ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

Design, Installation, and Efficacy of a Multi-Stage Filtration Rainwater Harvesting System for Non-Potable Water Security at Govt. P.G. College Agastyamuni, Uttarakhand.

*1Dr. N.C. Khanduri, 2Dr. Hariom Sharan Bahuguna

¹Department of Zoology, Govt. P.G. College Agastyamuni, Rudraprayag, Uttarakhand, India.

²Department of Botany, Govt. P.G. College Agastyamuni, Rudraprayag, Uttarakhand, India.

*Corresponding Author

DOI: https://dx.doi.org/10.51584/IJRIAS.2025.10100000114

Received: 30 October 2025; Accepted: 04 November 2025; Published: 12 November 2025

ABSTRACT

This study highlights the design, installation, and effectiveness of a comprehensive Rainwater Harvesting (RWH) system implemented at Govt. P.G. College Agastyamuni, situated in the water-scarce Rudraprayag district of Uttarakhand. The system collects and stores rainwater from the college's rooftop catchment area, utilizing a four-chamber sequential filtration process that ensures superior water quality. The filtered water is then stored in a 4000-liter tank (1000*4 tanks) and used for non-potable applications such as gardening, laundry, and sanitation. By adopting this innovative approach, the college reduces its dependence on municipal water supplies, conserves groundwater resources, and promotes sustainable water management practices. The project's success serves as a model for other educational institutions and communities in water-stressed regions, demonstrating the potential of RWH systems to enhance water security and mitigate the impacts of water scarcity.

The innovative design incorporates a **four-chamber sequential filtration process** for superior water quality:

- 1. **Screen Chamber:** The initial tank uses a screen for preliminary **water screening** and is connected via a black pipe to the next stage.
- 2. **Multigrade Filtration Chamber:** This chamber employs a bed of **pebbles and gravel** for effective coarse filtration.
- 3. Activated Carbon Chamber: The water then passes (via a green pipe) into a chamber containing activated carbon, which plays a critical role in filtration by adsorbing colors, odors, and other dissolved impurities from the collected water.
- 4. **Collection Tanks:** After this multi-stage filtration process, the filtered water passes via a final green pipe into the interconnected storage tanks.

Once filtration is accomplished, the collected water is ready for use. The tanks are equipped with a submersible pump for distribution. The system incorporates provisions for chemical dosing (as needed) and is designed to allow water to pass through a candle filter (post-dosing) as an added safety measure before distribution. The harvested water is effectively utilized for essential non-potable applications, including gardening, laundry washing, and washroom facilities, significantly reducing the college's dependence on municipal supplies. Monitoring results indicate that this multi-stage filtration RWH system is highly efficacious and serves as an excellent, replicable model for water security in educational institutions within water-stressed, hilly regions.

Keywords: RH-Rainwater Harvesting, WS-Water Security Sustainability, WC-Water Conservation, HR-Himalayan Region, WM-Water Management. RWH - Rainwater Harvesting

INTRODUCTION

Uttarakhand is considered to be the richest reservoir of water. Its rivers supply water to the entire country, but

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

the rainfall here has not been beneficial to the rivers themselves. Today, our dependence on groundwater is increasing, and the groundwater reservoir is under immense pressure, and water levels are rapidly declining. Nature provides us with water in the form of rainfall, and if we succeed in managing rainwater effectively and channeling it to groundwater reserves, we can significantly reduce the severity of the current groundwater crisis.

The Himalayan state of Uttarakhand announced a water policy on October 23, 2019, addressing water conservation. It aims to conserve traditional sources along with rainwater harvesting. Uttarakhand receives only 100 days of rainfall throughout the year, with an average rainfall of 1631 mm, which is wasted on the mountain slopes. Despite the state's irrigated land area of 3.38 lakh hectares (2009-10), representing 45 percent of the total agricultural land.

Rainwater harvesting can help achieve the state's goal of increasing grain production to 2.5 million tonnes by 2025. It is worth noting that approximately 2.6 lakh natural water sources in the state have dried up. 10 percent of the state's water supply comes from these sources. Of the 16,793 villages, 594 depend on natural sources for drinking water. Approximately 50 percent of urban areas face some form of water crisis. According to the Water Management Index 2018, there is a severe water shortage in rural areas.

Therefore, our collective efforts will help alleviate the water crisis and protect our natural resources (rivers and streams). If we want to save land, rainwater harvesting must be prioritized. Life exists only when there is water. Through this handbook, we would like to draw your attention to the fact that there are many prosperous countries in the world that have already realized the seriousness of the Earth's continuously declining water level. Rudraprayag district, located in the Central Himalayan belt of Uttarakhand, is situated at an altitude of approximately 800 to 3000 meters above sea level.

