

Socioeconomic and Farm Structure Characteristics of Potato Farmers in Kuresoi North Sub-County, Nakuru County, Kenya

Yegon Fancy Chepkemoi

University of Eldoret

DOI: https://dx.doi.org/10.51584/IJRIAS.2025.1010000095

Received: 10 October 2025; Accepted: 15 October 2025; Published: 10 November 2025

ABSTRACT

It is vital to understand the socio-economic characteristics of farmers as it aids in solving multiple challenges that farmers undergo. This study analyzed the socio-economic characteristics of potato farmers in Kuresoi North Sub-County. Simple random sampling was used to select 395 smallholder potato farmers who participated in the household survey. A semi-structured questionnaire was used to collect socio-economic data from the respondents. STATA version 15.0 aided in analyzing data and results presented in the form of frequencies, percentages and charts. The results posited that farmers were middle-aged (a mean of 49 years), experienced in potato farming (11 years on average), and literate with basic secondary education (11 years on average). They possess a household land size of 1.6 hectares with 0.71 hectares dedicated to potato farming. Most farmers (77%) were married. Aside potato production, farmers practiced livestock keeping (67.59%) and production of other crops (4.56%). Only few farmers, 19.24% accessed certified seeds while the rest purchased seeds from open-air markets and neighbors. A large proportion of farmers (72.15%) diversified their agricultural production with 27.85% sticking to potato production. The observed socio-economic profile posit that farmers are literate, experienced and diversified. However, there is need to capacity build farmers to venture into profit-oriented off-farm activities such as value addition which will enhance their earnings.

Moreover, farmers should be encouraged to form cooperatives that will simplify access to high-quality inputs and ready market that will further translate to better productivity and profitability.

Keywords: Socio-economic characteristics, smallholder farmers, agricultural diversification, value-addition, Kuresoi North

INTRODUCTION

Agriculture plays a crucial role in contributing greatly to job creation, rural livelihoods and food security. The sector contributes up to 33% of the country's Gross Domestic Product (GDP) directly and a further 27% indirectly via linkages with other sectors including manufacturing, trade and transport [1]. Agriculture remains the primary source of income in the rural areas for over 70% of households, most of whom are smallholder farmers managing less than 2 hectares of land [2]. As it stands, more than ten million people suffer from severe food insecurity and dietary inadequacy where an approximately 3 million people on average require urgent food supply at a given point in time [3].

Potato stands out as the second most important food crop after maize in the country, both in terms of production and consumption with more than 800,000 small-holder farmers involved in its production [4]. Amongst the areas dominated by potato farming are the Rift Valley region, Central Kenya and parts of the Eastern region.

Within the Rift Valley Region is Nakuru County which is among the potato-producing counties. Many parts in the county produce an average yield of 8 to 10 tonnes per hectare whereas the potential yields under favorable conditions are estimated as 25 tonnes per hectare using improved agronomic practices [5].

Kuresoi North Sub County, one of the sub counties in Nakuru county has been acknowledged as a key potato growing zone owing to its conducive agro-ecological conditions i.e. reliable rainfall, cool temperatures and

fertile volcanic soils. The sub county is largely dominated by smallholder farmers who rely greatly on potato farming both for household food security and cash income [6]. Despite potato being of great essence, its farming has remained underexploited both in Kuresoi North and Kenya at large. The crop's yields have continually fallen below the potential levels owing to a myriad of factors including; improper soil fertility management practices, high production input costs, inadequate access to certified inputs (seeds), susceptibility to diseases and poorly structured marketing systems [7].

These mentioned challenges are not solely technical, they are strongly associated with the socio economic and farm structure characteristics of farmers including; age, gender, education level, household size, access to extension services, land tenure system, farming experience and gender. For instance, while a large household tends to provide cheap and available labour, they end up placing higher demands on food consumption [8]. Several studies have put forward the aspects of agronomic, economic and marketing of potato with only few systematically profiling socioeconomic and farm structure characteristics of farmers, specifically in Kuresoi North sub-county. This less-researched area is very essential in understanding the diversity of potato farmers across various regions and thus aids in coming up with targeted interventions addressing various farmer category needs [9].

Moreover, absence of this knowledge may render interventions being generalized and thus lacking effectiveness in addressing unique challenges affecting farmers in diverse socio-economic conditions. This study thus focuses on the socio-economic and farm structure characteristics of potato farmers in Kuresoi North Sub-County, Nakuru County. By assessing demographic factors, farmers' asset base, agricultural practices and access to institutional support, the study looks forward to providing empirical insights into the prevailing conditions of potato farming.

