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ABSTRACT 

A six compartmental deterministic mathematical model, governed by a system of ordinary differential 

equations for measles was formulated in other to study and analyze the transmission dynamics of measles in 

human population. The model was shown to be mathematically and epidemiologically meaningful. The basic 

reproduction number of the model was obtained and global stability of the disease-free equilibrium and 

endemic equilibrium were obtained and shown to be asymptotically stable, whenever the basic reproduction 

𝑅0 < 1 and unstable if otherwise. More so, if 𝑅0 > 1, then the endemic equilibrium of the model equation is 

globally asymptotically stable The effect of some parameters of the model relatives to the basic reproduction 

number was calculated using the normalized forward sensitivity indices, and it was shown that increase in the 

parameters with negative indices will reduce the value of the basic Reproduction number, while increase in 

those with positive indices will increase the value of basic reproduction number. The bifurcation analysis was 

also carried out and the model was shown to exhibit backward bifurcation which indicates that 𝑅0 < 1is no 

longer sufficient for effective disease control. The numerical result shows that isolation of infective plays a 

major role in reducing the transmission of the disease in the population. 

Keywords: Bifurcation Analysis, Basic reproduction number, sensitivity analysis, stability analysis 

INTRODUCTION 

Measles is a highly contagious viral illness caused by the measles virus. It’s a serious disease that can lead to 

serious complications, especially in children. It is highly contagious, serious airborne disease caused by a virus 

that can lead to severe complications and death. It is an infectious disease and highly contagious respiratory 

disease through person to person transmission mode, with over 93% transmission rates among susceptible 

persons. It is the worst eruptive fever during childhood. It also shows characteristics of reddish rash, fever, and 

leads to serious and fatal complications including, diarrheal, pneumonia, and encephalitis [1]. It can affect 

anyone but most common among children. The mortality rate and the incidence rate of different infectious 

disease (e.g. measles, cholera, tuberculosis), play a major public health concern in the developing countries. 

Most infectious diseases are caused by micro-organisms such as virus, parasites, bacteria, fungi. There modes 

of transmission is through direct or in direct contact from one-person to another.  Transmission spread of these 

diseases to human population depends on various factors, such as number of susceptible, infective, exposed, 

modes of transmission (social, ecological, geographical) conditions. These diseases are spread by direct 

contact between infective and susceptible from droplet of an infected individual by talking, sneezing, 

coughing, drinking, kissing, or body contact. Diseases such as measles are mostly spread by respiration, while 

others are spread by vectors or bacteria [2].  

Over ten million two hundred thousand (10.2 million) deaths annually attributed to infectious diseases and 

most of these diseases occur in developing countries [3]. 

Many infected children suffer blindness, impaired vision or deafness. Measles confers a lifelong immunity 

from further attacks. Measles vaccination have been very effective, and it’s been prevented by MMR (Measles 

Mumps Rubella) vaccine. Before the vaccination program, an estimated value of five million to six million 
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(5million-6 million) people are infected annually with 6000-7000 confirmed deaths, also with 52,000 

hospitalized who develops a chronic disability from measles encephalitis. However, the global vaccination has 

helped in reducing the global incidence, but measles remains a public health problem in developing countries. 

Measles stands as one of the leading vaccine-preventable killer of many children in undeveloped countries like 

Democratic Republic of Congo (DRC), Madagascar and Nigeria. As at January 2022, 254 cases of measles 

were confirmed in Nigeria. At the end of 2021, there were over 10,000 such cases in the country [4].There 

have been 11 outbreaks (defined as more related cases) reported in 2024, and 67% of cases 101 of 151 are 

outbreak- associated. For comparison, 4 outbreaks were reported during 2023 and 48% 0f cases (28 of 58) 

were outbreak-associated [5]. In 2018, about 140,000 people died from measles worldwide [4]. The overall 

case fatality rate for children below 5 years was 12.6%, for unvaccinated children below 5, 16.2% and among 

children below 9 months, 24%.  

Measles can be transmitted from an infected person to another through a contagious respiratory disease or 

through body contact with an infected person. Measles can be contacted through kissing, hugging, exchange of 

sweat from an infected person or close respiratory contact with an infected individual. Measles cannot be 

contacted through handshaking, dishes, door knobs or drinking glasses. An infected person can spread the 

virus at any stage of the infection. Some people develop the measles symptoms shortly after been infected, but 

these symptoms quickly show in the children between the ages of   2-8 years. Early detention of the virus can 

help to reduce complications by using medications and vaccinations. Infact, the World Health Organization 

African Region established a 2020 measles elimination goal [18].  

Some researchers have worked on the model of measles and few among them are: 

[1] developed a mathematical analysis of effect of measles. The paper presents a robust compartmental 

mathematical model of (SVEIR). The model has a disease-free equilibrium which is globally asymptotically 

stable (GAS). There also exist a unique endemic equilibrium point which is locally stable whenever the 

association threshold quantity R0 exceed unity. Runge – Kutta of order (4) was used to solve the model 

numerically. [6] developed a mathematical model for control of measles epidemiology. They used SEIR model 

to determine the impact of exposed individuals at latent period through the stability analysis and numerical 

simulation. [7] worked on the dynamical analysis of a model for measles infection. His model determined the 

required vaccination coverage and dosage that will guarantee eradication of measles within a population. [8] 

proposed a mathematical model of measles dynamics with vaccination by considering the total number of 

recovered individuals either from natural recovery or recovery due to vaccination. Numerical simulation of the 

model shows that vaccination is capable of reducing the number of exposed and infectious population. In the 

research of [9], a deterministic SIR model was employed to simulate the spread of measles under different 

vaccination scenarios in a population with a specific size and age distribution. The model accurately forecasted 

a measles outbreak in 1997, which played a crucial role in informing the decision to launch a comprehensive 

MMR (Measles, Mumps and Rubella) vaccination campaign in New Zealand that year.  

