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ABSTRACT 

The constitutive model for the Maxwell fluid is mostly used in the polymeric industry to model the flow of 

viscoelastic fluids. Since 2005, fluids properties have been enhanced by the emergence of nanofluids and 

hybrid nanofluids. Studies on Maxwell hybrid nanofluid have been carried out under different conditions, but 

the effects of both thermal radiation and ohmic heating on the hydromagnetic Maxwell hybrid nanofluid flow 

has not been investigated. Motivated by this, this study probes into the role that thermal radiation and ohmic 

heating plays on a 2-D incompressible hydromagnetic flow of Maxwell hybrid nanofluid; a suspension of both  

Alumina/Copper  nanoparticles in a Maxwell fluid. The model of the is formulated then transformed into a 

non-dimensional system using similarity variables. The shooting technique is employed to convert the 

dimensionless equations to their equivalent initial value problem; which is then solved using MATLAB bvp4c 

solver. Parametric analysis shows: Grashof number (1→7) increases velocity 35%, decreases temperature 

28%; magnetic parameter (1→7) raises temperature 60%, reduces velocity 71%; nanoparticle fraction 

(1%→4%) elevates temperature 22%, lowers velocity 18%; radiation parameter enhances heat transfer 31%; 

Weissenberg number reduces boundary layer 42%. 

INTRODUCTION 

Background of the study 

Fluids are classified into Newtonian and non-Newtonian categories based on their viscosity behavior under 

shear stress. Maxwell fluid, a viscoelastic non-Newtonian model proposed by James Clerk Maxwell in 1867, 

finds extensive applications in polymeric industries for manufacturing coatings, hydrogels, batteries, and drug 

delivery systems. Understanding Maxwell fluid behavior is crucial for optimizing polymerization processes in 

terms of energy efficiency and cost reduction. 

To enhance the thermal and electrical properties of conventional fluids, nanotechnology introduced the concept 

of adding nanoparticles (1-100 nm) to base fluids. Hybrid nanofluids, formed by dispersing two different 

nanoparticle types, demonstrate superior thermophysical properties compared to mono-nanofluids and 

conventional fluids (Ahmed et al., 2024; Raghu et al., 2024). These enhanced fluids are applied in 

transformers, electronics cooling systems, biomedical applications, and polymeric industries due to their 

exceptional thermal conductivity, electrical conductivity, and mass transfer performance. 

This study focuses on Al₂O₃-Cu/water Maxwell hybrid nanofluid, a combination recognized for its thermal 

stability, excellent conductivity, and corrosion resistance (Zainal et al., 2022; Jaafar et al., 2022). Recent 

investigations have demonstrated that Cu-Al₂O₃ hybrid nanofluids exhibit 12-20% enhanced heat transfer rates 

compared to mono-nanofluids (Shamshuddin et al., 2023), making them ideal candidates for advanced thermal 

management applications. 

When an electrically conducting fluid flows through a magnetic field, the resulting hydromagnetic (MHD) 

behavior significantly influences flow characteristics and heat transfer mechanisms. Govindarajulu and 

Subramanyam Reddy (2022) investigated MHD pulsatile flow of third-grade hybrid nanofluids, demonstrating 

that magnetic field intensity critically affects temperature distribution and velocity profiles. This study 

examines two-dimensional, incompressible MHD flow of Maxwell hybrid nanofluid over a linearly moving 
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surface, incorporating the combined effects of thermal radiation and Ohmic heating—two phenomena rarely 

analyzed simultaneously in Maxwell hybrid nanofluid systems. 

Thermal radiation, governed by the Stefan-Boltzmann law, plays a critical role in high-temperature 

environments where conventional heat transfer modes become less effective. In fluid mechanics applications 

such as aerospace thermal shields, nuclear reactors, and industrial heat exchangers, radiative heat transfer 

significantly impacts system performance (Jayaprakash et al., 2024). Algehyne et al. (2024) demonstrated that 

thermal radiation enhances temperature distribution in Casson hybrid nanofluids by up to 18% under MHD 

conditions with Ohmic heating effects. 

Ohmic heating, arising from electrical resistance in conducting fluids subjected to magnetic fields, generates 

internal heat that influences thermal behavior. Samuel and Olajuwon (2022) analyzed Ohmic heating effects in 

chemically reactive Maxwell fluids, revealing that the Brinkman number significantly affects temperature 

profiles and heat transfer rates. Recent studies by Ahmed et al. (2024) on non-linear radiative Maxwell 

nanofluids further confirm that Ohmic heating combined with thermal radiation creates synergistic effects that 

enhance thermal performance in industrial applications. 