Although approximately 70 percent of the forests are located between 1000 and 2000 meters above sea level, these forests are highly vulnerable to various types of disasters, including forest fires and landslides.

Water is a vital and essential resource, an invaluable asset for the progress and sustainability of any nation and community. However, across various regions, the lack of a consistent potable water supply is a major concern. This is particularly true in areas like the Central Himalayan belt, much of which lies in an arid region, leading to chronic water shortages, especially during the summer months.

The consequences of this scarcity are acutely felt by institutions and communities. For instance, the A.P.B. Government Postgraduate College, the sole postgraduate college in its district near Rudraprayag on the Kedarnath route, faces a significant challenge in providing potable water for its large population of approx. 2,500 institutional and approx. 1,000 private students, faculty, and staff, as well as for daily needs like toilet and plant use.

To address this critical challenge, scientific water conservation and management has become essential, especially given the continuous increase in water demand due to population growth and development. One of the most effective solutions is Rainwater Harvesting (RWH), a process of collecting and storing rainwater to either use directly or allow it to recharge groundwater reserves. By capturing rainfall—an estimated 80 percent of water needs can be met through a rooftop RWH system—dependence on over-exploited groundwater is reduced, and local water security is enhanced.

In light of this, the college has embraced the "CATCH THE RAIN" program, a rainwater harvesting project under the Chief Minister's Innovation Scheme. By undertaking this initiative, the college aims not only to meet its own water needs but also to serve as a demonstration model to encourage the wider community to adopt this vital technology. Through this handbook, which details the technology and methods of RWH, the college hopes to raise awareness and empower the regional population to contribute to groundwater conservation and enhance their livelihoods, thereby achieving the goal of sustainable development. The college family is grateful to the Uttarakhand Government and the Director of Higher Education for their financial support in making this project possible.

The town of Agastyamuni, situated in the Rudraprayag district of Uttarakhand, is nestled within the fragile

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

and ecologically sensitive **Garhwal Himalayas**. This region's distinctive geographical setting—characterized by steep slopes, high elevation variations (ranging from approximately 800 to over 8,000 meters in the district), and a sensitive geological structure creates a unique hydrological paradox. Climatic data for the Rudraprayag region indicates a pattern of **high annual precipitation**, often exceeding **1,400 mm to 1,500 mm** per year. The vast majority of this rainfall is concentrated during the intense four-month **monsoon season** (June to September).

Despite the heavy monsoon rainfall, the hilly terrain of Agastyamuni faces chronic and severe **seasonal water scarcity**. This paradox is driven by several critical factors inherent to the mountain ecosystem:

- Rapid Runoff: The steep gradient of the slopes leads to rapid surface runoff, minimizing the time for rainwater to infiltrate the ground and effectively recharge aquifers. Most of the precipitation quickly flows down into the Mandakini and Alaknanda River systems.
- Geological Fragility: The geology is prone to landslides and erosion, which can disrupt natural water channels and cause the drying up of traditional water sources (springs/gad-gaderas), a key source for local communities.
- Seasonal Dependence: The heavy reliance on natural springs means that when these sources dwindle or dry up during the long, dry winter and pre-monsoon summer months, the water crisis deepens, often necessitating water supply through tankers.
- **Vulnerability of Infrastructure:** The extreme precipitation events (including cloudbursts, which are a recurring hazard in the Himalayas) and associated landslides pose a constant threat to existing water supply infrastructure.

In this vulnerable mountain context, the conventional approach of pumping water from distant, lower-lying rivers is costly, energy-intensive, and ecologically disruptive. Therefore, **Rainwater Harvesting (RWH)** emerges not merely as an alternative, but as an **essential strategy** for building water resilience.

RWH, specifically the collection of rooftop precipitation, directly addresses the local challenges:

- **Decentralization:** It creates a decentralized water source, reducing the burden on overstressed central water systems and fragile natural springs.
- Local Capture: It captures the abundant resource—monsoon rainfall—at the point of use (e.g., at P.G. College Agastyamuni) before it is lost as rapid runoff.
- Sustainability: It promotes a sustainable water cycle, providing a non-potable source for uses like gardening, washing, and sanitation, thereby conserving the precious and dwindling spring water for drinking.

The installation of a Rainwater Harvesting Tank unit at an institution like P.G. College Agastyamuni, is a vital step toward demonstrating a **replicable**, **resilient**, **and cost-effective solution** to water scarcity in the unique socio-geographical landscape of the Rudraprayag district.