Findings from this study will inform not only academic literature but will also play a significant role in shaping policies aimed at enhancing potato productivity, profitability and sustainability in the country's most important potato-growing zones.

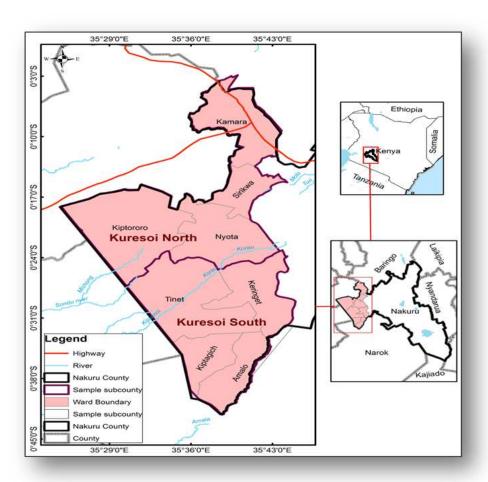
METHODOLOGY

Area of study

The study was done in Kuresoi North Sub-County. It is one of the administrative units lying within Nakuru County with a land size of 618.1sq.kms. The sub-county has an aggregate population of 175,074 and a population growth rate of 3.5% per annum as per the 2019 census results [10]. It is located on the west Mau escarpment and borders Molo constituency to the East, Kuresoi South to the south-east, Kipkelion East to the west and Eldama Ravine to the north [11]. The sub-county exhibits temperate climatic conditions favoring agricultural production, in particular, horticultural crops and temperate fruits, including; cabbage, kale, peas, plums and pears [12]. The average altitude in the area is 2500m above sea level [13].

Table I Kuresoi North Sub-County Agro-Ecological Zones (AEZs)

Altitude (meters)	Avg Rain (mm)	Temp (°C)	AEZs areas
2400-2700	1500-1800	8°C-18°C	Forest, Kiptororo,
2100-2400	1300-1500	10°C -28°C	Kamara, Kuresoi,


Source: Kuresoi North Sub-County Agricultural Reports

Potatoes do well in areas with an altitude of 1500-2800 meters above sea level, under well-distributed rainfall patterns ranging between 850-1400 mms per annum, with a temperature range of 16-20°C for tuber development [14]. The soils supporting excellent performance of potatoes should be well-drained, loamy-sandy soils with a PH of 5-6.5 that are rich in organic matter concentration [15].

This therefore makes Kuresoi North one of the suitable areas supporting the growth of potatoes.

Figure 1 Area of Study Map. Source: Modified from (Independent Electoral and Boundaries Commission) IEBC 2013

Research design

The study adopted a descriptive design. A descriptive research design often aims to precisely describe a phenomenon, population or situation [16]. It will therefore, allow for the description of socio-economic factors attributed to the potato farmers at a given point in time [17].

One of the benefits attached to this study design is that it coincides with the cross-sectional research data which enables the researcher to make comparisons amongst a large number of variables at the same time or at a specific point in time.

Target population

The study focused mainly on potato farmers in Kuresoi North Sub County. Kuresoi North Sub County was selected precisely since it is a major producer and a potential area for potato production. According to the Ministry of Agriculture, Kuresoi Sub County 2023, there are approximately 23,949 potato farmers in the sub county which made up the target population for this study.

Sample size determination

The sample size was determined using Slovin's formula as it is suitable for determining samples from large populations [18].

$$n = \frac{N}{1 + N(e^2)}$$

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

 $n = 23949/1 + 23949(0.05^2) = 393.4289 \approx 394$ farmers

The sample size in each ward was determined as shown

Table II Sample Size Determination

S.No	Ward	Population of farmers	Sample size
1	Kamara	5,686	94
2	Kiptororo	9,150	150
3	Sirikwa	5,800	95
4	Nyota	3,313	55
Total		23,949	394

Source: Author

Sampling Procedure

Kuresoi North Sub-county was first stratified into its administrative wards. Proportionate sampling was then employed to determine the number of farmers to be selected from each ward. Finally, simple random sampling was used to select individual respondents within each ward.

Data collection instruments

Both primary and secondary data were gathered to meet the objective of this study. Primary data was collected using a semi-structured questionnaire and interviews. Secondary data was collected from previous studies and reports conducted by scholars and institutions.

