𝑥)𝜃

(1 − 𝑒−(𝛽𝑥)𝜃
)

𝛼

    

1 − (1 − 𝑒−(𝛽𝑥)𝜃)
.                                        (4) 

The 𝑝𝑡ℎ moment about the origin of the 𝐸𝑊 distribution is given by 

𝐸(𝑋𝑝) = 𝛼𝛽−𝑝𝛤 (
𝑝

𝜃
+ 1) 𝒩𝑝(𝜃), 

where 

𝒩𝑝(𝜃) = 1 + ∑(−1)𝑙 (
𝛼 − 1

𝑙
) (𝑙 + 1)−[

𝑝
𝜃⁄ +1]

𝛼−1

𝑙=1

 

Where 𝛤 (
𝑝

𝜃
+ 1) represents the incomplete gamma function. For more detail, see Nassar and Eissa (2003). 

The Type II Topp-Leone Exponentiated Weibull distribution 

Using the generalization by Elgarhy et al. (2018), the 𝑐𝑑𝑓 of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 distribution is given by  

𝑭(𝑥; 𝛼, 𝛽, 𝜃, 𝑣) = 1 − [1 − (1 − 𝑒−(𝛽𝑥)𝜃
)

2𝛼

]
𝑣

,                                               (5) 

The corresponding 𝑝𝑑𝑓 to (5), is given by  

𝒇(𝑥; 𝛼, 𝛽, 𝜃, 𝑣) = 𝛼𝛽𝜃𝑥𝜃−1𝜃𝑒−(𝛽𝑥)𝜃
(1 − 𝑒−(𝛽𝑥)𝜃

)
2𝛼−1

[1 − (1 − 𝑒−(𝛽𝑥)𝜃
)

2𝛼

]
𝑣−1

.                  (6) 

Where 𝛼, 𝜃, and 𝑣 are positive shape parameters and 𝛽 is a positive scale parameter. The graph of the 𝑐𝑑𝑓 and 

the 𝑝𝑑𝑓 for various values of the parameters of the distribution are given in figures 1.  
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Figure 1. Graph of the density and distribution functions of 𝑻𝑰𝑰𝑻𝑳𝑬𝑾 distribution 

An expression for the Reliability, hazard, reversed, and cumulative hazard functions is respectively given by  

𝑹(𝑥; 𝛼, 𝛽, 𝜃, 𝑣) = [1 − (1 − 𝑒−(𝛽𝑥)𝜃
)

2𝛼

]
𝑣

,                                               (7) 

𝑹(𝑥; 𝛼, 𝛽, 𝜃, 𝑣) = 𝛼𝛽𝜃𝑥𝜃−1𝜃𝑒−(𝛽𝑥)𝜃
(1 − 𝑒−(𝛽𝑥)𝜃

)
2𝛼−1

[1 − (1 − 𝑒−(𝛽𝑥)𝜃
)

2𝛼

]
−1

,                   (8) 

Փ(𝑥; 𝛼, 𝛽, 𝜃, 𝑣) =
𝛼𝛽𝜃𝑥𝜃−1𝜃𝑒−(𝛽𝑥)𝜃

(1 − 𝑒−(𝛽𝑥)𝜃
)

2𝛼−1

[1 − (1 − 𝑒−(𝛽𝑥)𝜃
)

2𝛼

]
𝑣−1

1 − [1 − (1 − 𝑒−(𝛽𝑥)𝜃)
2𝛼

]
𝑣 ,                (9) 

And  

𝑯(𝑥; 𝛼, 𝛽, 𝜃, 𝑣) = 𝑙𝑜𝑔 (1 − [1 − (1 − 𝑒−(𝛽𝑥)𝜃
)

2𝛼

]
𝑣

).                            (10) 

The graph of the hazard function is given in figures  

 

Figure 2. Graph of the hazard functions of 𝑻𝑰𝑰𝑻𝑳𝑬𝑾 distribution 
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Figure 3. Graph of the hazard functions of 𝑻𝑰𝑰𝑻𝑳𝑬𝑾 distribution 

