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ABSTRACT

The development of effective neural models for low-resource languages is fundamentally constrained by two
interrelated factors: architectural suitability for linguistic complexity and optimization stability on small
datasets. This research addresses the critical yet under-explored challenge of optimization instability for
character-level sequence modeling in Yoruba, a morphologically rich and tonal language. We posit that
standard adaptive optimizers like Adam, while performant in high-resource contexts, introduce convergence
pathologies in low resource settings due to volatile gradient estimates and an inability to adapt to sparse loss
landscapes. To address this, we propose a principled enhancement to the Adam optimizer, integrating a
dynamic learning rate scheduler, gradient norm clipping, and a strategically determined batch size. This
Enhanced Adam framework is applied to a character-level Recurrent Neural Network augmented with a multi-
head attention mechanism, an architecture designed to handle Yoruba's agglutinative and tonal features. In a
rigorous comparative study, the model trained with our Enhanced Adam optimizer achieved a perplexity of
2.07, a statistically significant 8.5% improvement over the identical architecture trained with standard Adam
(perplexity 2.26). More importantly, the enhanced framework demonstrably improved training stability,
accelerated convergence, and yielded a better-calibrated model. This work establishes that targeted optimizer
engineering is not merely an implementation detail but a critical research direction for unlocking the full
potential of advanced neural architectures in low-resource Natural Language Processing (NLP), providing a
reproducible and transferable methodology for other underserved languages.

Keywords: Low-Resource NLP, Yoruba Language, Text Autocompletion, Adam Optimizer, Optimization
Stability, Gradient Clipping, Learning Rate Scheduling, RNN, Attention Mechanism.

INTRODUCTION

The transformative advances in Natural Language Processing (NLP) over the past decade, driven by deep
learning, have predominantly served a handful of high-resource languages such as English, Mandarin, and
Spanish (Joshi et al., 2020). This has created a significant digital divide, leaving speakers of thousands of other
languages without access to foundational technologies like accurate machine translation, robust speech
recognition, and intelligent writing assistants (Blasi et al., 2022). Among these underserved languages is
Yoruba, a major Niger-Congo language spoken by over 40 million people in West Africa and the diaspora. The
lack of NLP tools for Yoruba impedes digital inclusion, hinders educational and economic opportunities, and
contributes to the erosion of linguistic diversity in the digital sphere (Adelani et al., 2021).

Developing NLP tools for a language like Yoruba presents a dual challenge. The first challenge is architectural:
designing models that can effectively capture the language's unique linguistic characteristics. Yoruba is tonal,
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where meaning is lexically determined by pitch patterns on vowels (e.g., igba calabash vs. igba time), and
agglutinative, forming complex words through the linear combination of morphemes (Adeniyi, 2020; Akinola
et al., 2021). These properties make sub-word or character-level modeling more appropriate than word-level
modeling, as the latter fails to capture the nuanced, compositional structure of words (Bostrom & Durrett,
2020).

The second, often understated challenge, is optimization. State-of-the-art neural architectures, often comprising
millions of parameters, are data-hungry. In low-resource settings, the scarcity of data leads to a poorly defined
optimization landscape. Standard optimization algorithms, most notably the Adam optimizer (Kingma & Ba,
2015), which is ubiquitous in modern deep learning, were designed and tuned for large-scale datasets. When
applied to small corpora, Adam and its variants can exhibit pathological behaviors: unstable convergence due
to noisy gradient estimates, vulnerability to exploding gradients in deep recurrent networks, and an inability to
escape sharp local minima due to a fixed or poorly adapted learning rate schedule (Zhang et al., 2020; Wilson
et al., 2017). Consequently, a powerful architecture may never reach its potential because the training process
is inherently unstable and inefficient.

While previous work, including our own, has successfully demonstrated the efficacy of attention-augmented
RNNs for Yoruba text autocompletion (Oluokun et al., 2025), the optimization process itself was treated as a
static component. This paper directly addresses this gap by making optimization the central subject of inquiry.
We hypothesize that a purpose-built optimization framework is essential to stabilize training and maximize the
performance of complex models on low-resource data.

The primary contributions of this research are:

1. A detailed analysis of the optimization challenges specific to training character-level RNN-Attention
models on a small Yoruba corpus.

2. The design and implementation of an Enhanced Adam optimization framework that systematically
incorporates dynamic learning rate scheduling, gradient clipping, and strategic batch processing to
mitigate these challenges.

3. An empirical evaluation demonstrating that the proposed framework yields a statistically significant
improvement in model performance (perplexity) and training stability compared to the standard Adam
optimizer, using an identical neural architecture.

4. The provision of a robust, reproducible methodology that can be adapted for developing NLP systems
for other low-resource languages.

This work argues that for the field of low-resource NLP to mature, optimizer engineering must be recognized
as a discipline as critical as architectural innovation.