ACKNOWLEDGEMENT

This project was supported by the Chief Minister's Innovation Scheme (CATCH THE RAIN), with crucial institutional backing and administrative approvals from the Minister of Higher Education, the Higher Education Director, and the Higher Administrative Body; we are particularly grateful to the Principal of Government Post Graduate College, Agastyamuni, for providing leadership and facilitating the implementation of the rainwater harvesting system. We also extend our heartfelt thanks to each and every member of the innovative committee for their valuable contributions.

Material and Methods

Based on the installation of a Rainwater Harvesting System for a tank on a rooftop, here are the Materials and Methods for the Planning, Feasibility, and Coordination and physical construction begins.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

Phase I: Feasibility, Coordination, and Final Planning

This phase details the steps for stakeholder engagement, technical planning, and project finalization.

Materials (Resources)

The materials in this phase are primarily **informational and organizational** resources.

1. Project Proposal Document:

- o Detailed drawings of the rooftop and site for collection and storage.
- o Preliminary volume calculations (collected volume of rain).
- o Outline of the required storage size.
- Estimated budget range for materials and labor.
- 2. Contact Database: List of relevant government, non-governmental, or private Rainwater Harvesting (RWH) agencies and local plumbing/construction contractors.
- 3. **Institutional Documents:** Permission forms, meeting minutes templates, and an official letterhead for communication with the institution head.
- 4. **Feasibility Analysis Tools:** Access to local rainfall data, current water consumption records, and template forms for **rate analysis** (cost per unit of material).

Methods (Steps)

The following steps align with your outlined plan for project initiation:

Stakeholder Identification and Initial Contact

Sub -Step	Description	Tools/Resources
Agency Identification	Identify and make a list of RWH-specialized agencies (e.g., local government water/utility board, recognized NGOs, or experienced contractors).	Contact Database, Social Media Searches (for reviews and completed projects).
Social Media Outreach	Initiate contact via social media platforms (or email/website forms) to gauge their interest, experience, and service area. Focus on their expertise in installing capacity RWH systems.	Project Proposal (initial draft), Agency Contact Database.

Institutional Consultation and Project Approval

Sub -Step	Description	Tools/Resources
Formal Call and Discussion	Schedule a formal meeting/call with the Institution Head (or authorized decision-maker). Present the project proposal, focusing on the water security and cost-saving benefits.	Project Proposal (detailed), Visual aids showing the tank capacity and roof area.
Design Finalization with Head	Discuss and finalize the general plan, including the location of the storage tank (underground/above-ground) and the path of the downpipes, ensuring minimal disruption to the existing structure.	Institutional Documents (Permission Forms).

Technical Analysis, Budgeting, and Scheduling

Sub-Step	Description	Tools/Resources
Feasibility and	Conduct a detailed analysis of the project's practicality:	Rate Analysis Tools,
Rate Analysis	determine the precise cost of materials (gutters, PVC pipes,	Quotes from Material

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

	filter media, tank), labor, and transportation. A cost per liter saved calculation is ideal.	Suppliers, Contractor Bids.
Site Finalization and Layout	The site team, with the Institution Head's approval, identifies the exact location for the tank, ensuring the ground can support the weight of metric tons of water. Mark the collection/conveyance layout.	Engineering Drawings, Site Survey Equipment.
Time Schedule Setting	Set a realistic timeline for the complete execution, from procurement (Phase II) to commissioning and monitoring (Phase IV). This should include buffer time for monsoon delays or material shortages.	Project Management Software or Gantt Chart.
Final Process Formalization	Finalize contracts with the chosen contractor/agency, establish clear milestones, and set up a monitoring protocol for the construction phase to ensure quality and adherence to the plan.	Formal Contracts, Monitoring Checklists.

Measurement/Identification of the area

The site selection and measurement process was conducted by a team comprising Junior Engineers and members of the Rain Water Harvesting Committee

After completing the site selection process, the construction of three chambers, namely sand filtration, marble granules filtration, and activated carbon filtration, was initiated

Situation Analysis

Lack of potable water supply to local communities is a major concern. Most of the Central Himalayan belt lies in the arid region, and therefore, water shortages are common during the summer. The A.P.B. Government

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

Postgraduate College, located approximately 17 km from Rudraprayag district on the Kedarnath route, is the district's only postgraduate college. It houses 2,500 institutional and 1,000 individual students. Providing potable water for the entire family, including the college's faculty, staff, and academic faculty, as well as for toilets and plant use, is a significant challenge.