However, this work presents the global stability and bifurcation analysis of measles reoccurrence in vaccinated 

population the paper is organized as follows. In section 2, we formulate and explain the model positivity. In 

section 3, we explore existence of disease free equilibrium point, the endemic equilibrium point and the global 

stabilities of their equilibrium were analyzed using Lyapunov functions, the computation of sensitivity analysis 

and bifurcation analysis were also investigated. In section 4, the paper ends with some numerical simulations 

to support and compliment the theoretical finding. 

Model Formulation 

A mathematical model for measles was formulated in other to study and analyze the transmission dynamics of 

measles in human population. The mathematical model was governed by a system of ordinary differential 

equations which was subdivided into six mutually exclusive classes, namely; Susceptible human 𝑆ℎ(𝑡), 
exposed human 𝐸ℎ(𝑡), isolated human 𝐽ℎ(𝑡), infectious human 𝐼ℎ(𝑡), vaccinated human 𝑉ℎ(𝑡)and recovered 

human 𝑅ℎ(𝑡), respectively. In this research, A population size of 𝑁(𝑡) was partitioned into 6 subclasses of 

individual with sizes denoted by 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝐽and𝑅(𝑡), respectively such that 𝑁 = 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝐽 +
𝑅 as shown in figure 1 below. 
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Figure 1: Schematic Diagram of the Model 

The following system of ordinary differential equation of the proposed model is therefore considered: 

𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝜋 − (

𝜆𝑆

𝐴
) − 𝜇𝑆 + 𝜔𝑉 + 𝜎𝑅 

𝑑𝐸

𝑑𝑡
=
𝜆𝑆

𝐴
− (𝑘 + 𝜇)𝐸 

𝑑𝐼

𝑑𝑡
= 𝑘𝐸 − (𝜀 + 𝜏1 + 𝜇 + 𝛿)𝐼

      (1) 

 

𝑑𝐽

𝑑𝑡
= 𝜀𝐼 − (𝜏2 + 𝜇 + 𝛿)𝐽 

𝑑𝑉

𝑑𝑡
= 𝑃𝜋 − (𝜔 + 𝜇)𝑉 

𝑑𝑅

𝑑𝑡
= 𝜏1𝐼 + 𝜏2𝐽 − (𝜎 + 𝜇)𝑅 

where𝜆 = 𝛽𝜂𝑑𝐼 

The model parameters are defined as follows 

Table 1: Variables and definitions as used 

Variable Definition 

S (t) Number of Susceptible at times (t) 

E (t) Number of Exposed at times (t) 

I (t) Number of infected at times (t) 

J (t) Number of Isolated Individuals at times (t) 

V (t) Number of Vaccinated at times (t) 

R (t) Number of Recovered at times (t) 
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Table 2:  Model parameters, definitions, value and source used. 

Parameter Definition Value Source 

P Vaccine Rate  0.05263 [1] 

𝜋 Birth Rate 0.004 [1] 

𝛽 Contact Rate 0.2 [1] 

A Area per square meter  1.0 [1] 

µ Natural death rate 0.02 [1] 

𝜔 Vaccine waning rate 0.1 [1] 

𝜎 Loss of immunity  2..00 [1] 

τ1τ2 Treatment for infected and isolated individuals  0.8,0.6 [1] 

𝜀 Rate of Isolation  0.6 [1] 

𝑘 Progression rate to infectious class  0.3 [1] 

𝛿 

𝜂𝑑 

Disease induced death rate 

Modification parameter based on Area 

0.09 

0.9 

[1] 

[1] 

The Invariant Region 

Lemma1: The feasible region of the measles model given by  

𝐷 = {(𝑆, 𝑉, 𝐸, 𝐼, 𝐽, 𝑅) ∈ 𝑅+
6 : 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝐽 + 𝑅 ≤

𝜋

𝜇
}

 (2)
 

is positively invariant and attracting 

Proof: Let the total human of the model be denoted by N(t). Adding all the parameters of the model (1) 

together, then, the rate of change of total human population gives 

𝑑𝑁

𝑑𝑡
= 𝜋 − 𝜇𝑁 − 𝛼(𝐼 + 𝐽)

                       (3)    

So that, 

𝑑𝑁

𝑑𝑡
≤ 𝜋 − 𝜇𝑁

                          (4) 

Then, using method of integrating factor, 

𝑑𝑁

𝑑𝑡
− 𝜇𝑁 ≤ 𝜋

 

Solving this gives
 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue IX September 2024 

 

 

 

 

 

 

Page 511 www.rsisinternational.org 

   

 

 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
𝜋

𝜇
−
𝜋

𝜇
𝑒−𝜇𝑡 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
𝜋

𝜇
(1 − 𝑒−𝜇𝑡)

                         (5)

 

Since 𝑁(𝑡) ≤
𝜋

𝜇
 wherever𝑁(0) ≤

𝜋

𝜇
, then the region D is positively invariant, Further, if 𝑁(0) >

𝜋

𝜇
, either the 

solution enters D in finite time or the total population tends to the limit 
𝜋

𝜇
and the infected classes tends to zero. 