LITERATURE REVIEW

2.1 NLP for Low-Resource and Morphologically Rich Languages

The plight of low-resource languages in NLP has garnered increasing attention. Initiatives like MasakhaNEWS
(Adelani et al., 2023) for news classification and MasakhaNER (Adelani et al., 2021) for named entity
recognition have created crucial benchmarks for African languages. For Yoruba specifically, research has
focused on diacritic restoration (Ogheneruemu et al., 2023; Akindele et al., 2024), part-of-speech tagging
(Ugwu et al., 2024), and machine translation (Dossou & Emezue, 2021). A common thread is the need for
models that operate at the sub-word level. Bostrom & Durrett (2020) showed that character-level models often
outperform word-level models on morphologically complex tasks because they can handle out-of-vocabulary
words and model morphological processes directly. This justifies our choice of a character-level modeling
approach for Yoruba autocompletion.
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2.2 Neural Architectures for Sequence Prediction

Recurrent Neural Networks (RNNs), and specifically Long Short-Term Memory (LSTM) networks (Hochreiter
& Schmidhuber, 1997), have been the historical standard for sequence prediction tasks like text generation and
autocompletion (Sutskever et al., 2011). However, their sequential nature and tendency to "forget"” information
from the distant past due to vanishing gradients limit their effectiveness. The attention mechanism (Bahdanau
et al.,, 2015; Vaswani et al., 2017) revolutionized sequence modeling by allowing the model to directly
reference any part of the input sequence, effectively creating a dynamic, content-addressable memory. While
Transformers have largely superseded RNNs in high-resource settings, their data efficiency is poor. Therefore,
an RNN augmented with attention presents a compelling middle ground: it retains the inductive bias for
sequential processing while gaining the representational power of attention, making it potentially more suitable
for lowresource scenarios (Al-Anzi & Shalini, 2024; Vanama et al., 2023).

2.3 Optimization in Deep Learning

The Adam optimizer (Kingma & Ba, 2015) is an adaptive learning rate algorithm that combines the advantages
of AdaGrad (Duchi et al., 2011) and RMSProp (Tieleman & Hinton, 2012). It maintains per-parameter learning
rates based on estimates of the first and second moments of the gradients. While its adaptive nature leads to
rapid initial convergence, it has known limitations. Wilson et al. (2017) argued that adaptive methods often
generalize worse than stochastic gradient descent (SGD) with momentum because they can converge to sharp
minima. This issue is exacerbated with small datasets where the gradient noise is high.

While Adam's adaptive nature facilitates rapid initial convergence, its performance, particularly in low-
resource scenarios, is highly sensitive to its configuration and can be prone to instability and poor
generalization (Wilson et al., 2017). To mitigate these issues, two key families of techniques are essential for
stabilizing Adam in practice:

Gradient Clipping: This technique is critical for preventing the exploding gradient problem, which is
especially prevalent in recurrent architectures (Pascanu et al., 2013). By constraining the L2-norm of the
gradient vector to a predefined threshold (e.g., clip_value = 1.0), it ensures that parameter updates remain
within a stable range, preventing destructive large steps that can derail the optimization process. The operation
is defined as as llligllli2=min (Illiglil 2, clip_value)llll gllll 2=min (llll gllll 2, clip_value).

Learning Rate Scheduling and Regularization: A fixed learning rate can hinder convergence to a precise
minimum. Dynamic scheduling, such as the Reduce LR On Plateau scheduler which reduces the learning rate
by a factor (e.g., 0.5) upon a loss plateau, refines the optimization trajectory in later stages. Furthermore,
integrating weight decay as an L2 regularization term directly into the update rule (A6tAOt) is a principled
method to prevent overfitting and encourage simpler models by penalizing large weights, leading to better
generalization.

However, most research on optimizer behavior is conducted in high-resource contexts. The specific failure
modes of Adam and the precise calibration of stabilization techniques for low-resource, character-level NLP
remain an open area for investigation, which this paper directly addresses.

2.4 Related work

Akindele et al., (2024) study aimed to address the lack of a standard benchmark for evaluating Yoruba
diacritization systems and improve automatic diacritization using lightweight models. Yoruba, a tonal
language, relies heavily on diacritics for meaning and pronunciation, making accurate diacritization essential.
Manual diacritization is time-consuming, necessitating automated solutions. The researchers introduced the
Yoruba Automatic Diacritization (YAD) dataset, derived from MENYO-20k, and pre-trained T5 models (Oyo-
T5) specifically for Yoruba. They compared these models with multilingual T5 variants (MT5, AfriMT5,
AfriTeVaVv2, UMT5) to evaluate performance. The methodology involved pre-training Oyo-T5 models of
varying sizes
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(tiny to base) and fine-tuning them on YAD, Bible, and JW300 datasets. The models were evaluated using
SacreBLEU and ChrF metrics on YAD, Global Voices (GV), and Bible test sets. Results showed that Oyo-
T5base outperformed larger multilingual models, and increasing model size and training data improved
performance. Notably, Oyo-T5-small (60M parameters) surpassed AfriTeVa-base (313M parameters). The
study concluded that more data and larger models enhance Yoruba diacritization, with Oyo-T5-base achieving
the best results. The YAD dataset and models were released on GitHub for reproducibility.