RESULTS AND DISCUSSION

Continuous variables

Table II Sampled Potato Farmers' Socio-Economic Characteristics

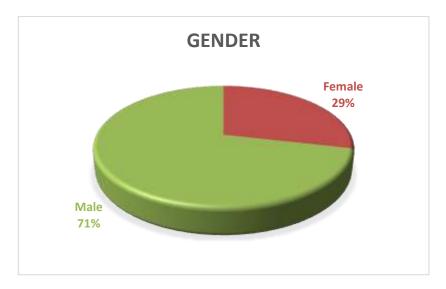
Variable	n	Mean	Std. Dev.	Min	Max
Age (years)	395	49.02	13.0	18	80
Potato farming years	395	11.89	7.58	1	40
Household size (number)	395	6.61	2.39	1	16
Education years	395	11.04	2.86	1	20
Household land size (ha)	395	1.60	1.03	0.05	8.09
Potato land size (ha)	395	0.71	0.47	0	4.04

From the results, the mean age of potato farmers was 49 years ranging from 18 to 80 years with a standard deviation of 13.04 years. These findings coincided with those of [19], [20] and [21] who reported that majority of their respondents were middle-aged. In contrast, [22] posited that sampled potato farmers had an average age

of 39 years suggesting that a majority of them were at their prime stages of life.

However, from the current study results, the majority of potato farmers in the study area were experienced and in their mid-years. The survey results put forward that farmers had 12 years of experience on average in potato farming. Similar results were reported by [23] and [24] who obtained the farmers' years of experience to be 13 and 12 respectively.

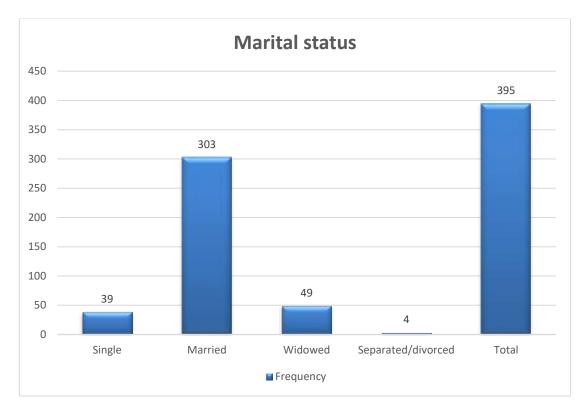

The more experienced a farmer is in agricultural production, the higher the possibility of an increase in production. This will further translate to better decision-making with regards to farming thus minimizing losses. The number of family members on average was found to be 7. [25], [26]and [27] reported similar results of seven family members on average among the sampled potato farmers. However, these results were contrasted by [28] who obtained a mean of 3 members per household. Family size is very key as it plays a critical role in providing family labour. This in extension implied that a farmer's household size may have an influence on the production level via labour supply. On average, farmers possessed 11 years of formal education indicating a literate group with secondary education where the least and most learned farmers had 1 and 16 years of study respectively.


This further portrayed the presence of basic education among the sampled potato farmers. [29] presented similar results emphasizing on the vitality of education in farming as it enhances decision making. However, controversial results were depicted by [30] who obtained an average of 8 years of study suggesting an attainment of primary education. The household land size on average was obtained to be 1.6ha, implying that the farmers in the area of study were practicing small-scale farming. These findings coincided with those of [31] who posited that on average, farmers possessed an average household land size of 2 hectares.

From an average land size of 1.6ha, these farmers dedicated 0.71ha, on average, to potato farming explaining how essential it is to venture into potato production. These results were concurrent with those of [32] and [20]who revealed that 66.7% and 40.8% of the sampled farmers respectively 0.8ha of their land to potato production.

Categorical variables

Gender of the respondents: The highest number of respondents were male constituting 71% of the farmers while only 21% were female as depicted in figure 2.



Despite the females being much involved in agricultural production, they have considerably less access to resources and essential services thus impeding their increased productivity and income-earning capacity. [33] who obtained the male percentage to be 89.3 and just 10.7% being females presented similar arguments.

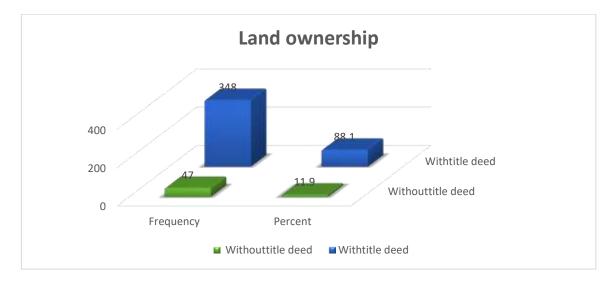
Marital status of the respondents: Figure 3 indicates the marital status of the farmers where majority (303) being married and the least number of farmers (4) as being divorced.