Therefore, the feasible region D is attracting, which implies that all solutions initiated in 𝑅+
6eventually enter D. 

Therefore, it is sufficient to study the dynamics of measles in the feasible region D, where the model is 

considered to be mathematically and epidemiologically well-posed. 

Positivity and Boundedness of solution of the model. 

Lemma 2: The solution set {𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝐽(𝑡), 𝑅(𝑡)}of the measles model (1) with positive initial data 

in D, remains positive in D for all time 𝑡 > 0. 

Proof: 

From the first compartment of the model:  

𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝜋 − (

𝜆𝑆

𝐴
) − 𝜇𝑆 + 𝜔𝑉 + 𝜎𝑅 

𝑑𝑠

𝑑𝑡
+ (

𝜆

𝐴
+ 𝜇)𝑆(𝑡) ≥ 0 

Using the integrating factor method gives 

𝐼. 𝐹 = 𝑒
∫ (

𝜆
𝐴
+𝜇)

𝑡
𝑜 𝑑𝑡

 

simplifying further yields 

𝑆(𝑡) = 𝑆0 ≥ 𝑒
∫ (

𝜆
𝐴
+𝜇)

𝑡
𝑜 𝑑𝑡

≥ 0 

Thence 

𝑆(𝑡) ≥ 0for all 𝑡 ≥ 0 

The remain variables can be solved following same procedure to be positive. Therefore, all the state variables 

are non-negative. 

Mathematical Analysis of the model 

Disease Free equilibrium 

At DFE, it is assumed that there is no infection, i.e E=I=J=0 but the DFE of the model be denoted by(𝜀0)  such 

that, at critical points, 
𝑑𝑆

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐽

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0.Then the model equation (1) becomes:- 

Disease –free Equilibrium at disease free, E=I=J =R =0 

we have our disease-free equilibrium points as 
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∴ 𝜀0 = (𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝐽0, 𝑅0)       

= (
1

𝜇
[(1 − 𝑝)𝜋 +

𝜔𝑝𝜋

𝑤+𝜇
] ,

𝑝𝜋

𝜔+𝜇
, 0,0,0,0)

                        (6) 

Endemic Equilibrium Point 

At endemic equilibrium, disease is present but the endemic equilibrium point be denoted by (𝜀**), then at 

steady states, 

𝜀** = (𝑆, 𝑉, 𝐸, 𝐼, 𝐽, 𝑅) = (𝑆**, 𝑉**, 𝐸**, 𝐼**, 𝐽**, 𝑅**) 

Hence, endemic equilibrium for model (1) is obtained as thus: 

𝑉** =
𝑝𝜋

𝑤+𝜇
;𝐼** =

𝑘𝐸**

𝜀+𝜏1+𝜇+𝛿
;𝐽** =

𝑘𝜀𝐸**

(𝜀+𝜏1+𝜇+𝛿)(𝜏2+𝜇+𝛿)
,𝑅** =

𝐸**

𝜎+𝜇
[

𝜏1𝑘

𝜀+𝜏1+𝜇+𝛿
+

𝜏2𝑘𝜀

(𝜀+𝜏1+𝜇+𝛿)(𝜏2+𝜇+𝛿)
]; 

𝑆** = (1 − 𝑝)𝜋 +
𝜔𝑝𝜋

𝑤+𝜇
+
𝜎+𝑤

𝜎+𝑤
[

𝜏1𝑘

𝜀+𝜏1+𝜇+𝛿
+

𝜏2𝑘𝜀

(𝜀+𝜏1+𝜇+𝛿)(𝜏2+𝜇+𝛿)
]
;

 

𝐸** =
𝜇𝜎𝐴(𝜀+𝜏1+𝜇+𝛿)

2(𝜏2+𝜇+𝛿)(𝜎+𝑤)(𝑘+𝜇)(𝑅0−1)

𝛽𝜂𝑑𝑘𝜎{(𝜎+𝑤)(𝑘+𝑤)(𝜀+𝜏1+𝜇+𝛿)(𝜏2+𝜇+𝛿)−𝜎𝑘[𝜏1(𝜏2+𝜇+𝛿)+𝜏2𝜀]}
.       (7) 

The endemic exists only if 𝑅0 > 1 

If 𝑅0 < 1, no endemic equilibrium exists and also coincides with the disease free equilibrium.  

Basic Reproduction Number 

The basic reproduction number ( 0R ) is a fundamental concept in epidemiology that represents the average 

number of secondary cases generated by a single infectious person in a completely susceptible population, 

during the early stages of an outbreak [10].  

Considering the infection related compartment.  