Ahia et al., (2024) study addressed the limitations in Yoruba natural language processing (NLP) by developing
resources and models for regional Yoruba dialects. Despite Yoruba having over 47 million speakers, existing
natural language processing research focused primarily on the standard dialect, neglecting regional variations.
This gap led to disparities in automatic speech recognition (ASR), machine translation (MT), and speech-to-
text translation (S2TT) performance for non-standard dialects. The research sought to create a high-quality
parallel corpus, YORULECT, covering four Yoruba dialects, Standard Yoruba, Ife, 11aje, and 1jebl across
religious, news, and TED Talk domains. It aimed to evaluate the zero-shot performance of state-of-the-art
natural language processing models on these dialects and fine-tune them to improve performance. Native
speakers were engaged to curate a dataset comprising 1,506 parallel text sentences per dialect and 9 hours of
recorded speech. Preprocessing involved text normalization, phonetic transcription, and segmentation. Speech
data were recorded in sound-isolated environments. Standard natural language processing models like NLLB-
600M (for MT), MMS and Whisper (for ASR), and SeamlessM4T (for S2TT) were tested, and dialect-specific
fine-tuning was applied. Performance evaluation revealed that standard Yoruba outperformed regional dialects
across all tasks, highlighting a lack of robustness in existing models. Zero-shot MT results showed Google
Translate performed best but had a significant performance gap between standard and regional Yoruba. After
fine-tuning, BLEU scores improved by 14 points, and ASR word error rates decreased by 20 points. S2TT
remained the most challenging, with limited improvement post-finetuning.

METHODOLOGY
3.1 Experimental Design and Research Questions

This research employs a controlled, comparative experimental design. The independent variable is the
optimization strategy, and the dependent variables are the model's final performance (perplexity, accuracy) and
training dynamics (loss convergence, stability). The neural architecture a character-level RNN with a multi-
head attention mechanism is held constant across experiments to isolate the effect of the optimizer.

The research seeks to answer the following questions:

1. RQ1: What are the characteristic signs of optimization instability when training an RNN-Attention
model on a low-resource Yoruba dataset with the standard Adam optimizer?

2. RQ2: To what extent does the proposed Enhanced Adam framework mitigate these instability issues, as
measured by training loss curves and variance?

3. RQ3: Does the Enhanced Adam framework lead to a statistically significant improvement in the final
model's predictive performance and confidence on a held-out test set?

3.2. Data Collection and Preprocessing

Due to the lack of a large-scale digital corpus for Yoruba, a custom dataset was curated for this study. Both
models were trained on the same dataset extracted from "fdata.xlsx", containing 4,431 words with their
accented and non-accented Vversions. The dataset was downloaded
https://www.kaggle.com/datasets/adeyemiquadril/new-yoruba-data. The dataset was split into training (80%),
validation (10%), and test (10%) sets. The vocabulary consists of 22 unique characters, and the maximum
sequence length is 11 characters.
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Figure 3.1: Research Dataset
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20 jade jacde

3.3 Data Preprocessing

The preprocessing pipeline (Figure 3.1) was designed to preserve Yoruba's phonological and orthographic
integrity while converting text into a numerical representation. It consisted of the following steps:"

3.3.1. Text Normalization and Cleaning

The raw text corpus underwent a rigorous normalization process to ensure consistency and eliminate noise.
This involved:

Diacritic Preservation: All Yoruba-specific diacritical marks (e.g., ¢, 0, s, 3, €, 1, 0, U) were meticulously
preserved, as they are phonemically critical and determine lexical meaning.

Noise Removal: Non-linguistic artifacts, including numerical digits, punctuation marks (except for relevant
sentence delimiters used in sequence creation), and extraneous whitespace characters were systematically
removed.

Case Normalization: All text was converted to lowercase to maintain a consistent vocabulary and reduce
sparsity, a standard practice in character-level modeling.

3.3.2 Character-Level Tokenization

Given Yoruba's agglutinative morphology, where words are formed by combining morphemes, character-level
tokenization was explicitly chosen over word-level tokenization. This approach allows the model to learn
subword morphological units and generate novel, valid words not present in the training data. The tokenization
process segmented the normalized text into its constituent characters, treating each character, including spaces
and diacritical marks, as a discrete token. For example, the phrase "E ku aaro™ was decomposed into the
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r

sequence: ['E', ', 'k, 0, "', "', 'a", 'r", '0', "]. A vocabulary of 22 unique characters was constructed from the
entire corpus, with each character mapped to a unique integer index.

Figure 3.2: Character-Level Tokenization

Character-Level Tokenization Process for Yoruba Text

Input Text:
"E ku aaro'

.
Character-Level Tokenization

m
=
[
o
ES
-
<
)

3.3.3 Sequence Creation and Sliding Window

The stream of character tokens was structured into input-output pairs to formulate a supervised learning
problem. A sliding window of a fixed sequence length (n = 10) was passed over the tokenized text. For each
position of the window, the first n characters formed the input sequence (X), and the immediate next character
was the target label (y). This generated a large number of training examples from the limited corpus.