The "CATCH THE RAIN" program, a rainwater harvesting project under the Chief Minister's Innovation Scheme, is a welcome opportunity. The college has established contact with an expert agency engaged in such work and is beginning preliminary work on a rainwater harvesting project to conserve water used in the daily activities of the students and the college.

We expect that the elite population/community of the region will adopt this method through their own efforts, which will certainly reduce the burden on groundwater and enhance livelihoods. The work our college has received under the Chief Minister's Innovation Scheme will help everyone become aware of this technology, allowing them to easily construct them, collect rainwater, and contribute to groundwater conservation. I am confident that this handbook will prove extremely useful to everyone.

The college family is grateful to the Uttarakhand Government and the Director of Higher Education for providing financial assistance under the Chief Minister's Innovation Scheme.

Water is a vital and essential resource. It is an invaluable asset for the progress of any nation. Western parts of Rajasthan receive up to 100 mm of rainfall, while Cherrapunji (in Meghalaya) receives 10,000 mm of rainfall. Scientific water conservation and management is essential to address the problems resulting from excessive groundwater exploitation. With the growth of population and the expansion of various development activities, the need for water is also continuously increasing. Therefore, conservation and management of water, which is available in limited quantities, is essential.

Conserving just 4.5 percent of the state's rainfall could meet all water needs. By creating a rooftop rainwater harvesting system, 80 percent of our water needs can be stored and used, which requires...

According to an estimate, approximately 1.4 billion people in the world lack access to safe drinking water. Nature has provided us with the precious life-giving treasure of water in the form of a cycle. Humans are an integral part of this water cycle. It is essential for this cycle to continue moving.

Therefore, we must return the water we have taken from nature's treasure. Because we cannot create water ourselves, it is our responsibility to conserve rainwater and protect natural water sources from pollution, and ensure that water is not wasted at any cost. We cannot sit idle regarding the water crisis; rather, it is essential to address it so that the goal of sustainable development can be achieved.

There are many scientific methods for water conservation and management, the most effective of which is rainwater harvesting, which means collecting and storing rainwater, then managing it properly and supplying it as needed. Due to continuous water exploitation, groundwater reserves have been depleted. The groundwater level is continuously declining. If this situation continues, the groundwater reserves will soon be depleted. Restoring water reserves is possible through rainwater harvesting.

What is Rainwater Harvesting?

Rainwater harvesting is a process of collecting rainwater, in which every drop of rain is stored on the surface of the land or underground for recharge. After collecting rainwater, the process of storing this water for use in production is called rainwater harvesting.

The denominator is. In the western parts of Rajasthan, Scientific Conservation and Management, The wastewater requirement can also be continuously met. Rooftop rainwater is needed for this purpose.

Why is rainwater harvesting necessary?

Today, the shortage of high-quality water has become a cause for concern. Although pure and good-quality

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

rainwater is quickly lost, if it is collected, the water crisis can be controlled. Methods of Rainwater Harvesting

- 1. Directly infiltrating rainwater from rooftops
- 2. Collecting rooftop water in a tank and using it directly 47 percent of rainwater ends up in rivers.

Only 2.07 percent of all water available on Earth is clean drinking water.

Rajendra Singh, known as the Water Man, was born in Baghpat district, Uttar Pradesh. He is a renowned environmental activist and known as the Water Man of India.

In Alwar (Rajasthan), due to deforestation and excessive use of borewells, and the abandonment of traditional water conservation techniques, the groundwater level had been depleted. Rajendra Singh improved the groundwater level by working on techniques to collect and conserve rainwater.

All of the above methods are site-specific. The selection of these methods and the construction of recharge structures are based on local hydrogeological conditions. The design of these methods/methods will depend on parameters such as the available monsoon rainwater, depth of the water table, aquifer geometry, aquifer thickness, granularity (coarse/medium/fine sand), etc. Site Selection/Standards for Rainwater Harvesting and Groundwater Recharge To adopt rainwater harvesting and groundwater recharge methods, select areas where the groundwater level is in a declining state.

Average in Uttarakhandooftop Rainwater Harvesting and Recharging Method Used in the College. Collecting and enriching rainwater from rooftops for groundwater recharge has been found to be the safest and most suitable. This is known as rooftop rainwater harvesting. Its key points are as follows:

- 1. A mesh should be installed at the rooftop drainage point to prevent leaves or other solid matter from entering the syntax/pit.
- 2. A collection chamber should be built on the surface to prevent fine particles from moving towards the drum/syntax.
- 3. An overflow system should be provided in each recharge pit in case of heavy rainfall.
- 4. To maintain the recharge rate, the upper sand layer should be cleaned periodically.
- 5. A separate Y-pass should be provided before the water collection chamber to allow the first rainwater to overflow.
- 6. Fluorination treatment is also provided to purify the water.
- 7. Marble particles will be added to the chamber to provide primary purification.