𝑑𝐸

𝑑𝑡
=

𝜆𝑆

𝐴
− (𝐾 + 𝜇)𝐸 

𝑑𝐼

𝑑𝑡
= 𝐾𝐸 − (𝜀 + 𝜏1 + 𝜇 + 𝛿)𝐼 

𝑑𝐽

𝑑𝑡
= 𝜀𝐼 − (𝜏2 + 𝜇 + 𝛿)𝐽 

𝑑𝑅

𝑑𝑡
= 𝜏1𝐼 + 𝜏2𝐽 − (𝜎 + 𝜇)𝑅

                                                   

 

where 

𝐾1 = 𝐾 + 𝜇 

𝐾2 = 𝜀 + 𝜏1 + 𝜇 + 𝛿 
𝐾3 = 𝜏2 + 𝜇 + 𝛿 
𝐾4 = 𝜎 + 𝜇 

𝐹 = (

𝛽𝑛𝑑𝐼𝑆0

𝐴

0
0

) , 𝑉 = (
𝐾1𝐸
𝐾2𝐼 − 𝐾𝐸
𝐾3𝐽 − 𝜀1𝐼

)

                                           
(8)
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𝐹 = (
0

𝛽𝑛𝑑𝑆0

𝐴
0

0 0 0
0 0 0

) , 𝑉 = (
𝐾1 0 0
−𝐾1 𝐾2 0
0 −𝜀 𝐾3

)

                            (9) 

𝐹𝑉−1 = (
0

𝛽𝜂𝑑𝑆0
𝐴

0

0 0 0
0 0 0

)

(

 
 
 
 

1

𝐾1
0 0

𝐾

𝐾1𝐾2

1

𝑘2
0

𝑘𝜀

𝐾1𝐾2𝐾3

𝜀

𝐾2𝐾3

1

𝐾3)

 
 
 
 

 

= (

𝛽𝜂𝑑𝐾𝑆0
𝐴𝑘1𝑘2

𝛽𝜂𝑑𝑆0
𝐴𝑘2

0

0 0 0
0 0 0

) 

|𝐹𝑉−1 − 𝜆𝐼| = 0, where I is a 3x3 identify matrix  

|

𝛽𝜂𝑑𝐾𝑆0

𝐴𝐾1𝐾2
− 𝜆

𝛽𝜂𝑑𝑆0

𝐴𝐾2
0

0 −𝜆 0
0 0 −𝜆

| = 0

                                                            (10)     
 

 

⇒ (
𝛽𝜂𝑑𝐾𝑆0
𝐴𝐾1𝐾2

− 𝜆)𝜆2 = 0 

⇒ 𝜆 = 0(𝑡𝑤𝑖𝑐𝑒)𝑜𝑟𝜆 =
𝛽𝜂𝑑𝐾𝑆0

𝐴𝐾1𝐾2
= 𝑅0

                                            

 

The basic reproduction number 𝑅0 = 𝜌(𝐹𝑉−1), is the spectral radius of the dominant eigenvalue of (10). 

Hence, 𝑅0 =
𝛽𝜂𝑑𝐾

𝜇𝐴(𝐾+𝜇)(𝜀+𝜏1+𝜇+𝛿)
[(1 − 𝑝)𝜋 +

𝜔𝑝𝜋

(𝜔+𝜇)
]
              

(11)
 

Stability Analysis  

Global Stability of the disease free equilibrium 

Theorem 2: If𝑅0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable, and unstable 

otherwise.  

Proof: Let F be a candidate Lyapunov function for the model, such that:  

𝐹 = (𝑆 − 𝑆* − 𝑆*𝐼𝑛
𝑆

𝑆*
) +

𝐾𝐸

(𝐾+𝜇)(𝜀+𝜏1+𝜇+𝛿)
+

𝐼

𝜀+𝜏1+𝜇+𝛿
                  (12)

 

where𝑆* =
1

𝜇
[(1 − 𝑃)𝜋 +

𝜔𝑝𝜋

𝑤+𝜇
]is the value of S(t) at DFE. Obviously the second and third terms on the RHS 

of (13) are positive. For the first term, 𝑆* ≤ 𝑆  (since 𝑆*is an equilibrium point of S). Then𝑆 − 𝑆* − 𝑆*𝐼𝑛
𝑆

𝑆
is 

also positive.  

Therefore 𝐹 = 𝐹(𝑆, 𝐸, 𝐼) is positive definite.  
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Now for the time derivative of F along the solutions of the model equation (1), we have 

𝑑𝐹

𝑑𝑡
= (1 −

𝑆*

𝑆
)
𝑑𝑆

𝑑𝑡
+

𝐾

(𝐾+𝜇)(𝜀+𝜏1+𝜇+𝛿)

𝑑𝐸

𝑑𝑡
+

1

𝜀+𝜏1+𝜇+𝛿

𝑑𝐼

𝑑𝑡
   (13)

 

Substituting 
𝑑𝑆

𝑑𝑡
,
𝑑𝐸

𝑑𝑡
𝑎𝑛𝑑

𝑑𝐼

𝑑𝑡
  from (1) gives  

𝑑𝐹

𝑑𝑡
(1 −

𝑆*

𝑆
) [(1 − 𝑃)𝜋 −

𝛽𝜂𝑑𝐼𝑆

𝐴
− 𝜇𝑆 + 𝑤𝑉 + 𝜎𝑅] 

+
𝐾

(𝐾 + 𝜇)(𝜀 + 𝜏1 + 𝜇 + 𝛿)
[
𝛽𝜂𝑑𝐼𝑆

𝐴
− (𝐾 + 𝜇)𝐸] +

1

𝜀 + 𝜏1 + 𝜇 + 𝛿
[𝐾𝐸 − (𝜀 + 𝜏1 + 𝜇 + 𝛿)𝐼] 

𝑑𝐹

𝑑𝑡
= (1 −

𝑆*

𝑆
) [(

𝛽𝜂𝑑𝐼
*𝑆*

𝐴
−
𝛽𝜂𝑑𝐼𝑆

𝐴
) + 𝜇(𝑆* − 𝑆) + 𝜔(𝑉 − 𝑉*) + 𝜎(𝑅 − 𝑅*)] 

+
𝐾

(𝐾 + 𝜇)(𝜀 + 𝜏1 + 𝜇 + 𝛿)
[
𝛽𝜂𝑑𝐼𝑆

𝐴
− (𝐾 + 𝜇).