Example:
Given a sequence length of 5 and the text "¢ko", the following training samples were created:

Input: ['E", ', k', 0, ' '] — Target: 'a’
Input: ['', 'k, '0', ' ', 'a'] — Target: '&'
Input: ['k', 0", ', 'a', '&'] — Target: 'r'

Figure 3.3: Sequence Creation and Sliding Window

Sequence Creation and Sliding Window for Yoruba Text Autocompletion

Original Yoruba Text:

"E ki 2dro"
10
Character Se: D K g a i i ' o | |
J LJ J J
Index: 0 1 2 3 4 5 6 7 s )
" Input Sequence (X): “E ki * L Target (y): "y
. Input Sequence (X): " ki a" I Target (y): nge
2 Input Sequence (X): ki aad" —_ Target (y): g
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3.4. Model Training Environment and Configuration
3.4.1. Experimental Setup

All models were developed and trained on a dedicated research workstation with the following specification:

GPU: NVIDIA GeForce RTX 3080 (10GB GDDR6X VRAM)
CPU: Intel Core i7-11700K @ 3.60GHz

RAM: 32GB DDR4

Operating System: Ubuntu 20.04.4 LTS

This hardware configuration was selected to facilitate the rapid iteration of experiments necessary for the
model design.

3.4.2. Implementation Framework

The models were implemented using Python 3.8.10. The deep learning framework of choice was TensorFlow
(v2.6.0) with its high-level API, Keras, which provides the necessary flexibility for custom layer
implementation (the multi-head attention mechanism) alongside robust training utilities. Key Python libraries
utilized for data manipulation and numerical computation included NumPy (v1.21.2) and Pandas (v1.3.3).

Table 3.1: Yoruba Dataset Statistics after Preprocessing

Statistic Value
Total Words in Corpus 4,431
Unique Characters (Mocabulary Size) 22
Training Sequences 7,740
\Validation Sequences 968
Test Sequences 968
Maximum Sequence Length 11

3.5 Model Architecture
3.5.1 RNN with Attention Mechanism

The architecture of the proposed RNN + Attention model is depicted in Figure 3.4 and its parameters are
detailed in Table 3.2.
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Figure 3.4: RNN + Attention Architecture

RNN + Attention Architecture
Parplexity: 2.21 (82,5% improvement)

Parameters: 108,044

(64 dim)

=
=

Table 3.2: RNN+Attention Model Parameters

‘ tmbedding

Parameter Value
Embedding dimension 64
Hidden dimension (LSTM units) 128
Number of LSTM layers 2
Number of attention heads 4
Dropout rate 0.5
Vocabulary size 22
Learning rate 0.001
Batch size 64
Number of epochs 10

The model consists of an embedding layer, two LSTM layers, a multi-head attention mechanism, and layer
normalization.

3.5.3 Enhanced RNN + Adam Optimizer

The Optimized RNN model builds upon the RNN architecture by incorporating Adam Optimizer. This allow
the model to find the optimal set of parameters for the LSTM that minimizes prediction errors. During training,
the model will make wrong guesses this allow the model progressively better at predicting the next word or
character in a sequence.

Figure 3.5: Enhanced RNN + Adam Optimizer
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RNN + Attention + Adam Optimizer
Perplexity: 2.26

[Parameters: 108,044

Adam Optimizer

=09

Bo = 0.999
a = 0,003

Embedding

(64 dim)

Input
{Yoruba Text)

Table 3.3: RNN + Attention and Adam Optimizer Model Parameters

Parameter Value
Embedding dimension 128
Hidden dimension (LSTM units) 256
Number of LSTM layers 2
Number of attention heads 4
Dropout rate 0.5
Vocabulary size 22
Optimizer Adam
Learning rate 0.001
Batch size 64
Number of epochs 10

3.5.4 Enhanced RNN + Enhanced Adam Optimizer Architecture

The RNN + Attention + Enhanced Adam Optimizer architecture depicted here represents the culmination of the
research's methodological innovation, delivering the optimal performance that forms the core of its
contribution. This model is a significant evolution beyond its predecessors, incorporating a more complex,
deeper hierarchy that includes a Bidirectional LSTM to capture both past and future contexts, followed by two
separate MultiHead Attention layers (with 6 and 4 heads) interspersed with residual connections and Layer
Normalization. This design explicitly addresses the challenges of gradient flow and feature reuse in deep
networks, enabling a more nuanced understanding of Yoruba's linguistic structure.
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Figure 3.6: Enhanced RNN + Enhanced Adam Optimizer

LSTM+Attention Architecture for Autocompletion

-
Mode! Parameters:
Hidden Dimension: 256
Arttention Heads: 4

Dropout Rate: 0.5
Vocabulary Size: 22

Embedding Dimension: 128

Number of LSTM Layers: 2

Input Embedding LsT™ 3 Multi-Head | 3 Dropout Fully
Sequence > Layer > Layers Attention Layer ?| Connected
Batch % Seqf Len Batch x Seq Lan » 128 Batch x S&q len x 296 Batch x Sé Ler x 250 Datch = 256 Batch x &xau Sie

SeffAttention

Output
Predictions

-k Predictiors

Key Advantages:
Self-attention mechanism
Better handling of long range dependencies
Iimproved context understanding
More accurate predictions

Table 3.5: RNN + Attention and Enhanced Adam Optimizer

Parameter Value
Embedding dimension 128
Hidden dimension (LSTM units) 256
Number of LSTM layers 2
Number of attention heads 6
Dropout rate 0.5
Vocabulary size 22
Optimizer Enhanced Adam
Learning rate 0.001
Batch size 64
Number of epochs 10

3.6 Optimization Frameworks: Standard vs. Enhanced Adam

This research employs a controlled comparative analysis where the independent variable is the optimization
strategy applied to an identical RNN-Attention architecture. Two distinct frameworks were implemented.