Fig. 3 Marital status of the respondents

Married couples play a crucial role in farming as they aid each other in decision-making as well as spreading risks involved in production. They further utilize additional labour for enhanced profitability. These results concur with those put forward by [34] and [35]who realized that a large proportion of the sample farmers were married.

Land under potato farming: The findings as depicted by table 4 indicate that a majority of the farmers (365) cultivated potatoes on their own pieces of land with just 30 of them renting in land for potato production.

Table III Land Under Potato Production


Land under potato production	Frequency	Percent
Rented land	30	7.59
Own land	365	92.41
Total	395	100

Large portions of land being allocated to potato farming out of the total household land indicated how crucial potatoes were to the farmers in the area of study. A Similar argument was put forward by [36] who posited that 92.7% of the farmers carried out potato farming on their own land while only 7.3% of the sampled potato farmers rented in land for potato production.

Land ownership: A large proportion of farmers (88.1%) claimed ownership of their lands via title deeds with only 11.9% missing title deeds. This is illustrated clearly by the results in figure 4.

Fig. 4 Land Ownership status

Possession of title deeds eases farmers' ability to access credit facilities thus enhancing their productivity which translates to increased returns [37] and [38].

The results obtained were in agreement with those of [39], [40], [41] and [42] who further emphasized the vitality of cultivating lands with title deeds.

Use of certified seeds: The results presented in table 5 indicate the ability of potato farmers to access certified potato seeds.

Table IV The Use of Certified Seeds

Certified seeds	Frequency	Percent
Lack of access	319	80.76
Access	76	19.24
Total	395	100

A majority of the farmers, 80.76% were not in a position to access certified seeds with only 19.24% reaping bumper harvests from cultivating certified potato seeds.

This is an indicator of a critical challenge in addressing poor agricultural productivity and food insecurity. It therefore exercabate the already worsened state of poor yields and susceptibility to pests and diseases. [43] presented similar results where only 36% of the farmers were in a position to access certified seeds indicating how challenging it was for the potato producers.

Engagement in other farming activities: The results in table 6 illustrate the rate at which farmers engaged in other farming activities other than potato production.

Table V Engagement in Other Farm Activities

Other farm activities	Frequency	Percent
Animal production	267	67.59

Crop production	18	4.56
	285	72.15
No other farm activities	110	27.85
Total	365	100

It is presumed that up to 72.15% (285) of the farmers were in a position to get involved in other farm activities with only 27.85% concentrating on potatoes.

Amongst those that ventured into additional farm duties, the lion's share was taken by animal production with 67.59% of the farmers and only 4.56% engaging in the production of other crops alongside potatoes. Similar results were presented by [44] and [45] thus placing more emphasis on the essentiality of diversified agriculture.

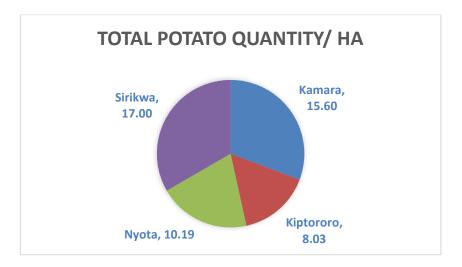
Involvement in off-farm economic activities: The extent to which sampled farmers took part in off-farm economic activities is as stipulated in table 7.

Table VI Off-Farm Economic Activities

	Business	Informal	Formal employment	Frequency	Percent
	No	No	No	145	36.71
No off-farm				145	36.71
	No	No	Yes	19	4.81
	No	Yes	No	5	1.27
	Yes	No	No	173	43.8
	Yes	No	Yes	46	11.65
	Yes	Yes	No	6	1.52
	Yes	Yes	Yes	1	0.25
Off-farm				250	63.29
Total				395	100

It was revealed from the findings that quite a significant portion of the farmers were in a position to venture into other economic activities aside from farming. The majority of the growers, 250 (63.29%) managed to take part in off-farm economic activities while 36.71% of them just majored on agricultural production. Very few of them 19 (4.81%) were formally employed. Quite a number of them 46 (11.65%) were formally employed and in business. Those who-managed to take part in informal economic activities were 5 (1.27%). Several famers majored on doing business and this constituted (173) 43.8% of the respondents.

Just one farmer (0.25%) managed to take part in informal economic activities and business in addition to being formally employed. Similar arguments were put forward by [46], [47] and [48] who placed more emphasis on


ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

the criticality of diversified income sources as it aids in cushioning risks and losses.