𝛽𝜂𝑑𝐼
*𝑆*

𝐴(𝐾 + 𝜇)
] +

1

𝜀 + 𝜏1 + 𝜇 + 𝛿
[𝜀 + 𝜏1 + 𝜇 + 𝛿(𝐼

*𝐼)] 

At DFE, 𝐼* = 𝑅* = 0, so
𝑑𝐹

𝑑𝑡
 becomes  

𝑑𝐹

𝑑𝑡
= −

𝛽𝜂𝑑𝐼𝑆

𝐴
(1 −

𝑆*

𝑆
) − 𝜇(𝑆 − 𝑆*) − 𝜔(𝑉 − 𝑉*) + 𝜎𝑅 

+[
𝐾𝛽𝜂𝑑𝑆

𝐴(𝐾 + 𝜇)(𝜀 + 𝜏1 + 𝜇 + 𝛿)
− 1] 𝐼 

At disease –free equilibrium,𝜀0 = (𝑆0, 𝑉0, 𝐸0*, 𝐼0, 𝐽0, 𝑅0) = (
1

𝜇
[(1 − 𝑃)𝜋 +

𝜔𝑃𝜋

𝑤+𝜇
] ,

𝑃𝜋

𝑤+𝜇
, 0,0,0,0),

 (14) 

Therefore,

  

𝑑𝐹

𝑑𝑡
= −

𝛽𝜂𝑑𝐼𝑆

𝐴
(
𝑆 − 𝑆*

𝑆
) − 𝜇(𝑆 − 𝑆*) − 𝜔(𝑉 − 𝑉*)

+ {
𝛽𝜂𝑑𝑘

𝜇𝐴(𝐾 + 𝜇)(𝜀 + 𝜏1 + 𝜇 + 𝛿)
[(1 − 𝑃)𝜋 +

𝜔𝑃𝜋

𝜔 + 𝜇
] − 1} 𝐼 

𝑑𝐹

𝑑𝑡
= −

𝛽𝜂𝑑𝐼𝑆

𝐴
(
𝑆−𝑆*

𝑆
) − 𝜇(𝑆 − 𝑆*) − 𝜔(𝑉 − 𝑉*) + (𝑅0 − 1)𝐼                      (15) 

Obviously from (15), 
𝑑𝐹

𝑑𝑡
< 0𝑖𝑓𝑅0 ≤ 1 

𝑑𝐹

𝑑𝑡
= 0𝑖𝑓𝑓𝑆 = 𝑆*, 𝑉 = 𝑉*and𝐼 = 0 

Thus (𝑆, 𝑉, 𝐸, 𝐼, 𝐽, 𝑅) → (
1

𝜇
[(1 − 𝑃)𝜋 +

𝜔𝑃𝜋

𝜔+𝜇
] ,

𝑃𝜋

𝜔+𝜇
, 0,0,0,0)             (16) 

as𝑡 → ∞,and the target compact invariant set is the singleton {𝜀*}. So, by Lassalle’s invariance principle [16], 

every solution of the model system (1) with initial conditions in D approaches 𝜀*as 𝑡 → ∞ whenever 𝑅0 ≤ 1. 
Hence, the disease-free equilibrium is globally asymptotically stable whenever 𝑅0 ≤ 1, and unstable otherwise. 
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Global stability of endemic equilibrium 

Theorem 4: If 𝑅0 > 1, then the endemic equilibrium point of the model equation is globally asymptotically 

stable in Ω, provided 𝑆 ≥ 𝑆*, 𝑉 ≥ 𝑉*, 𝐸 ≥ 𝐸*, 𝐼 ≥ 𝐼,* 𝐽 ≥ 𝐽*, and 𝑅 ≥ 𝑅*. 

Proof: To establish the global stability of the endemic equilibrium 𝐸*, we analysed by constructing the 

following quadratic Lyapunov function  𝐿, following the approach of [14], such that 

𝐿 =
1

2
[(𝑆 − 𝑆*) + (𝑉 − 𝑉*) + (𝐸 − 𝐸*) + (𝐼 − 𝐼*) + (𝐽 − 𝐽*) + (𝑅 − 𝑅*)]

2
 

By direct calculation of the time derivatives 𝐿(𝑡) along the solutions of the system (1) is obtained as 

𝑑𝐿

𝑑𝑡
= [(𝑆 − 𝑆*) + (𝑉 − 𝑉*) + (𝐸 − 𝐸*) + (𝐼 − 𝐼*) + (𝐽 − 𝐽*) + (𝑅 − 𝑅*)] (

𝑑𝑆

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝐽

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
) 

Substituting the appropriate solutions of the system (1) into the derivative of 𝐿(𝑡) gives 

𝑑𝐿

𝑑𝑡
≤ [(𝑆 − 𝑆*) + (𝑉 − 𝑉*) + (𝐸 − 𝐸*) + (𝐼 − 𝐼*) + (𝐽 − 𝐽*) + (𝑅 − 𝑅*)]