The Geographical and Climatic Context: Agastyamuni, Rudraprayag

The town of **Agastyamuni**, situated in the **Rudraprayag district** of Uttarakhand, is nestled within the fragile and ecologically sensitive **Garhwal Himalayas**. This region's distinctive geographical setting—characterized by steep slopes, high elevation variations (ranging from approximately 800 to over 8,000 meters in the district), and a sensitive geological structure—creates a unique hydrological paradox.

Climatic data for the Rudraprayag region indicates a pattern of **high annual precipitation**, often exceeding **1,400 mm to 1,500 mm** per year. The vast majority of this rainfall is concentrated during the intense four-month **monsoon season** (June to September).

The Paradox of Abundance and Scarcity in Hilly Areas

Despite the heavy monsoon rainfall, the hilly terrain of Agastyamuni faces chronic and severe **seasonal water scarcity**. This paradox is driven by several critical factors inherent to the mountain ecosystem:

- Rapid Runoff: The steep gradient of the slopes leads to rapid surface runoff, minimizing the time for rainwater to infiltrate the ground and effectively recharge aquifers. Most of the precipitation quickly flows down into the Mandakini and Alaknanda River systems.
- **Geological Fragility:** The geology is prone to landslides and erosion, which can disrupt natural water channels and cause the drying up of traditional water sources (springs/gad-gaderas), a key source for local

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

communities

- **Seasonal Dependence:** The heavy reliance on natural springs means that when these sources dwindle or dry up during the long, dry winter and pre-monsoon summer months, the water crisis deepens, often necessitating water supply through tankers.
- **Vulnerability of Infrastructure:** The extreme precipitation events (including cloudbursts, which are a recurring hazard in the Himalayas) and associated landslides pose a constant threat to existing water supply infrastructure.

The Imperative for Rainwater Harvesting (RWH)

In this vulnerable mountain context, the conventional approach of pumping water from distant, lower-lying rivers is costly, energy-intensive, and ecologically disruptive. Therefore, **Rainwater Harvesting (RWH)** emerges not merely as an alternative, but as an **essential strategy** for building water resilience.

RWH, specifically the collection of rooftop precipitation, directly addresses the local challenges:

- **Decentralization:** It creates a decentralized water source, reducing the burden on overstressed central water systems and fragile natural springs.
- Local Capture: It captures the abundant resource—monsoon rainfall—at the point of use (e.g., at P.G. College Agastyamuni) before it is lost as rapid runoff.
- Sustainability: It promotes a sustainable water cycle, providing a non-potable source for uses like gardening, washing, and sanitation, thereby conserving the precious and dwindling spring water for drinking.

The installation of a Rainwater Harvesting Tank unit at an institution like P.G. College Agastyamuni, is a vital step toward demonstrating a **replicable**, **resilient**, **and cost-effective solution** to water scarcity in the unique socio-geographical landscape of the Rudraprayag district.

Introduction of Rainwater Harvesting in the Context of Agastyamuni, Rudraprayag District, Uttarakhand

The Geographical and Climatic Context: Agastyamuni, Rudraprayag

The town of **Agastyamuni**, situated in the **Rudraprayag district** of Uttarakhand, is nestled within the fragile and ecologically sensitive **Garhwal Himalayas**. This region's distinctive geographical setting—characterized by steep slopes, high elevation variations (ranging from approximately 800 to over 8,000 meters in the district), and a sensitive geological structure—creates a unique hydrological paradox.

Climatic data for the Rudraprayag region indicates a pattern of **high annual precipitation**, often exceeding **1,400 mm to 1,500 mm** per year. The vast majority of this rainfall is concentrated during the intense four-month **monsoon season** (June to September).

The Paradox of Abundance and Scarcity in Hilly Areas

Despite the heavy monsoon rainfall, the hilly terrain of Agastyamuni faces chronic and severe **seasonal water scarcity**. This paradox is driven by several critical factors inherent to the mountain ecosystem:

- Rapid Runoff: The steep gradient of the slopes leads to rapid surface runoff, minimizing the time for rainwater to infiltrate the ground and effectively recharge aquifers. Most of the precipitation quickly flows down into the Mandakini and Alaknanda River systems.
- **Geological Fragility:** The geology is prone to landslides and erosion, which can disrupt natural water channels and cause the drying up of traditional water sources (springs/*gad-gaderas*), a key source for local communities.
- **Seasonal Dependence:** The heavy reliance on natural springs means that when these sources dwindle or dry up during the long, dry winter and pre-monsoon summer months, the water crisis deepens, often

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

necessitating water supply through tankers.