Mean potato production/ha per ward: Results depicted in figure 5 display the quantity (in 50kg bags) of potatoes produced per ha in each ward in the area of study.

Fig. 5 Mean potato production/ha per ward

Sirikwa had the highest number of bags produced per ha constituting approximately 17 bags. From that, Sirikwa was rated as the most productive with Kiptororo depicting least productivity with only 8.03 bags per ha. However, this output was way much below the standard output of potato production per ha which is often expected to be 64.75 (50kg bags) per ha as opined by [49].

CONCLUSIONS AND RECOMMENDATIONS

This study assessed the socio-economic and farm structure characteristics of potato farmers in Kuresoi North sub-county, Nakuru county. The results put forward that potato farming in the region is largely composed of middle-aged, literate farmers with substantial farming experience.

Farmers had 12 years of potato farming experience on average, reflecting deep knowledge in the venture. An average of seven members was obtained for each household posting a high potential for family labour availability to support farming activities.

An average of 1.6 hectares was the size of landholdings, with 0.7 hectares dedicated to potato production thus placing the crop at a crucial position in the study area. Seventy-one percent of the potato farmers were men highlighting persistent gender disparities in access to and control over productive resources. With 88% of farmers holding title deeds is a clear indication that access to credit was not a toll order. However, the remaining 12% had a limited ability to leverage land for financial services. A total of 81% of the farmers relied on uncertified seeds making it a key constraint to potato productivity. In extension, potato yield was significantly undermined as it exposed farmers to the risk of pests and diseases.

Potato productivity levels varied across wards with Sirikwa and Kiptororo being the most and least productive wards respectively. However, production was below national and research station averages indicating intraregional variability and an overall productivity gap.

More than 63% of the households diversified their incomes, and this involved engagement in other farm and off-farm economic activities. This was a clear indication that, whereas potato production was central, farmers rely on diversified livelihoods to mitigate risks and stabilize income.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

The study generally concludes that potato farming in Kuresoi North is characterized by experienced but resource-constrained small holder farmers who cultivate small plots with limited access to improved inputs, specifically certified seeds thus contributing to suboptimal productivity.

The study recommends that seed multiplication and distribution systems should be strengthened at the local level through farmer cooperatives. Gender inclusivity should be promoted and thus enable women to have access to land, credit, extension services and training to address gender disparities in productivity. Intensification strategies such as intercropping and soil fertility management should be promoted. Moreover, county and national governments should promote agricultural credit facilities linked to land ownership and group collateral mechanisms.

ACKNOWLEDGEMENTS

The author gratefully acknowledges farmers' cooperation in Kuresoi North Sub-County who provided data for this study.

Funding

This study never received any specific grant from funding agencies in the government, private or non-profit sectors.

Conflict Of Interest

The author declares no conflict of interest.

REFERENCES

- 1. M. Musyoki, N. Wawire, and J. Ong'ala, "Econometrics Model for the Contribution of Kenyan Agricultural Gross Domestic Product to Overall Gross Domestic Product," Int. J. Math. Trends Technol., vol. 68, June 2020, doi: 10.14445/22315373/IJMTT-V66I6P508.
- 2. M. K. Kansiime et al., "Rural livelihood diversity and its influence on the ecological intensification potential of smallholder farms in Kenya," Food Energy Secur., vol. 10, no. 1, p. e254, Feb. 2021, doi: 10.1002/fes3.254.
- 3. M. N. I. Lokuruka, "Food and Nutrition Security in East Africa (Kenya, Uganda and Tanzania): Status, Challenges and Prospects," in Food Security in Africa, IntechOpen, 2020. doi: 10.5772/intechopen.95036.
- 4. J. N. Mugo, N. N. Karanja, C. K. Gachene, K. Dittert, H. I. Gitari, and E. Schulte-Geldermann, "Response of potato crop to selected nutrients in central and eastern highlands of Kenya," Cogent Food Agric., vol. 7, no. 1, p. 1898762, Jan. 2021, doi: 10.1080/23311932.2021.1898762.
- 5. P. Sitieney, "Assessing the Effects of Climate Variability and Change on Crop Farmers: Small Scale Farmers in Rongai Sub-county, Nakuru County in the Republic of Kenya," Thesis, University of Nairobi, 2023. Accessed: Sept. 18, 2025. [Online]. Available: http://erepository.uonbi.ac.ke/handle/11295/166593
- 6. A. M. Kibe, M. Mwangi, and A. O. Nkurumwa, "Seed potato production in Nakuru, Kenya: Outcomes and implications of an active multi-stakeholder platform," in University Engagement with Farming Communities in Africa, Routledge, 2023, pp. 171–186. Accessed: May 28, 2025. [Online]. Available: https://library.oapen.org/bitstream/handle/20.500.12657/85013/9781003812333.pdf?sequence=1#page =192
- 7. Y. Lin et al., "Methodological evolution of potato yield prediction: a comprehensive review," Front. Plant Sci., vol. 14, p. 1214006, 2023.
- 8. K. E. Giller et al., "The future of farming: Who will produce our food?," Food Secur., vol. 13, no. 5, pp. 1073–1099, Oct. 2021, doi: 10.1007/s12571-021-01184-6.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