𝑑𝑁

𝑑𝑡
 

𝑑𝐿

𝑑𝑡
≤ [(𝑆 − 𝑆*) + (𝑉 − 𝑉*) + (𝐸 − 𝐸*) + (𝐼 − 𝐼*) + (𝐽 − 𝐽*) + (𝑅 − 𝑅*)](Λ− 𝜇𝑁)

 

≤ (𝑁 −
𝜋

𝜇
) (Λ− 𝜇𝑁)                                           (17)                                                                                    

We obtain the result by rearranging and simplifying (17) by

                                                                                                                           

 

≤ −
1

𝜇
(𝜋 − 𝜇𝑁)2

 

Let 

 

𝜉 = 𝜋 − 𝜇𝑁
 

 

⇒
𝑑𝐿

𝑑𝑡
≤ −

1

𝜇
𝜉2 

Hence, (
𝑑𝐿

𝑑𝑡
) ≤ 0 and 

𝑑𝐿

𝑑𝑡
= 0, if and only if 𝑆 = 𝑆*, 𝑉 = 𝑉*, 𝐸 = 𝐸*, 𝐼 = 𝐼,* 𝐽 = 𝐽*, 𝑅 = 𝑅* Therefore, If 𝑋 < 𝑌, 

then, 
𝑑𝐿

𝑑𝑡
will be negative definite, implying that 

𝑑𝐿

𝑑𝑡
= 0, if and only if 𝑆*, 𝑉 = 𝑉*, 𝐸 = 𝐸*, , 𝐼 = 𝐼,* 𝐽 = 𝐽*, and 

𝑅 = 𝑅*.  Therefore, the largest positive invariant set in {(𝑆*, 𝑉*, 𝐸*, , 𝐼,* 𝐽*, 𝑅*) ∈ Ω:
𝑑𝐿

𝑑𝑡
= 0} is a singleton {𝐸1}, 

where 𝐸1 is globally asymptotically stable in the set Ω in accordance to accordance to LaSalle’s invariant 

principle [16], it then implies that 𝐸1 is globally asymptotically stable in Ω . 

Sensitivity Analysis 

Using approach of [15], the normalized forward sensitivity index of a variable “P” that depends differentiable 

on a parameter “q” is defined as 

𝑋𝑣
𝑅0: =

∂𝑅0

∂𝑣
*
𝑣

𝑅0
                                                                                                             (18) 

As we have an explicit formula for 𝑅0 in equation (18), we derive an analytical expression and the associated  
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numeric values for the sensitivity of 𝑅0, as  𝑋𝑣
𝑅0: =

∂𝑅0

∂𝑣
*
𝑣

𝑅0
 with respect to  each of the parameters involved in 

𝑅0in Table 2 which is depicted by the bar chart in Figure 2:

 

 

Table 3: Parameter Values, Sensitivity expression and Sensitivity Indices of 𝑅0 

Parameter Sensitivity Expression Sensitivity index value 

𝛽 1 1 

A -1 -1 

𝜋 1 1 

𝛿 𝛿

𝑘2
 

-0.07438 

𝜏 −
𝜏

𝑘2
 -0.661157 

𝜂𝑑 1 1 

µ −𝜇(𝑘1 + 𝑘2 + 𝑘1𝑘2(1 + 𝜔𝜌𝜋))

𝜇𝑘1𝑘2(𝜔 + 𝜇)2
 

-0.92288                                

P −𝑝𝜇

𝜇(1 − 𝑝) + 𝜔
 0.05263 

K                           𝜇

𝑘 + 𝜇
 0.06250 

𝜔 𝜔𝜌𝜇

𝜔 + 𝜇)(𝜇(1 − 𝑝) + 𝜔)
 0.04386                                

𝜀 −
𝜀

𝑘2
 -0.24793 

 

Figure 2: Sensitivity indices value chart 
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Interpretation of Sensitivity Indices 

Table 3, Figure 2 and Figure 8 represents the sensitivity index for the base line parameter values and it shows 

that when the parameters with positive sensitivity index value increase while the other parameters remain 

constant, the value of 𝑅0 will also increase implying that they increase the endemicity of the disease as they 

have positive indices and should be targeted by intervention strategies. 

More so, when the parameters with negative sensitivity index values increase while keeping other parameters 

constant, the value of 𝑅0 will decrease, implying that they decrease the endemicity of the disease as they have 

negative indices as depicted by plots in Figures 10,11,12,13 and should equally be targeted by intervention 

strategies.For instance, 𝑋𝛽
𝑅0 = +1.0 means that increasing or decreasing 𝛽1 by 10% increases or (decreases) 

𝑅0by 10% while 𝑋𝜏1
𝑅0 =- 0.661157 means that increasing or (decreasing ) 𝜏1by 10% decreases (or increases) 

𝑅0by  6.61157%. We can easily calculate for every other parameter following similar procedure. 

Bifurcation Analysis 

Existence of backward bifurcation 

Bifurcation refers to a change in the stability or qualitative behavior of a system. The backward bifurcation 

refers to a sudden change in the systems behaviors, where the disease can persist and spread even if the basic 

reproduction number is less than 1, which typically indicates disease extinction. 

The existence of backward bifurcation is explored using the centre manifold made popular by [11]. This has 

widely been used in the study of some epidemiological models [12-13]. 