Important representation  

In this subsection, an important tool for the expansion of the 𝑝𝑑𝑓 and 𝑐𝑑𝑓 for 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 is provided. From the 

generalized binomial series given by  

(1 − 𝑘)𝑐 = ∑(−1)𝑖 (
𝑏

𝑖
) 𝑘𝑖

∞

𝑖=0

                                                                (11) 

For |𝑘| < 1 and 𝑐 is a positive real non-integer. Then, by applying the binomial theorem (11) in (6), the density 

function of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 distribution can be written as  

𝑔(𝑥; 𝜂, 𝜑, 𝜌) = 2𝑣𝛼𝜃𝛽𝜃 ∑ (−1)𝑖+𝑗(𝑣−1
𝑖

) (2𝛼(𝑖+1)−1
𝑗

) 𝑥𝜃−1𝑒−(𝑗+1)(𝛽𝑥)𝜃∞
𝑖,𝑗,𝑘=0       (12)  

This indicates that the 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 model can be written as an infinite mixture of the Weibull model 

The quantiles, median and the upper quartile 

A mathematical expression for the quantile and the median of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 model is obtained in this subsection. 

The quantile 𝑥𝑢 of the 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 is given as follows 

𝑥𝑢 =
1

𝛽
(−𝑙𝑜𝑔 [1 − (1 − (1 − 𝑢)

1
𝑣⁄ )

1
2𝛼⁄

])

1
𝜃⁄

                                                      (13) 

The median and the upper quartile of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 are found by putting 𝑞 = 0.5 and 0.75 in (14), respectively, as 

follows: 

                                            𝑥0.5 =
1

𝛽
(−𝑙𝑜𝑔 [1 − (1 − (0.5)

1
𝑣⁄ )

1
2𝛼⁄

])

1
𝜃⁄

                                                      (15) 

and 
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                                          𝑥0.75 =
1

𝛽
(−𝑙𝑜𝑔 [1 − (1 − (0.25)

1
𝑣⁄ )

1
2𝛼⁄

])

1
𝜃⁄

                                                      (16) 

The 𝒓𝒕𝒉 Ordinary moment 

If 𝑋~𝑇𝐼𝐼𝑇𝐿𝐸𝑊(𝛾), then the 𝒓𝒕𝒉 moment of X can be derived using  

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑔(𝑥)𝑑𝑥.

∞

0

                                                                                       (17) 

By substituting from (12) in (17), we obtain the 𝒓𝒕𝒉 moment as follows 

𝜇𝑟
′ = 2𝑣𝛼 ∑ (−1)𝑖+𝑗 (

𝑣 − 1

𝑖
) (

2𝛼(𝑖 + 1) − 1

𝑗
) (𝑗 + 1)−(1+𝑟

𝜃⁄ )𝛽−𝑟𝛤(1 + 𝑟
𝜃⁄ )

∞

𝑖,𝑗,𝑘=0

                                       (18) 

Where 𝛤(1 + 𝑟
𝜃⁄ ) is a gamma function. By setting 𝑟 = 1 in (18), we obtain the mean of X as 

𝜇1
′ = 2𝑣𝛼 ∑ (−1)𝑖+𝑗 (

𝑣 − 1

𝑖
) (

2𝛼(𝑖 + 1) − 1

𝑗
) (𝑗 + 1)−(1+1

𝜃⁄ )𝛽−𝑟𝛤(1 + 1
𝜃⁄ )

∞

𝑖,𝑗,𝑘=0

 

The 𝒓𝒕𝒉 incomplete moments 

If 𝑋~𝑇𝐼𝐼𝑇𝐿𝐸𝑊(𝛾), then the 𝒓𝒕𝒉 incomplete moments of X can be derived using  

ϛ
𝑟
(𝑡) = ∫ 𝑥𝑟𝑔(𝑥)𝑑𝑥.