- 9. D. M. Taiti, "Project Implementation Process, Monitoring and Evaluation Practices and Performance of Hybrid Sweet Potato Projects in Kenya: a Case of Nakuru County.," PhD Thesis, University of Nairobi, 2020. Accessed: Sept. 29, 2025. [Online]. Available: https://erepository.uonbi.ac.ke/handle/11295/152989
- 10. KNBS, "2019 Kenya Population and Housing Census Volume II: Distribution of population by administrative units," Nairobi, Kenya. 2019.
- 11. P. M. Asiyo, It Is Possible: An African Woman's Reflections on a Life-Long Political Journey. Archway Publishing, 2022.
- 12. J. W. Maina, "Rainfall And Temperature Trends, Farming Patterns And Rainwater Harvesting Technologies In Kieni Sub-County," PhD Thesis, University of Nairobi, 2020. Accessed: Apr. 22, 2025. [Online]. Available: https://erepository.uonbi.ac.ke/handle/11295/154666
- 13. Nakuru-CIDP, "Nakuru City Board presents on the 2023 -2027 CIDP County Government of Nakuru." Accessed: Nov. 22, 2023. [Online]. Available: https://nakuru.go.ke/2023/01/27/nakuru-city-board-presents-on-the-2023-2027-cidp/
- 14. J. Mbugua and J. Kabira, "Potato Production in the Hot Tropical Areas of Africa: Progress Made in Breeding for Heat Tolerance," J. Agric. Sci., vol. 7, Aug. 2015, doi: 10.5539/jas.v7n9p220.
- 15. Samia Osman Yagoub, "Loamy Sand Soils an overview | ScienceDirect Topics." Accessed: Nov. 23, 2023. [Online]. Available: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/loamy-sand-soils
- 16. A. Rashid, R. Rasheed, N. A. Amirah, Y. Yusof, S. Khan, and A. A. Agha, "A Quantitative Perspective of Systematic Research: Easy and Step-by-Step Initial Guidelines.," Turk. Online J. Qual. Inq., vol. 12, no. 9, 2021, Accessed: May 31, 2024. [Online]. Available: https://www.researchgate.net/profile/Aamir-Rashid-
 - 2/publication/354735153_A_Quantitative_Perspective_of_Systematic_Research_Easy_and_Step-by-Step_Initial_Guidelines/links/614a2e60a595d06017e120fe/A-Quantitative-Perspective-of-Systematic-Research-Easy-and-Step-by-Step-Initial-Guidelines.pdf
- 17. M. Heshepe, "Determinants of farmers' participation in Irish potato production in Mokhotlong district, Lesotho," Master's Thesis, National University of Lesotho, 2024. Accessed: Apr. 22, 2025. [Online]. Available: https://repository.tml.nul.ls/handle/20.500.14155/2164
- 18. E. Slovin, "Slovin's formula for sampling technique. Retrieved July 21, 2021." 1960.
- 19. S. P. Adhikari, K. P. Timsina, Y. N. Ghimire, S. Gairhe, P. R. Brown, and R. Villano, "Analysis of technical efficiency and yield gap of potato farmers in Nepal," J. Nepal Agric. Res. Counc., pp. 47–60, 2023.
- 20. B. Chepkoech, "Socio-Demographic Characteristics and Potato Production Practices of Smallholder Potato Farmers in Molo Sub-County, Kenya," East Afr. Sch. J. Agric. Life Sci., vol. 5, no. 6, pp. 112–122, 2022.
- 21. Food, T. Tsegaye, J. Mohammed, M. Sileshi, · Degefu, and H. Abaynew, "Small-scale irrigation and its impact on technical efficiency and household income among smallholder potato farmers in Ethiopia," Discov. Food, vol. 5, Feb. 2025, doi: 10.1007/s44187-025-00321-w.
- 22. "Kamau EFFECT OF FARM INPUTS AND SMALLHOLDER FARMER CHARA.pdf." Accessed: May 18, 2024. [Online]. Available: http://repository.chuka.ac.ke/bitstream/handle/chuka/303/Kamau%20Pauline%20Nyokabi.pdf?sequenc e=1&isAllowed=y
- 23. L. Chilipa, C. Mukuma, L. Tembo, A. Chalwe, S. Bwembya, and C. Chama, "A survey on potato productivity, cultivation and management constraints in Mbala district of Northern Zambia," Open Agric., vol. 6, pp. 400–412, July 2021, doi: 10.1515/opag-2021-0020.
- 24. B. Bati, "Economic Efficiency of Potato Production by Smallholder Farmers in West Arsi Zone, Oromia Region Ethiopia," Am. J. Agric. For., vol. 12, pp. 325–339, Sept. 2024, doi: 10.11648/j.ajaf.20241205.12.
- 25. T. Tsegaye, J. Haji, M. Sileshi, S. Degefu, and H. Abaynew, "Small-scale irrigation and its impact on technical efficiency and household income among smallholder potato farmers in Ethiopia," Discov. Food, vol. 5, no. 1, p. 54, Feb. 2025, doi: 10.1007/s44187-025-00321-w.
- 26. M. Negera, Z. A. Dejen, D. Melaku, D. Tegegne, M. E. Adamseged, and A. Haileslassie, "Agricultural Productivity of Solar Pump and Water Harvesting Irrigation Technologies and Their Impacts on