For understanding and convenience, we consider the following change of variables 

Let 𝑆 = 𝑥1, 𝐸 = 𝑥2, 𝐼 = 𝑥3, 𝐽 = 𝑥4, 𝑉 = 𝑥5and 𝑅 = 𝑥6 

Also, Let𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5𝑥5, )
𝑇, so the system (1) can be re-written in the form 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥), where 𝐹 =

(𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6)
𝑇 , as follows, then the model equations becomes 

𝑑𝑥1
𝑑𝑡

= (1 − 𝑝)𝜋 − (
𝜆𝑥1
𝐴
) − 𝜇𝑥1 + 𝜔𝑥5 + 𝜎𝑥6 = 0 

𝑑𝑥2
𝑑𝑡

=
𝜆𝑥1
𝐴
− (𝑘 + 𝜇)𝑥2 = 0 

𝑑𝑥3

𝑑𝑡
= 𝑘𝑥2 − (𝜀 + 𝜏1 + 𝜇 + 𝛿)𝑥3 = 0

       (19) 

 

𝑑𝑥4
𝑑𝑡

= 𝜀𝐼 − (𝜏2 + 𝜇 + 𝛿)𝑥4 

𝑑𝑥5
𝑑𝑡

= 𝑃𝜋 − 𝜔𝑥5(𝜔 + 𝜇)𝑥5 = 0 

𝑑𝑥6
𝑑𝑡

= 𝜏1𝑥3 + 𝜏2𝑥4 − (𝜎 + 𝜇)𝑥6 = 0 

Taking𝛽1 = 𝛽1
*, where 𝛽1

*is the chosen bifurcation parameter and the case when 𝑅0 = 1. Then,
  

𝛽1
* =

𝜇𝐴(𝐾 + 𝜇)(𝜀 + 𝜏1 + 𝜇 + 𝛿)(𝜔 + 𝜇)

𝜂𝑑𝐾𝜋(𝜔 + 𝜇(1 − 𝜌))
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The Jacobian of system (1), evaluated at the disease free equilibrium𝐸0, and 𝛽1
*is given by  

𝐽(𝐸0, 𝛽1
*) = 

(

 
 
 
 
 

−𝜇 0 −
𝛽𝜂𝑑𝑆0

𝐴
0 𝜔 𝜎

0 −(𝐾 + 𝜇)
𝛽𝜂𝑑𝑆0

𝐴
0 0 0

0 𝐾 −(𝜀 + 𝜏1 + 𝜇 + 𝑑) 0 0 0

0 0 𝜀 −(𝜏2 + 𝜇 + 𝑑) 0 0

0 0 0 0 −(𝜔 + 𝜇) 0

0 0 𝜏1 𝜏2 0 −(𝜎 + 𝜇))

 
 
 
 
 

    (20)            

          

the associated right eigenvectors w corresponding to the zero eigenvalue, where 𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6)
𝑇, 

can be obtained from 𝐽(𝐸0, 𝛽1
*)𝑤 = 0.

 
Hence, we have 

{
 
 
 
 

 
 
 
 𝑤1 =

𝑤3(𝛽
*𝜂𝑑𝑆0𝐾3𝐾4+𝜎(𝐾3𝜏1+𝜀𝜏2))

𝐴𝐾3𝐾4

𝑤2 =
𝑤3𝐾2

𝐾

𝑤3 = 𝑤3 > 0

𝑤4 =
𝜀𝑤3

𝐾3

𝑤5 = 0

𝑤6 =
𝑤3(𝐾3𝜏1+𝜀𝜏2)

𝐾4𝐾3

                                          (21)

 

Similarly, the Jacobian, 𝐽(𝐸0, 𝛽1
*), has a left eigenvector 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5)  

{
  
 

  
 
𝑣1 = 0
𝑣2 = 𝑣2 > 0

𝑣3 =
𝛽*𝜂𝑑𝑆0𝑣2

𝐴𝐾3

𝑣4 = 0
𝑣5 = 0
𝑣6 = 0

                                                                              (22)

 

Satisfying 𝑣.𝑤 = 1the product and substitution gives  

𝑣2𝑤3𝐾2
𝐾

= 1 

𝑣2𝑤3 =
𝐾

𝐾2
 

Thus, the preceding equality is satisfied if we choose the values of   

𝑣2 =
1

𝐾2 , 
𝑤2 = 𝐾                   (23) 

Computation of a and b 

The coefficients a and b as defined by Castillo-Chavez and Song [17] are given by: 

𝑎 = ∑

𝑖,𝑗,𝑘=1
∞

𝑣𝑘𝑤𝑖𝑤𝑗
∂2𝑓𝑘(𝐸0,𝛽

*)

∂𝑥𝑖 ∂𝑥𝑗
 and  𝑏 = ∑

𝑘,𝑖,𝑗=1
∞

𝑣𝑘𝑤𝑖
∂2𝑓𝑘(𝐸0,𝛽

*)

∂𝑥𝑖 ∂𝛽
*
; and are algebraically computed as follows,  
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considering only the nonzero components 𝑓𝑖: 𝑖, 𝑗, 𝑘 = 1,2,3,4,5,6. With these definitions, the following were 

obtained: 