The novelty of this research lies in investigating the simultaneous effects of thermal radiation and Ohmic 

heating on Maxwell hybrid nanofluid (Al₂O₃-Cu/water) flow in an MHD environment—a combination with 

significant implications for advanced thermal management in manufacturing processes, energy systems, and 

materials processing industries. By examining these coupled phenomena, this study aims to provide insights 

for optimizing heat transfer in industrial applications requiring precise thermal control under electromagnetic 

conditions. 

Statement of the Problem 

Investigation into the role of thermal radiation on the flow of hybrid Maxwell nanofluid over rotating surfaces, 

as well as shrinking and stretching surfaces, has garnered significant attention in recent research. However, 

there has been limited focus on understanding the impact of ohmic heating over a surface that linearly stretches 

in a magnetic hybrid Maxwell nanofluid context. To address this gap, the proposed work aims to explore the 

influence of thermal radiation and ohmic heating on hydromagnetic Maxwell hybrid nanofluid flow. The base 

fluid is the molten polyethylene, with alumina and copper nanoparticles chosen as nanoparticles. This study 

seeks to provide a clearer understanding of the interactions between heat transfer, fluid flow, and magnetic 

fields in such systems, offering insights valuable for various industrial applications and theoretical 

advancements in fluid dynamics. 

Justification of the Study 

Maxwell fluid is a very useful viscoelastic model in the polymeric industry. On its own, its conductivity is 

poor but when nanoparticles are added, the conductivity and other fluid properties are enhanced significantly. 

The use of alumina-copper nanoparticle combination has proven to be very effective in the hybridization 

process due to its stability, magnificent conductivities and resistance to corrosion. As a result, this study uses 

Maxwell as a base fluid and alumina-copper combination as the nanoparticles. Quite a number of researchers 

have studied Maxwell hybrid nanofluid but, so far, no researcher has delved into the effects of both thermal 

radiation and ohmic heating on the hydromagnetic Maxwell hybrid nanofluid yet. Therefore, this proposed 

study will probe into the effect of thermal radiation and ohmic heating on a hydromagnetic alumina/copper-

Maxwell hybrid nanofluid over a surface stretching at a linear pace. 

Objectives 

General Objective 

This study is aimed at mathematically analysing the effects of thermal radiation and ohmic heating on the 
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hydromagnetic Al2O3/Cu-Maxwell hybrid nanofluid flow over a linearly stretching surface. 

sssSpecific Objectives 

The specific objectives of this study are to; 

1. Formulate the mathematical equations for the fluid flow in the presence of thermal radiation and ohmic 

heating on hydromagnetic hybrid Maxwell nanofluid flow. 

2. Transform the equations to its non-dimensional form using appropriate similarity variables from existing 

literature. 

3. Investigate the effects of volume fraction, Eckert number, magnetic field, radiation and other pertinent 

parameters on the flow velocity and temperature. 

Significance of the Study 

The need for increased energy transmission at a minimal cost is a necessity in industries. Maxwell model is 

widely used in industries and making its heat transmission efficient is pivotal in polymerization. The aim of 

this study is to theoretically investigate the impacts that thermal radiation and ohmic heating have on the 

conductivity of the Maxwell hybrid nanofluid. The results of the study will provide useful information to 

polymeric industries on how various parameters such as radiation and magnetic parameters should be adjusted 

during the polymerization processes for maximum efficiency in energy transmission. The importance of this 

study is multifaceted and far-reaching. By advancing our understanding of energy transmission efficiency in 

industrial processes, it promises to deliver tangible benefists fsssssssssssor industries, the environment, 

scientific knowledge, and education. As such, it represents a significant contribution to both academic research 

and practical applications, with the potential to reshape industrial practices and foster a more sustainable 

future. 

LITERATURE REVIEW 

Introduction 

In this section, already existing literature are discussed in the first section and the gap found is highlighted in 

the second section. 

Existing Literature 

Nanotechnology is a fast growing, heat and mass transfer enhancement field that was spearheaded by Maxwell 

(1873). In an attempt to improve a variety of fluid features, Maxwell (1873) added solid particles in a base 

fluid which were millimetre in size. This upgraded the base-fluid features but had a couple of flaws that were 

later eliminated when Choi and Eastman (1995) proposed the use of nanoparticles instead. The proposed 

nanoparticles greatly refined the base-fluid properties, but, with the increasing demand for highly efficient 

gadgets especially electronics, the demand for a better heat transfer enhancer grew. 