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

- Smallholder Farmers' Income and Food Security: Evidence from Ethiopia," Sustainability, vol. 17, no. 4, p. 1486, 2025.
- 27. S. Degefu, M. Demelash, and T. Tsegae, "Determinants of smallholder wheat farmers' participation in cluster farming in Lemu-Bilbilo and Hetosa Districts of Arsi Zone, Ethiopia," Discov. Agric., vol. 2, no. 1, p. 93, Nov. 2024, doi: 10.1007/s44279-024-00111-5.
- 28. T. Gyeltshen, S. Poungchompu, and P. Ruangchoengchum, "Production management and resource use efficiency in organic potato cultivation in Bhutan: a scenario from an organic Gasa district.," 2023, Accessed: Mar. 26, 2025. [Online]. Available: http://issaasphil.org/wp-content/uploads/2023/06/4.-Gyeltshen-et-al.-2023-Organic-potato-cultivation-Bhutan-FINAL.pdf
- 29. K. C. Mengui, S. Oh, and S. H. Lee, "The Technical Efficiency of Smallholder Irish Potato Producers in Santa Subdivision, Cameroon," Agriculture, vol. 9, no. 12, Art. no. 12, Dec. 2019, doi: 10.3390/agriculture9120259.
- 30. M. Burhan, S. Engindeniz, and D. Güler, "Analysis of Factors Affecting Potato Growing ecisions of Farmers: The Case of Ödemiş District of İzmir Province," Selcuk J. Agric. Food Sci., vol. 36, no. 2, Art. no. 2, Aug. 2022.
- 31. P. N. Kamau, "Effect of Farm Inputs and Smallholder Farmer Characteristics on Irish Potato (Solanum Tuberosum L.) Production Technical Efficiency in Molo Sub County, Nakuru County, Kenya," PhD Thesis, Chuka University, 2019.
- 32. T. Kwambai et al., "Seed Quality and Variety Preferences Amongst Potato Farmers in North-Western Kenya: Lessons for the Adoption of New Varieties," Potato Res., vol. 67, pp. 185–208, June 2023, doi: 10.1007/s11540-023-09626-8.
- 33. E. Ngeno and F. Wamalwa, "ESTIMATION OF THE TECHNICAL EFFICIENCY OF SMALLHOLDER DAIRY FARMERS IN SOUTH AND WEST POKOT SUB-COUNTIES, KENYA 1*," vol. Vol. 10, pp. 60–75, May 2024, doi: 10.5281/zenodo.8214717.
- 34. G. Kihamba, F. Mlage, and L. Lupondo, "Determinants of Market Outlet Choices for Irish Potato Production among Smallholder Farmers in Mbeya District, Tanzania," Rural Plan. J., vol. 26, no. 2, pp. 68–84, 2024.
- 35. J. Belle, T. Mapingure, and S. T. Owolabi, "Factors Influencing Rural Women's Adoption of Climate Change Adaptation Strategies: Evidence from the Chivi District of Zimbabwe," Climate, vol. 12, no. 11, p. 191, 2024.
- 36. R. J. Taiy, C. Onyango, A. Nkurumwa, and K. Ngetich, "Socio-economic characteristics of smallholder potato farmers in Mauche Ward of Nakuru County, Kenya," Univers. J. Agric. Res., vol. 5, no. 5, pp. 257–266, 2017.
- 37. E. Mutea, S. Rist, and J. Jacobi, "Applying the theory of access to food security among smallholder family farmers around North-West Mount Kenya," Sustainability, vol. 12, no. 5, p. 1751, 2020.
- 38. B. Balana and M. A. Oyeyemi, "Agricultural credit constraints in smallholder farming in developing countries: Evidence from Nigeria," World Dev. Sustain., vol. 1, p. 100012, 2022.
- 39. B. M. Obeka, E. Wacker, H. Shauri, and W. T. De Vries, "Influence of Land Ownership Security on Land Use Changes in Mwatate Sub-County, Taita Taveta County, Kenya," Trop. Conserv. Sci., vol. 17, p. 19400829241247798, Jan. 2024, doi: 10.1177/19400829241247798.
- 40. J. J. Mbudzya, E. O. Gido, and G. Owuor, "Effect of land tenure security on agricultural productivity among small scale farmers in Kenya: a conditional mixed processes analysis," Cogent Food Agric., vol. 8, no. 1, p. 2139805, Dec. 2022, doi: 10.1080/23311932.2022.2139805.
- 41. O. Obi-Egbedi and D. M. Gulak, "Irish-Potato Farming in Plateau State, Nigeria: A Profitability Analysis," Covenant J. Bus. Soc. Sci., 2020, Accessed: Mar. 27, 2025. [Online]. Available: https://journals.covenantuniversity.edu.ng/index.php/cjbss/article/view/2154
- 42. R. R. Ngeiyo and J. A. Aseta, "THE EFFECT OF LAND OWNERSHIP DOCUMENTATION ON FARMING COMPETITIVENESS IN CHEPYUK WARD OF BUNGOMA COUNTY, KENYA," Eur. J. Soc. Sci. Stud., vol. 5, no. 5, 2020, Accessed: Mar. 27, 2025. [Online]. Available: https://oapub.org/soc/index.php/EJSSS/article/view/913
- 43. E. Atieno, F. Kilwinger, C. Almekinders, and P. Struik, "How Kenyan Potato Farmers Evaluate the Seed: Implications for the Promotion of Certified Seed Potato," Potato Res., vol. 66, pp. 1–19, Jan. 2023, doi: 10.1007/s11540-022-09602-8.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