𝑡

0

                                                                                       (19) 

By substituting from (12) in (19), we obtain the 𝒓𝒕𝒉 moment as follows 

ϛ
𝑟

(𝑡) = 2𝑣𝛼 ∑ (−1)𝑖+𝑗(𝑣−1
𝑖

) (2𝛼(𝑖+1)−1
𝑗

) (𝑗 + 1)−(1+
𝑟

𝜃
)𝛽−𝑟𝛤 (1 +

𝑟

𝜃
, (𝑗 + 1)(𝛽𝑡)𝜃)∞

𝑖,𝑗,𝑘=0                          (20) 

Where 𝛤 (1 +
𝑟

𝜃
, (𝑗 + 1)(𝛽𝑡)𝜃) is an incomplete gamma function. Bet setting 𝑟 = 1 in (20), we obtain the first 

incomplete moment of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 model as 

ϛ
1

(𝑡) = 2𝑣𝛼 ∑ (−1)𝑖+𝑗(𝑣−1
𝑖

) (2𝛼(𝑖+1)−1
𝑗

) (𝑗 + 1)−(1+
1

𝜃
)𝛽−1𝛤 (1 +

1

𝜃
, (𝑗 + 1)(𝛽𝑡)𝜃)∞

𝑖,𝑗,𝑘=0                           (21) 

Moment generating function (𝑴𝑮𝑭) 

The 𝑀𝐺𝐹 of 𝑇𝐼𝐼𝑇𝐿𝐸𝑊(𝜁), say 𝑀𝑋(𝑡) is found using 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑋𝑓(𝑥)𝑑𝑥 = ∑
𝑡𝑟

𝑟!

∞

𝑣=0

∞

0

𝐸(𝑋𝑟)                                                             (22) 

Substituting (18) into (22), we obtain 

𝑀𝑋(𝑡) = 2𝑣𝛼 ∑
𝑡𝑟

𝑟!
(−1)𝑖+𝑗 (

𝑣 − 1

𝑖
) (

2𝛼(𝑖 + 1) − 1

𝑗
) (𝑗 + 1)−(1+

1
𝜃

)𝛽−1𝛤 (1 +
1

𝜃
)

∞

𝑖,𝑗,𝑟=0

         (23) 
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Characteristics function 

The characteristic function can be derived by replacing 𝑡 with 𝑖𝑡 in (23). Thus, the characteristic moments for 

𝑇𝐼𝐼𝑇𝐿𝐸𝑊 distribution is given as 

𝜑𝑋𝑡 = 𝐸(𝑒𝑖𝑡𝑥) = ∑
(𝑖𝑡)𝑟

𝑟!

∞

𝑟=1

𝐸(𝑋𝑟) 

Then we obtain    

𝜑𝑋𝑡 = 2𝑣𝛼𝛽−𝑟 ∑
(𝑖𝑡)𝑟

𝑟!

∞

𝑖,𝑗,𝑟,1

(−1)𝑖+𝑗 (
𝑣 − 1

𝑖
) (

2𝛼(𝑖 + 1) − 1

𝑗
) (𝑗 + 1)

−(1+
𝑟
𝜃

)
  𝛽−𝑟𝛤 (1 +

1

𝜃
)  (24) 

The probability weighted moment (PWM) 

Taking the expectation of a function of X, which can be used to obtain the parameters of a certain distribution 

for which the inverse form can be obtained, this is defined as the probability-weighted moment (PWM). The 

PWM of X 𝑐𝑑𝑓, 𝐺(𝑥), say 𝜁𝑟,𝑠, is obtained by 

𝜁𝑟,𝑠 = 𝐸(𝑥𝑟𝐹𝑠(𝑥)) = ∫ 𝑥𝑟𝐺𝑠(𝑥)𝑔(𝑥)𝑑𝑥

∞

0

                                                                                  (25) 

If X ~ 𝑇𝐼𝐼𝑇𝐿𝐸𝑊(𝜁), then  𝜁𝑟,𝑠 is given by 

𝜁𝑟,𝑠 = 2𝛼𝑣𝛽−𝑟 ∑  (−1)𝑖+𝑗 (
𝑣(𝑖 + 𝑗) − 1

𝑖
) (

2𝛼(𝑖 + 1) − 1

𝑗
) (1 + 𝑗)1−𝑟−𝜃𝛤(𝑟 + 1)    (26)

∞

𝑖,𝑗

 