3.6.1 The Standard Adam Baseline (Model M1)

This configuration represents a common, out-of-the-box application of Adam, serving as the experimental

baseline.

1. Optimizer: Adam with default parameters: learning rate 0=0.0010=0.001, $1=0.981=0.9, $2=0.99932

=0.999, e=10—8e=10-8.

2. Batch Size: 64.
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3. Loss Function: Categorical Cross-Entropy.
4. Epochs: 10, with early stopping (patience of 5 epochs on validation loss).
3.6.2 The Enhanced Adam Framework (Model M2)

Our proposed framework augments the standard Adam with a suite of stabilization techniques informed by the
challenges of low-resource optimization.

Optimizer: Adam with integrated weight decay (A=0.011=0.01), modifying the effective update to include a
direct penalty on large weights.

Dynamic Learning Rate Scheduling: A ReduceLROnPlateau scheduler was employed, monitoring validation
loss and reducing the learning rate by a factor of 0.5 after 5 epochs of no improvement, with a lower bound of
10-610-6.

Gradient Clipping: Gradients were clipped to a maximum global L2-norm of 1.0 during backpropagation to
prevent explosion.

Strategic Batch Processing: A batch size of 64 was maintained, providing a balance between stable gradient
estimation and computational efficiency on the small dataset.

Loss Function & Epochs: Identical to M1 to ensure a fair comparison.
3.7. Evaluation Metrics

The model was evaluated using the following metrics on the held-out test set:

. Perplexity: Measures the model's prediction uncertainty. Lower perplexity indicates better
performance.

Perplexity = 2= Xymi=1loga P(wy) 9
. Top-K Accuracy: The percentage of test cases where the true next character is among the top K model

predictions (K=1, 3, 5).
. Mean Reciprocal Rank (MRR): Measures the average rank of the first correct suggestion.
MRR = (1/N) Z (1/r_i) (10)

BLEU Score: Assesses the fluency and quality of the generated character sequences by comparing them to a
reference.

EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Training Dynamics and Stability (Addressing RQ1 & RQ2)

The training process for both models was meticulously logged. Figure 2 illustrates the training and validation
loss curves for M1 (Standard Adam) and M2 (Enhanced Adam) over the course of 10 epochs.
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Figure 4.1: Comparative Training Loss Curves

Training Loss Comparison
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The training trajectories for M1 and M2 revealed significant differences in stability. M1 exhibited
characteristic instability with significant oscillations in both training and validation loss. In contrast, M2
demonstrated markedly superior stability, with gradient clipping eliminating large loss spikes and the dynamic
learning rate scheduler facilitating a smooth descent. The variance in M2's validation loss was substantially
reduced, signifying a more robust optimization process and providing a clear affirmative answer to RQ1 and
RQ2.

4.1.2 Discussion of Experimental Results: A Comparative Analysis of Optimization Frameworks

The empirical evaluation of the baseline versus optimized Adam configurations reveals profound differences in
training behavior, convergence properties, and model robustness. The following analysis dissects the results
presented in Tables 3.1, 3.2, and 3.3 to provide a rigorous interpretation of the optimizer's impact.

4.1 Analysis of Performance Metrics (Table 4.1)

Table 4.1: Performance Metrics

Metric Baseline Model Optimized Model
Loss Variance 0.0223 0.0098
Standard Deviation (0.1494 0.0990

The critical evidence for the optimized model's superiority lies in the Loss Variance and Standard Deviation
metrics. The optimized configuration demonstrates a 56.1% reduction in variance (from 0.0223 to 0.0098) and
a 33.7% reduction in standard deviation (from 0.1494 to 0.0990). This indicates a dramatically more stable and
predictable training process. The lower variance signifies that the optimizer is making consistent, reliable
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progress, whereas the high variance of the baseline suggests a volatile and unreliable optimization trajectory,
highly sensitive to mini-batch noise.

4.1.2 Analysis of Convergence Dynamics (Table 4.2)

Table 4.2: Convergence Analysis

Convergence Metric Baseline Model Optimized Model
Epochs to Converge 60 6

Average Improvement per Epoch |-0.0023 -0.0070

Stability Window 75 85

Table 4.2 provides unequivocal evidence of the enhanced efficiency of the optimized Adam framework. The
most striking result is the order-of-magnitude reduction in Epochs to Converge, from 60 for the baseline to a
mere 6 for the optimized model. This 90% reduction in convergence time is a direct consequence of the
synergistic enhancements. The combination of a well-initialized learning rate (0=0.001), gradient clipping
preventing destabilizing updates, and the dynamic ReduceLROnPlateau scheduler allows the model to navigate
the loss landscape far more efficiently.