- 44. M. P. Kananu, G. G. Kingori, D. K. Muriithi, and N. N. Ann, "Effects of crop diversification on food crop productivity among smallholder coffee farmers in Kirinyaga County, Kenya," J Int Nat Resour Ecol Manag, vol. 8, no. 3, pp. 125–136, 2023.
- 45. M. W. Ngure, S. O. Wandiga, D. O. Olago, and S. O. Oriaso, "Scaling up crop diversification among farming communities for food security under climate change: A case study of the Kenyan pelis programme," Afr. J. Food Agric. Nutr. Dev., vol. 20, no. 7, pp. 17025–17044, 2021.
- 46. N. A. Mengistu and R. H. Belda, "The role of livelihood diversification strategies in the total household income in Takusa Woreda, Amhara Region, Ethiopia," Cogent Soc. Sci., vol. 10, no. 1, p. 2306033, Dec. 2024, doi: 10.1080/23311886.2024.2306033.
- 47. Y. Abdulai and K. Matsui, "Contribution of Income Diversification Strategies to Smallholder Farmers' Livelihoods in the Upper East Region of Ghana", Accessed: Mar. 28, 2025. [Online]. Available: https://www.academia.edu/download/119344582/Contribution-of-Income.pdf
- 48. L. Kimathi, "Assessment of the Effects of Diversification of Livelihood Strategies on Agricultural Production and Household Income in Nyamira County, Kenya," PhD Thesis, University of Nairobi, 2022. Accessed: Mar. 28, 2025. [Online]. Available: https://erepository.uonbi.ac.ke/handle/11295/161676
- 49. M. J. Njeru, "Evaluation of soil fertility status and potato (Solanum Tuberosum L.) response to fertilizers in Central Kenya highland," PhD Thesis, University of Nairobi, 2022. Accessed: Apr. 01, 2025. [Online]. Available: https://erepository.uonbi.ac.ke/handle/11295/161829