Rényi Entropy Function and 𝝆 −Entropy 

The entropy function can be used to evaluate the level randomness or uncertainty related to X whose pdf 𝑔(𝑥). 
It plays a fundamental role in reliability, engineering, and others. The Rényi entropy of X, say 𝐼𝜌(𝑋), is 

determined by 

𝐼𝜌 =
1

1 − 𝜌
𝑙𝑜𝑔 ∫ 𝑔𝜌(𝑥)𝑑𝑥,

∞

−∞

                                                               (27) 

If X ~ 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 (𝜁), then  𝐼𝛿(𝑋) is obtained by 

𝐼𝜌 =
1

1 − 𝜌
𝑙𝑜𝑔 (2𝜌𝑣𝜌𝛼𝜌𝜃𝜌−1𝛽𝜌−1𝑊∗𝛤 (

(𝜃 − 1)(𝜌 − 1)

𝜃
+ 1)).                                      (28) 

where 

𝑊∗ = ∑ (−1)𝑙+𝑙 (
𝑙(𝑙 − 1)

𝑙
) (

2𝑙(𝑙 + 𝑙) − 𝑙

𝑙
) (𝑙 + 𝑙)

−(
𝑙(𝑙−1)

𝑙
+1)

∞

𝑙=𝑙=0

 

Consequently, the 𝑙-entropy of 𝑙, say 𝑙𝑙(𝑙) is given by 

𝑙𝑙(𝑙) =
1

1 − 𝑙
𝑙𝑙𝑙[1 − (1 − 𝑙)𝑙𝑙(𝑙)].                                                       (29) 
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Where an expression for 𝑙𝑙(𝑙) can be found in (29). 

Stress strength Reliability 

Here, we derived an expression for the stress-strength parameter of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 distribution. Suppose 𝑙1 

stand for the strength of a structure with stress 𝑙2, and if 𝑙1 follows 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑙1,𝑙,𝑙1,𝑙) and 𝑙2 

follows 𝑇𝐼𝐼𝑇𝐿𝐸𝑊 (𝛼2, 𝛽, 𝑣2, 𝜃), given that 𝑋1and 𝑋2 are independent random variables, then the Stress-

strength Reliability (𝔎) of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is obtained as follows: 

𝑙 = 𝑙(𝑙2 < 𝑙1) = ∫ 𝑙1(𝑙;𝑙1,𝑙,𝑙1,𝑙)𝑙2(𝑙;𝑙2,𝑙,𝑙2,𝑙)𝑙𝑙

∞

0

                                       (30) 

If 𝑙 ~ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑙), then  𝑙 is given by 

𝑙 = 𝑙(𝑙2 < 𝑙1) = 𝑙1(𝑙;𝑙1,𝑙,𝑙1,𝑙) − 𝑙𝑙,𝑙,𝑙 

Where  

𝑙𝑙,𝑙,𝑙 = 2𝑙1𝑙1𝑙
1−𝑙 ∑ ∑ ∑ (

𝑙1 − 1

𝑙
) (

𝑙2

𝑙
) (

2[𝑙1(𝑙 + 1) + 𝑙2𝑙] − 1

𝑙
) (−1)𝑙+𝑙+𝑙

∞

𝑙=0

𝑙2

𝑙=0

𝑙1−1

𝑙=0

 

Maximum Likelihood Estimator of 𝑻𝑻𝑻𝑻𝑻𝑻𝑻 Distribution 

Let  𝑙1,𝑙2, . . . ,𝑙𝑙 be a random sample drawn from 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑙,𝑙,𝑙,𝑙) then the log-likelihood 

function is given by  

𝑙 = log(2𝑙𝑙𝑙𝑙𝑙) + (𝑙 − 1) ∑ log(𝑙𝑙

𝑙

𝑙=1

) − ∑(−𝑙𝑙𝑙)𝑙
𝑙

𝑙=1

+ (2𝑙 − 1) ∑ log ( 

𝑙

𝑙=1

1 − 𝑙−(𝑙𝑙𝑙)𝑙 

+(𝑙 − 1) ∑ log (1 − (1 − 𝑙−(𝑙𝑙𝑙)𝑙)
2𝑙

)  