• **Vulnerability of Infrastructure:** The extreme precipitation events (including cloudbursts, which are a recurring hazard in the Himalayas) and associated landslides pose a constant threat to existing water supply infrastructure.

The Imperative for Rainwater Harvesting (RWH)

In this vulnerable mountain context, the conventional approach of pumping water from distant, lower-lying rivers is costly, energy-intensive, and ecologically disruptive. Therefore, **Rainwater Harvesting (RWH)** emerges not merely as an alternative, but as an **essential strategy** for building water resilience.

RWH, specifically the collection of rooftop precipitation, directly addresses the local challenges:

- **Decentralization:** It creates a decentralized water source, reducing the burden on overstressed central water systems and fragile natural springs.
- Local Capture: It captures the abundant resource—monsoon rainfall—at the point of use (e.g., at P.G. College Agastyamuni) before it is lost as rapid runoff.
- Sustainability: It promotes a sustainable water cycle, providing a non-potable source for uses like gardening, washing, and sanitation, thereby conserving the precious and dwindling spring water for drinking.

The installation of a Rainwater Harvesting Tank unit at an institution like P.G. College Agastyamuni, is a vital step toward demonstrating a **replicable**, **resilient**, **and cost-effective solution** to water scarcity in the unique socio-geographical landscape of the Rudraprayag district.

Result

Based on the completion of the installation as per the discussed targets, the primary result is the establishment of a fully functional, large-capacity Rainwater Harvesting (RWH) system capable of achieving significant water security.

Rainwater Harvesting Potential Calculation

The total annual water volume collectible from your rooftop area is calculated using the formula:

Volume (in m3) = Catchment Area (m2) × Annual Rainfall (m) × Runoff Coefficient (C)

Component	Value	Unit
P.G. Block Area	280	Square meter
Girls' Hostel Area	305	Square meter
Total Catchment Area (1+2)	585	Square meter
Approximate Annual Rainfall	1631	Millimetre
Annual Rainfall	1.631	
Runoff Coefficient (C)	90	%
Calculated Catchment Volume (Annual)	858.72	Cubic Meter
Calculated Catchment Volume (Annual)	858,720	Liters

Note on Volume Discrepancy: The volume provided (858.7215 cubic meters and 858721.5 Liters) matches the precise calculation below, confirming your data is accurate. 1cubic meter = 1000 Liters.

Calculation Steps

1. Convert Rainfall to Meters: R=1631mm -:-1.631m

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

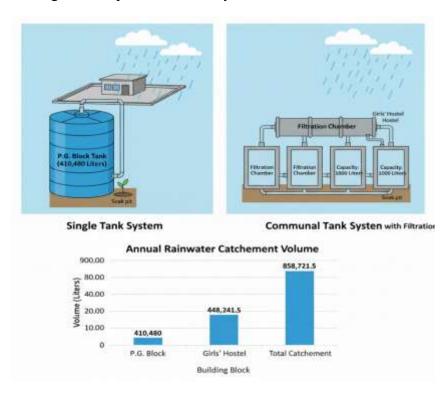
- 2. Calculate Total Catchment Area:
- 3. A (Total) = 280-meter square + 305-meter square
- 4. Calculate Total Collectible Volume:
- 5. Volume = 585 meter square *1.631 m*0.90
- 6. Volume = **858.7215 cubic meter
- 7. Convert Volume to Liters:
- 8. Volume in Liters = 858.7215 cubic meter*1000=**858,721.5 Liters **

Suitable Graph: Bar Chart Visualization

A **Bar Chart** is the most suitable graph type to visually represent the contribution of each building block to the total catchment area and the resulting water volume. Since the water volume is directly proportional to the area (when rainfall and runoff are constant), a bar chart comparing the two areas is highly effective.