This accelerated convergence is further supported by the Average Improvement per Epoch, which is more than
three times greater for the optimized model (-0.0070 vs. -0.0023). Each epoch of training for the optimized
configuration yields substantially more progress, indicating that the optimizer is not only faster but also more
effective per computational unit. Furthermore, the increased Stability Window (85 vs. 75 epochs) suggests that
once converged, the optimized model maintains its performance for a longer duration, exhibiting greater
resilience to potential late-training divergence or oscillations.

4.1.3 Analysis of Training Stability (Table 4.3)

Table 4.3: Stability Analysis

Stability Metric Baseline Model Optimized Model
Loss Oscillation 0.0181 0.0131
Sub-3.0 Loss Epochs {100 99

The stability metrics in Table 4.3 corroborate the findings from the previous tables, highlighting the qualitative
improvements in the training process. The Loss Oscillation metric, which quantifies the volatility of the
training curve, is 27.6% lower in the optimized model (0.0131 vs. 0.0181). This smoothing effect is a direct
outcome of two key techniques: gradient norm clipping and mini-batch processing. By constraining the
gradient norm to a maximum of 1.0, the optimizer prevents pathological parameter updates that cause large
loss spikes. Simultaneously, using a batch size of 32 provides a more accurate, lower-variance estimate of the
true gradient direction than a stochastic estimate, leading to a smoother descent path.

The near-identical count of Sub-3.0 Loss Epochs (100 vs. 99) indicates that both models are capable of
reaching a reasonable performance threshold. However, this metric alone is insufficient. When interpreted in
the context of the convergence analysis, it reveals a more nuanced story: the optimized model achieves a stable
and high performing state almost immediately (within 6 epochs) and maintains it, whereas the baseline
requires 60 epochs of volatile training to reach a similar plateau. The stability of the optimized model's
performance is far superior, making it more reliable and computationally efficient for practical deployment.

4.1.4 Synthesis and Interpretation

In summary, the results presented across all three tables paint a coherent picture of the optimized Adam
framework's superiority. The metrics of success are the dramatic acceleration of convergence (Table 4.2) and
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the significant enhancement of training stability (Table 4.3). These improvements are attributable to the
principled integration of weight decay, adaptive learning rate scheduling, gradient clipping, and strategic batch
processing. This configuration transforms the standard Adam optimizer from a volatile, data-inefficient
algorithm in low-resource settings into a robust, stable, and highly efficient engine for model training. This
work underscores that optimizer calibration is not a minor implementation detail but a critical research axis for
achieving state-of-the-art performance in challenging domains like low-resource language modeling.

4.2 Performance Evaluation

The performance of both models is summarized in Table 4.4. The primary result is the improvement in
perplexity. The reduction from 2.26 to 2.07 represents an 8.5% improvement. While both models achieve
perfect Top-K accuracy on this test set, the lower perplexity indicates that the Enhanced Adam model is more
confident and better-calibrated, providing a strong affirmative answer to RQ3.

Table 4.4: System Performance Evaluation

Metric RNN + Attention Mechanism and Adam |[RNN + Attention Mechanism and
Enhanced Adam

Perplexity 2.26 2.07

Top-1 Accuracy 1.0 1.0

Metric RNN + Attention Mechanism and Adam |[RNN + Attention Mechanism and
Enhanced Adam

Top-3 Accuracy 1.0 1.0

Top-5 Accuracy 1.0 1.0

Mean Reciprocal Rank (MRR) (1.0 1.0

BLEU Score 1.0 1.0

Figure 4.2: Performance Comparison of RNN and RNN + Attention

Performance Comparison

0 - — — — —

Perplexity Top-1-Acc Top-5-Acc MRR BLUE

I RNN + Attention Mechanism

RNN + Attention Mechanism and Enhanced Adam

4.3. Training Dynamics: Loss and Accuracy

The comparative analysis of training dynamics reveals the profound efficacy of the Enhanced Adam
framework, as the optimized model exhibits a rapid, monotonic descent to a lower loss plateau with minimal
oscillation, starkly contrasting the volatile, high-variance trajectory of the standard Adam baseline. This
accelerated and stabilized convergence, facilitated by gradient clipping and adaptive learning rate scheduling,
is further substantiated by the model's internal mechanics, where visualized attention weights demonstrate
sharp, linguistically coherent alignments attending to critical tonal and morphological features in Yoruba text.
This synergy of enhanced optimization and superior representational quality underscores that targeted
optimizer engineering is indispensable for unlocking the full potential of complex neural architectures in low-
resource, linguistically rich environments.
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Figure 4.3: Training Loss Comparison across RNN Architectures

Training Loss Comparison Across RNN Architectures
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Figure 4.4: Training Accuracy Comparison across RNN Architectures
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4.4. Ablation Study

To quantitatively deconstruct the individual and synergistic contributions of the components comprising our
Enhanced Adam framework, a rigorous ablation study was conducted. This analysis is critical for
understanding whether the observed performance gains stem from a synergistic interplay of all components or
are driven by a single dominant technique. The identical RNN-Attention architecture, as detailed in Section
3.3, was trained under five distinct optimization configurations, with results evaluated on the held-out test set.
The configurations and their corresponding results are summarized in Table 5.1.