𝑙

𝑙=1

                                                                    (31) 

We differentiate (31) with respect (𝑙,𝑙,𝑙,𝑙) to obtain the element of the score vector (𝑙𝑙 =
𝑙𝑙

𝑙𝑙
,𝑙𝑙 =

𝑙𝑙

𝑙𝑙
,𝑙𝑙 =

𝑙𝑙

𝑙𝑙
,𝑙𝑙 =

𝑙𝑙

𝑙𝑙
)
𝑙

 . The elements of the score vector is given by  

𝑙𝑙

𝑙𝑙
=
𝑙

𝑙
+ 2 ∑ log(1 − 𝑙−(𝑙𝑙𝑙)𝑙)

𝑙

𝑙=1

+ 2(𝑙

− 1) ∑
(1 − 𝑙−(𝑙𝑙𝑙)𝑙)

2𝑙

log (1 − 𝑙−(𝑙𝑙𝑙)𝑙

(1 − (1 − 𝑙−(𝑙𝑙𝑙)𝑙)
2𝑙

)
                           (32) 

𝑙

𝑙=1

 

𝑙𝑙

𝑙𝑙
=
𝑙

𝑙
+ 𝑙𝑙𝑙𝑙𝑙𝑙 + (2𝑙 − 1) ∑

(𝑙𝑙𝑙)𝑙 log(𝑙𝑙𝑙)

(1 − 𝑙−(𝑙𝑙)𝑙)

𝑙

𝑙=1

 

+2(𝑙 − 1) ∑
𝑙(𝑙𝑙)𝑙(1 − 𝑙−(𝑙𝑙)𝑙)

2𝑙

log(𝑙𝑙𝑙)

(1 − (1 − 𝑙−(𝑙𝑙)𝑙)
2𝑙

) (1 − 𝑙−(𝑙𝑙)𝑙)

𝑙

𝑙=1

                                                     (33) 
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𝑙𝑙

𝑙𝑙
=
𝑙

𝑙
+ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙 ∑ log(𝑙)𝑙𝑙

𝑙

𝑙=1

+ 2(𝑙 − 1)𝑙𝑙𝑙 ∑
𝑙𝑙𝑙

−(𝑙𝑙)𝑙

log(𝑙)

(1 − 𝑙−(𝑙𝑙)𝑙)

𝑙

𝑙=1

 

+(𝑙 − 1) ∑
𝑙𝑙𝑙 log(𝑙)𝑙𝑙𝑙−(𝑙𝑙)𝑙(1 − 𝑙−(𝑙𝑥)𝑙)

2𝑙

(1 − (1 − 𝑙−(𝑙𝑙)𝑙)
2𝑙

) (1 − 𝑙−(𝑙𝑙)𝑙)

𝑙

𝑙=1

                                                                        (34) 

𝑙𝑙

𝑙𝑙
=
𝑙

𝑙
− ∑ 𝑙𝑙𝑙 [(1

𝑙

𝑙=1

− (1 − 𝑙−(𝑙𝑙)𝑙)
2𝑙

)]                                                                                                         (35) 

Application of 𝑻𝑻𝑻𝑻𝑻𝑻𝑻 model 

In this section, the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 model is compared with Type II Topp-Leone Exponentiated Exponential 

(𝑙𝑙𝑙𝑙𝑙𝑙𝑙), Type II Top-Leone Weibull (𝑙𝐼𝑙𝑙𝑙𝑙), Weibull (W) and Exponential € distributions. 