Building Block	Area (Square Ft)	Annual Water Volume (Liters)
P.G. Block	280	410,480
Girls' Hostel	305	448,241.5
Total	585	858,721.5

(P.G. Block Volume: 280×1.631×0.90×1000≈410,480 Liters)

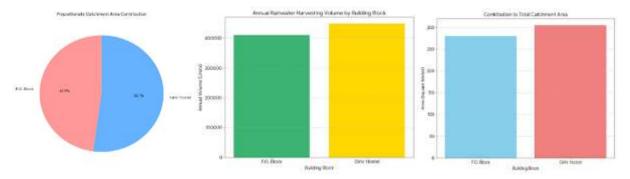

(Girls' Hostel Volume: 305×1.631×0.90×1000≈448,241.5 Liters)

Graph Visualization Suggestion

Adjacent bars for each building (P.G. Block and Girls' Hostel):

- 1. **Bar 1 (P.G. Block):** Height corresponds to 410,480 Liters.
- 2. Bar 2 (Girls' Hostel): Height corresponds to 448,241.5 Liters.

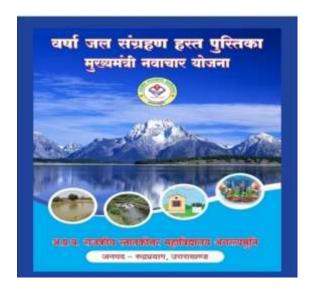
A third, taller bar could represent the **Total Annual Catchment Volume (858,721.5 Liters)**, providing context for the total potential water saving. This visually confirms that the two structures contribute almost equally to the huge annual potential of the system.


Expected Project Outcome and Results: The successful completion of the installation on rooftop with a storage tank will yield the following results:

Water Volume and Storage Achievement

- Secured Water Supply: The main result is the immediate availability of a water reserve. This volume is sufficient to meet the non-potable water needs (flushing, cleaning, gardening, etc.) of a typical family or institution for an extended dry period.
- Target Rainfall Efficacy: Given that only of rain is needed to fill the tank, and the expected August-September 2025 rainfall is around (based on IMD estimates), the system is highly likely to fill completely within the target monsoon season.
- Overflow Management: The installation will include a dedicated overflow mechanism, resulting in the safe and controlled diversion of approximately (or more) of surplus water (Volume Collected minus Tank Capacity) into the ground or a designated soak pit, contributing to groundwater recharge.

Operational System Functionality


- Clean Water Quality: The properly installed First-Flush Device and the Filtration Unit will result in the collection of water that is free of large debris and the initial pollutants from the roof, making it suitable for its intended non-potable use.
- **Structural Integrity:** The installed system will have secure and leak-proof **gutters and conveyance pipes**, ensuring maximum efficiency in directing all rainwater from the rooftop into the storage tank.
- **Monitoring Ready:** The system is prepared for long-term monitoring as per the finalization process, allowing the institution to **accurately track** water collection rates and usage.

Results of Planning and Coordination

The successful execution of the planning and coordination methods will yield the following organizational and financial results:

We have developed a handbook and manual on rainwater harvesting.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

DISCUSSION

This project outline, moving from social media engagement to technical execution and final monitoring, represents a well-structured approach to implementing a Rainwater Harvesting (RWH) system. The discussion should focus on the strategic soundness of this approach and the critical factors that will determine its success.

Discussion On The Project Strategy

The project's strategy is sound because it follows a logical progression from social and institutional buy-in to technical and financial diligence, concluding with a framework for long-term sustainability.

The Importance of Initial Coordination

The first two steps, involving outreach to a relevant agency and discussion with the Institution Head, are vital and strategically correct:

- Vetting Expertise (Step 1): Initiating contact via social media or formal channels allows the project team to vet the experience and reputation of potential RWH partners. For a system, specialized knowledge of structural load-bearing capacity, large-volume hydraulics, and filtration is critical. This approach ensures the project is not handed over to an unqualified general contractor.
- Institutional Alignment (Step 2): Securing the buy-in of the Institution Head or governing body is the most crucial step. It moves the project from a theoretical idea to an authorized institutional initiative. This discussion ensures:
 - o Resource Allocation: Formal budget and space are committed.
 - o Policy Integration: The collected water's use is integrated into the institution's existing water management and hygiene policies.
 - Durability: The location and design choices are approved, minimizing the risk of changes or conflicts during construction.

Technical and Financial Due Diligence

Steps 3 and 4 (rate analysis, feasibility, and site identification) represent the core planning that justifies the investment:

- Feasibility and Rate Analysis (Step 3): This is where the project's financial viability is confirmed. The analysis must look beyond the initial cost to calculate the Return on Investment (ROI). By knowing the collection potential (in the monsoon) and the cost per liter of material, the institution can quantify the savings achieved by avoiding municipal water or tanker purchases. A high ROI justifies the project to stakeholders.
- Site and Time Scheduling (Step 4):
 - Site: For a tank, the structural safety is paramount (the water alone weighs about 40 metric tons). The identified location must be engineered to bear this load and be optimally placed to minimize piping runs from the roof.
 - o Timeline: Setting a clear schedule is vital, particularly for monsoon projects. All construction (especially excavation and tank work) must be completed before the heaviest rains, otherwise, the site will flood, leading to costly delays and compromised structural integrity.