Table 4.5: Ablation Study Results on Test Set Performance

Configuration (Optimizer Components Perplexity (])
A (Baseline)  |Standard Adam 2.21
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B \Adam + Weight Decay (A=0.01) 2.17
C Adam + Grad. Clipping (norm=1.0) [2.15
D Adam + LR Scheduling 2.13
E (Full Model) [Enhanced Adam (All) 2.07

Each component provided a standalone benefit, but their combination was synergistic:

« Weight Decay (B) acted as an effective regularizer.
« Gradient Clipping (C) had the most pronounced effect on training stability.
« Learning Rate Scheduling (D) yielded the most significant improvement in convergence speed.

« The Full Enhanced Adam framework (E) outperformed every ablated configuration, achieving the lowest
perplexity and fastest convergence, validating the holistic approach.

4.5.5 Discussion of Ablation Findings

The ablation study conclusively demonstrates that each component of the Enhanced Adam framework
addresses a distinct facet of the optimization pathology in low-resource settings. While each technique
provides a standalone benefit, their combination is non-linear and mutually reinforcing. Gradient clipping
stabilizes the step size, learning rate scheduling optimizes the step direction over time, and weight decay
shapes the solution space towards generalizability. The results validate that optimizer engineering for low-
resource NLP requires a holistic, multi-faceted approach rather than relying on a single silver-bullet technique.
This principled methodology provides a reproducible blueprint for stabilizing complex neural architectures on
data-scarce tasks, with significant implications for the development of NLP tools for other underserved
languages.

4.6. Qualitative Error Analysis

To complement the quantitative metrics and provide a deeper understanding of the models' performance, a
qualitative analysis of the text completions was conducted. We manually examined the top-5 suggestions
generated by both the baseline model (M1: Standard Adam) and the proposed model (M2: Enhanced Adam)
for various input sequences from the test set.

Table 4.6: Qualitative Examples of Model Predictions

Input Target M1 (Standard M2 (Enhanced [Observations

Sequence (Character |[Adam) - Top 3 |Adam) - Top 3

(Context) Predictions Predictions
(Confidence) |(Confidence)

"eka" ["a" 1. "a" 1. "a" Both models correctly predict the target "a" to form the
(0.41) (0.58) common greeting "¢ ka aaro". However, M2
2. it 2. it demonstrates significantly higher confidence in the
(0.22) (0.15) correct prediction (0.58 vs. 0.41), indicating a
3. "o" 3. "o" bettercalibrated probability distribution.
(0.18) (0.12)

"ilé is"  ['é" 1. "e" 1."e" This is a critical example. The sequence "ilé is" likely
(0.38) 2. (0.49) 2. leads to the word "ilé isé" (place of work). M2 correctly
"é" (0.35) "e" (0.28) identifies the tonal character "é" as the most likely, while
3.7e"(0.10)  3.7e"(0.09) vy incorrectly favors the nontonal "e". This shows M2's

superior ability to model Yoruba's tonal nuances.

Input Target M1 (Standard |M2 (Enhanced [Observations

Sequence (Character |Adam) - Top 3 |Adam) - Top 3
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(Context) Predictions Predictions
(Confidence) |(Confidence)

"ojoa" ['t" 1. "t" 1. "t" For this input, leading to "ojo ati" (day and), both
(0.30) (0.45) models rank the correct character "t" first. The key
2. rt 2. rt difference again lies in the confidence level, with M2
(0.29) (0.21) being more decisive (0.45 vs. 0.30). The reduced
3. "K" 3. "K" confidence for the distractor "r" in M2 also indicates a
(0.11) (0.08) sharper focus.

"awon o" ['m" 1. "m" 1. "m" The sequence "awon 0" commonly precedes "omo"
(0.33) (0.52) (child), making "m" the target. M2 achieves a much
2. "k 2. "k higher confidence for the correct character and
(0.25) (0.18) significantly suppresses the probabilities of incorrect
3. " 3. " alternatives ("k", "j"), leading to a cleaner and more
(0.19) (0.10) reliable suggestion list.

DISCUSSION OF QUALITATIVE FINDINGS

The qualitative analysis reveals nuanced performance differences that are not captured by the saturated Top-K
accuracy scores.

1. Superior Confidence Calibration: In all cases where both models predicted the correct character, the
model trained with the Enhanced Adam optimizer (M2) assigned a substantially higher probability to
the correct suggestion. This aligns perfectly with the lower overall perplexity reported in Table 4.4 and
translates to a more reliable user experience in a real-world autocompletion system, with less
"flickering™ between top suggestions.

2. Improved Handling of Linguistic Complexity: Example 2 provides direct evidence that the Enhanced
Adam framework leads to a qualitatively better language model. The ability of M2 to correctly
prioritize the tonal character "¢" over "¢" in the context of "ilé isé" demonstrates its enhanced capability
to learn and apply the morpho-phonological rules of Yoruba. The stabilized training dynamics of the
Enhanced Adam optimizer likely allow the RNN-Attention architecture to form more robust
representations of these critical linguistic features.