𝑎 = 2𝛽*𝜂𝑑
𝐾2(𝛽*𝜂𝑑𝐾3𝐾4𝑆0+𝐴𝜎(𝐾3𝜏3+𝜀𝜏2)𝛽

*)(𝜔+𝜇(1−𝑝))

𝐴𝜇𝐾2𝐾3𝐾4(𝜔+𝜇)
                        (24) 

𝑏 =
𝜂𝑑𝐾

2(𝜔+𝜇(1−𝑝))

𝐴𝜇𝐾2(𝜔+𝜇)
                                                                                           (25) 

Clearly, from (24) and (25), 𝑎 > 0, 𝑏 > 0, then the model exhibits a backward bifurcation around𝑅0 = 1, that 

is there exists bi-stability of equilibrium point (one stable disease free and stable endemic equilibrium for 𝑅0 <
1. This is implying that the disease free is not globally stable. The implication, from epidemiological point of 

the existence of backward bifurcation is that the classical necessary requirement of 𝑅0 < 1is insufficient to 

control the spread of measles in the population. 

Numerical Simulations and Discussion 

This section presents the numerical simulation results of modeling measles reoccurrence in vaccinated infants. 

The numerical simulations of the models are done using parameter values obtained from literature as shown in 

Table (2) and this is done via MAPLE 18 software with intial conditions S(0)=2885,V(0)=4192, 

E(0)=15784,I(0)=1645, J(0)=1050 and R(0)=14215. 

 

Figure 3. Behavior of total population at Disease Free Equilibrium 

 

Figure 4. Behavior of total population at Endemic Equilibrium 

The numerical results of total population at disease free equilibrium point for measles virus model is showed in 

Figure 2. Similarly, result of total population at Endemic Equilibrium is also showed in Figure 4. Additionally, 
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Figure 5 shows that the disease-free equilibrium exist and it is globally stable as shown by the plot of I(t) at 

different initial values. 

 

Figure 5. Global Stability of Disease-Free Equilibrium 

The portrait of global stability of the disease free equilibrium with various initial conditions as illustrated in 

Figure 5. It simply suggest that if the basic reproduction number𝑅0 < 1, the measles virus can be eradicated 

from the population, regardless of how many people are initially infected and the disease will eventually die 

out, regardless of the initial number of infective individuals whenever𝑅0 < 1.  

 

Figure 6. Backward Bifurcation Diagram of Basic Reproduction number  

Backward bifurcation is a mathematical modeling phenomenon where a system's dynamics shift, resulting in 

the coexistence of multiple stable states as indicated in Figure 6. In the context of measles, this means that a 

critical threshold (Ro) exists, often below 1, beyond which the disease exhibits complex behavior. Below this 

threshold, isolation and vaccination efforts are likely to be effective, but beyond it, controlling the disease 

becomes increasingly difficult. 

 

Figure 7: The Vaccinated Human against time 
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Figure 7 shows the graph of Vaccinated Human (I) against time (t) at varying vaccine waning rate, It shows 

the effect of waning of vaccine𝜔 on the population of the Infectious class. It was noted that at when 𝜔 =0.6, 

there is an outright decrease in Vaccinated Human population, the figure shows that there is the possibility of 

high degree of infections as individuals lose the protection that the vaccine offers recorded within the first five 

to seven years. The figure shows that there is gradual decrease in the number of Vaccinated human population 

rate at𝜔 =0.1 and =0.3 respectively. This indicated that the rate of Vaccinated human vanishes at the same 

point at time (t)= 18,10 years respectively. 

               

Figure 8(a): Graph of contact rate (𝛽) versus Area per square meter (A), Figure 8 (b): Graph of (𝛽) versus (𝜏1) 

It is observed that as the Area per square meter (A) increases, the number of transmission is reduced. This 

therefore play an important role in the spread and transmission of measles virus.  

CONCLUSION 

This study was formulated and analyzed as a mathematical model for measles in order to gain more insights 

and understanding of the epidemiological features of some parameters on the transmission dynamics of 

measles in human population. The mathematical model was shown to be mathematically and 

epidemiologically well-posed through the theory of positivity and boundedness of solutions in D. The disease-

free and endemic equilibrium points of the model were obtained. The basic reproduction number of the model 

was calculated using the next generation matrix method and the stability of the disease-free  equilibrium was 

investigated and shown to be locally asymptotically stable whenever the basic reproduction number is less than 

unity and unstable if otherwise. The global asymptotic stability of the model was shown to be globally 

asymptotically stable whenever the associated threshold parameter is less than unity and unstable if otherwise. 

The effect of some parameters of the model relative to the basic reproduction number was calculated using the 

normalized forward sensitivity indices and it was established that increase in the parameters with negative 

indices will reduce the value of the basic reproduction number while increase in those with positive indices 

will increase the value of the basic reproduction number. The model was shown to exhibits backward 

bifurcation which implies that the existence of the classical necessary requirement of 𝑅0 < 1
 
is insufficient to 

control the spread of measles in the population. Therefore, epidemiological features such as the vaccination 

rate, effective contact rate, progression rate and treatment rate should be given great attention in order to 

effectively control and prevent the dynamical spread of measles infections in human population. 

The results of the bifurcation analysis suggest that the model exhibit a backward bifurcation, which has 

significant implications for measles control. This occurs when a system exhibits a sudden change in behavior, 

resulting in a stable equilibrium coexisting with an unstable equilibrium, allowing it to maintain a foothold in 

the population even with low 𝑅0 values. 
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