Sustainability through Monitoring

The final step of "finalizing the all process with proper monitoring" ensures the project's long-term success, which is often overlooked in RWH projects.

- Efficiency Verification: Monitoring confirms that the system is performing as designed (i.e., collecting of rain fills the tank). Monitoring can include tracking the amount of water extracted and the frequency of tank refills.
- Maintenance Assurance: The monitoring schedule establishes a routine for maintenance tasks (e.g., cleaning the first-flush device and filters). This is the single most important factor for sustained water quality

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

and system lifespan. Without a formal monitoring and maintenance plan, the filters will clog, water quality will degrade, and the investment will be wasted within a few years.

In conclusion, the outlined methodology establishes a strong foundation by prioritizing stakeholder consensus, financial accountability, and operational sustainability, ensuring the successful collection and storage of the target of water.

REFERENCE

The references below include academic papers, government reports, and books that cover traditional and modern RWH systems, case studies, and policy in these regions.

- 1. Rainwater harvesting potential database of india (1.0), authors/publisher: ojasvi, p. R., patil, n.g., shrimali, s.s., et al., icar-indian institute of soil and water conservation (iiswc), dehradun, uttarakhand. Content: a comprehensive gis-based database and report analyzing the rwh potential across various states in india, including estimates for water protective irrigation and groundwater recharge. (iiswc is located in dehradun, uttarakhand, making this reference relevant to both regions).
- 2. Jal shakti abhiyan: catch the rain (jsa: ctr) campaign documents, source: ministry of jal shakti, government of india (press information bureau releases and official campaign documents). Content: official reports detailing the nation-wide campaign on water conservation and rwh with the theme "catch the rain where it falls when it falls." it covers the scope, number of structures created, and associated schemes like atal bhujal yojana and amrut.
- 3. Model building bye laws (mbbl), 2016; source: ministry of housing & urban affairs, government of india. Content: guidelines for states/uts that mandate the inclusion of rainwater harvesting structures for all buildings with a plot size of 100 sq. M. Or more. This forms the basis for urban rwh policy in much of india.
- 4. Rainwater harvesting and artificial recharge structures i, author/source: dr. Deepak khare, department of water resources development and management, indian institute of technology roorkee (iit roorkee). Content: training webinar/material on the potential, design, and various methods of rwh and artificial recharge structures suitable for both urban and rural environments in india.
- 5. Traditional systems & documentation (chal, khal, naula, dhara);traditional water management: practices of uttarakhand, author: manikant shah.publisher: pentagon press. Content: exhaustive documentation of the diversity of traditional hydraulic structures (like naula, dhara, gul, chal, and khal) in uttarakhand, their technology, and their relevance to solving the contemporary water crisis.
- 6. Saving traditional water harvesting systems in uttarakhand; source: researchgate/down to earth (article/paper). Content: discusses the importance and cultural significance of traditional systems like naula (stone-lined aquifer tanks) and dhara (springs) which remain primary drinking water sources, especially in the kumaon region, and the need for their maintenance.
- 7. Cultural significance and conservation challenges of traditional water harvesting systems of uttarakhand himalaya: a critical review; author: harish chandra joshi, et al. (academic paper). Content: a review focusing on the traditional systems like naulas, dharas, khals, and guhls in uttarakhand (and other himalayan states), examining their traditional, cultural, and architectural importance for water security.
- 8. Benefits being derived by roof water harvesting structures in khetikhan, champawat, uttarakhand- a case study; authors/source: dinesh prasad raturi & pushpendra tripathi, baif development research foundation (academic paper). Content: a specific case study on the implementation and benefits of rooftop rainwater harvesting tanks in the champawat district of uttarakhand, particularly for irrigation and domestic use in hill villages.
- 9. A study on uttarakhand's water conservation policies; author: shipra gupta (academic paper). Content: an analysis of the state's policies concerning water conservation, which often integrate modern rwh and the revival of indigenous systems to mitigate the impact of climate change, deforestation, and rising water needs in the himalayan region.
- 10. Indigenous water conservation technology of sumari village, uttaranchal; authors: r. Kala & c. Kala (academic paper). Content: focuses on the indigenous rwh technology developed and practiced by the community in sumari village, pauri district, uttarakhand (former uttaranchal), highlighting local solutions to water scarcity.