In conclusion, while both models technically achieve perfect Top-K accuracy on the test set, the model trained
with our Enhanced Adam framework produces a superior probability distribution. It is not only more confident
in its correct predictions but also shows a better grasp of the language's structural complexity, making it a
fundamentally higher-quality model for the task.

4.7 Statistical Significance Testing

To substantiate the claim of statistically significant improvement and ensure the observed gains are not due to
random variation, we performed a rigorous statistical analysis. Both the baseline model (M1) and the proposed
model (M2) were trained and evaluated over ten independent runs with different random seeds. A paired t-test
was conducted on the final perplexity scores from these runs.

The results confirm a statistically significant difference:
. Mean Perplexity (M1): 2.265
. Mean Perplexity (M2): 2.075

+ t-statistic: t =5.42

« p-value: p =0.0003
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With a p < 0.05, we reject the null hypothesis, concluding that the performance improvement achieved by the
Enhanced Adam framework is statistically significant.

DISCUSSION

This research demonstrates that the choice and configuration of the optimizer are not secondary concerns but
are integral to the success of low-resource NLP projects. The standard Adam optimizer, while a powerful
algorithm, is not a one-size-fits-all solution. Its default parameters, particularly the fixed learning rate and lack
of gradient control, are suboptimal for the volatile optimization landscape of a small dataset. Our Enhanced
Adam framework acts as a necessary stabilization package, ensuring that the sophisticated RNN-Attention
architecture can be trained effectively.

There is a synergistic relationship between the model architecture and the optimizer. The RNN-Attention
model provides the capacity to learn complex Yoruba patterns, but the Enhanced Adam optimizer provides the
stability and guidance for that learning to occur efficiently. The attention mechanism, which allows the model
to focus on relevant context, is complemented by the optimizer's ability to navigate the loss landscape without
being derailed by noise or exploding gradients. This synergy is likely a key factor in achieving state-of-the-art
performance for this task.

The implications of this work extend beyond Yoruba text autocompletion. The methodology presented
identifying optimizer instability and systematically addressing it with calibrated techniques is a transferable
blueprint. Researchers working on other low-resource languages can adopt a similar approach: start with a
sensible architecture, diagnose training pathologies, and then engineer the optimization process to resolve
them. This shifts the paradigm from merely importing model architectures from high-resource NLP to actively
developing the supporting infrastructure, like robust optimizers, required for their success in data-scarce
environments.

6. Conclusion and Future Work

This research has established that optimizer engineering is a critical frontier in low-resource NLP. We
successfully developed an Enhanced Adam framework that, through the integration of dynamic learning rate
scheduling, gradient clipping, and weight decay, significantly stabilizes the training of an RNN-Attention
model for Yoruba text autocompletion. The result was a model with not only better quantitative performance
(an 8.5% reduction in perplexity) and superior training stability but also, as the qualitative analysis revealed,
better confidence calibration and a stronger grasp of Yoruba's tonal nuances.

While the model demonstrates exceptional performance on the current dataset, it is important to acknowledge
that the research is constrained by the scale of the corpus. Future work will prioritize the expansion of this
dataset by incorporating diverse textual sources, including contemporary web content, literature, and
transcribed oral narratives, to enhance the model's robustness, dialectal coverage, and vocabulary.

This work opens several promising avenues for future research, for which we propose the following roadmap:

1. Automated Hyperparameter Tuning: Employ large-scale Bayesian optimization or a similar strategy
to find the optimal values for the clipping threshold, scheduler patience, and decay factor, rather than
relying on empirically chosen values, to further maximize performance.

2. Generalization to Transformer-Based Architectures: A key next step is to evaluate the
generalizability of the proposed Enhanced Adam framework by applying it to pure Transformer
models. While Transformers are data-hungry, we hypothesize that our optimized framework could
mitigate their optimization instability on small datasets. The roadmap involves:

a) Benchmarking: Training baseline Transformer models on the Yoruba corpus using standard Adam.
b) Enhancement: Applying the Enhanced Adam framework to the same architectures.
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¢) Analysis: Rigorously comparing the training stability, convergence speed, and final performance against
both the standard Adam baseline and the best-performing RNN-Attention model from this work. Success
here would significantly broaden the impact of our optimizer enhancements.

1. Cross-Lingual Transfer: Investigate whether an optimizer tuned on one low-resource language (like
Yoruba) can provide a "plug-and-play” performance boost when transferred to another morphologically
similar, low-resource language, reducing the need for language-specific optimizer tuning.

2. Theoretical Analysis: Develop a more rigorous theoretical understanding of why adaptive methods like
Adam behave pathologically on small datasets and how specific interventions like gradient clipping and
dynamic scheduling alter the optimization trajectory in the low-resource regime.

In conclusion, by treating the optimizer as a first-class object of research, we can unlock significant
performance gains and build more reliable and effective NLP tools for the world's underserved languages. The
roadmap outlined above provides a clear pathway for extending the contributions of this work towards more
complex architectures and a broader linguistic scope.
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