Different goodness of fit measures like Cramer-von Mises (W), Anderson Darling (A), Kolmogorov- Smirnov 

(KS) statistics with Probability values (P-v), Akaike Information Criterion (AIC), consistent Akaike 

Information Criterion (CAIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information 

Criterion (HQIC). The data set represents the remission times (in months) of a random sample of 128 bladder 

cancer patients. For previous study see Lee and Wang (2003). That data are: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 

13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 

2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 

7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 

36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 

4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 

18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 

12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. Table 1.0 gives the 

exploratory data analysis of the cancer data which shows that the data is over-dispersed and leptokurtic. Figure 

4.0 represents the boxplot for the cancer data which shows that the data is positively skewed. Total time on test 

plot is given in Figure 5.0 which shows that the cancer data exhibits bathtub failure rate. The better fit 

corresponds to smaller W, A, KS, AIC, CAIC, BIC, HQIC and the larger the 𝑙 − 𝑙. The Maximum Likelihood 

Estimates (MLEs) of the unknown parameters and values of goodness of fit measures are computed for 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙 distribution and its sub-models. 

Table 4.4: Exploratory data Analysis of Bladder cancer patients 

𝑙𝑙𝑙. 𝑻𝑻 𝑙𝑙𝑙𝑙𝑙𝑙   𝑙𝑙𝑙𝑙 𝑻𝑻   𝑙𝑙𝑙. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
 

0.080    3.35  6.40  9.37 11.868    79.050    18.48 
 

3.29 110.43 
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Figure 4.0 Boxplot for cancer data 

 

Figure 5. Total Time on Test (TTT) plot 

Table 2:  Result of the MLEs and standard error for cancer 

𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙 𝑙 𝑙 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1.7214 

 (0.6209) 

 0.2595  

(0.1290)  

 

0.5404   

(0.1210) 

 

1.6701 

 (0.8545) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0.7247  

(0.1360) 

0.2605 

(0.1251) 

 0.4552  

(0.0747) 

𝑙𝑙𝑙𝑙𝑙𝑙 − 

(−) 

3.0190 

(0.1925) 

0.5891 

(0.1094) 

 

0.4065 

(1.2761) 
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𝑙𝑙 7.7960  

(4.3039)  

 

0.0128 

(0.0025) 

1.7873 

(0.2754) 

− 

(−) 

𝑙 − 

(−) 

0.1045 

 (0.0093) 

1.0539 

 (0.0678) 

− 

(−) 

𝑙 − 

(−) 

0.1068 

 (0.0094) 

− 

(−) 

− 

(−) 

 

Table 3: Goodness-of-fit statistics for bladder cancer data set 

𝑙𝑙𝑙𝑒𝑙 −𝑙 𝑙𝑙𝑙 𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑙𝑙 𝑙𝑙 𝑙𝑙 𝑙𝑙 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙 410.64 829.29 835.69 

  

829.62 833.22 0.2752 

 

0.0413 0.0455 0.9535 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙 412.17 830.34 838.89 

 

830.53 833.82 0.5684 0.0930 

 

0.0581 0.7801 

𝑙𝑙𝑙𝑙𝑙𝑙  410.9925 829.99 836.54 829.18 834.46 

 

0.3512 

 

0.0579 0.0497  0.9101 

𝑙 486.05 832.18 846.23 832.27 978.21 0.796 

 

0.1331 0.0707 0.5469 

𝑙 414.34 830.683 836.53 830.72 831.84 0.7159 0.1193 0.0846 0.3182 

 

From Tables, we observe that 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 model has a better fit than its existing sub-model models which 

includes 𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙 and 𝑙 model because it possesses the smallest 

𝑙𝑙𝑙,𝑙𝑙𝑙𝑙,𝑙𝑙𝑙,𝑙,𝑙𝑙𝑙  𝑙,  and also possesses the highest P-value. 

CONCLUSION 

A new four-parameter distribution called the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 distribution is developed. This distribution is a 

generalization of the EW distribution and contains several lifetime sub-models such as: 𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙, 𝑙𝑙, 𝑙 

and 𝑙. A characteristic of the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 distribution is that its failure rate function can be decreasing, 

increasing, bathtub-shaped and unimodal depending on its parameter values. Several statistical properties of 

the new distribution such as its probability density function, its cumulative density function, quantiles, 

moments, incomplete moments, moments generating functions, probability weighted moments, stress-strength 

reliability function, Renyi and ρ-entropies are obtained. Fitting the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 model to areal data sets 

indicates the flexibility and usefulness of the proposed distribution in modeling cancer remission times data 

because it provides a good fit when compared with other competing models considered in this study.  
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