Suresh et al. (2011) proposed hybrid nanofluids, which, through the past decade’s research, have proven to be 

superior in every way to the nanofluids. Hady et al. (2012) studied the impacts of radiation on a hybrid 

nanofluid over a sheet that is stretching at a non-linear pace. From the study, a surge in the radiation and the 

non-linear parameters heightened the heat rate performance. Using boundary layer analysis launched by 

Sakiadis (1961) and Homotopy Based Approach, Farooq et al. (2019) uncovered that, for a hydromagnetic 

Maxwell fluid carrying nanomaterials, increasing the Hartman and Deborah numbers boosts the flow velocity 

but depreciates the heat transfer performance. Rajesh et al. (2020) worked on convective MHD flow over a 

stretching sheet where the results showcased the superiority of hybrid nanofluids over the nanofluid.  

Mutuku (2016) concurs with already existing literature on the enhancement of fluid heat transfer in the 
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presence of nanoparticles. In their study, the use of CuO nanoparticle is found to have the most cooling effect 

compared to alumina and titanium oxide in Ethylene glycol.  In their study, Ali et al. (2021) confirms that the 

addition of two-oxide nanoparticles boosts the flow temperature better than when non-oxide nanoparticles are 

used. Zainal et al. (2022) hails this combination for its stability. Further, Jaafar et al. (2022) points out that 

Alumina / Copper is not only stable, but also a good conductor and is corrosion resistant. Jaafar et al. (2022) 

agrees with Ali et al. (2021) and also points out that the use of Al2O3 / Cu nanoparticle combination is most 

common since their conductivity is high and the corrosion drawback is eliminated. A duality of solutions is 

recorded by Jaafar et al. (2022) where one is steady and the other result is unsteady. In the analysis of the role 

of thermal radiation on a rotating magnetic hybrid nanofluid, Asghar et al. (2022) reports similar solutions to 

Jaafar et al. (2022) but rebrands the outcomes as either stable or unstable. Further, a growth in the temperature 

distribution is recorded when the Eckert number and the radiation parameter surge. The study conducted by 

Zainal et al. (2022) on role of radiation on Maxwell hybrid nanofluid in a region of stagnation records similar 

results as obtained by Asghar et al. (2022).  

Khan et al. (2023) explores the impact of adding nanoparticles to grease by modelling the fluid behaviour 

using the Maxwell model. The use Maxwell base fluid here showcases the expansive applications of this 

model in industries since majority of the fluids commonly used display viscoelasticity. Great enhancement in 

heat transmission is observed with the addition of the nanoparticles in this study. Aside from the major 

advancement in the heating and  cooling of machinery, this research boasts of friction reduction and 

approximately 3% mass transfer reduction as a result of the presence of nanoparticles. Wang et al. (2023) uses 

the Buongiorno model to further investigate the movement of nanoparticles in the Maxwell fluid under the 

influence of temperature gradient and Brownian motion. In the study, the interaction of thermal radiation, 

electromagnetic waves and chemical reactions are explored. The impacts of radiation and the occurring 

reactions on the flow velocity and temperature are highlighted. This study’s results are found to be consistent 

with those observed by Khan et al. (2023) . Vijay & Sharma (2023) further considered the stagnation effects , 

heat and mass transmission on the Maxwell nanofluid. The model is solved using finite element method and 

the resulting solution informs us of similar findings to what Wang et al. (2023) and Khan et al. (2023) already 

got.  

Comparative Analysis of Maxwell Hybrid Nanofluid Studies 

Radiation Effects: Methodological Approaches 

Studies on thermal radiation in hybrid nanofluids have employed diverse numerical techniques with varying 

degrees of complexity. Hady et al. (2012) investigated radiation effects on hybrid nanofluid flow over a 

nonlinearly stretching sheet, revealing that increased radiation parameters enhance heat transfer rates. Their 

work established baseline understanding but was limited to Newtonian fluid assumptions. 

The incorporation of non-Newtonian rheology marked a significant advancement. Farooq et al. (2019) 

employed the Homotopy Analysis Method (HAM) to study hydromagnetic Maxwell nanofluids, demonstrating 

that increasing Hartmann and Deborah numbers accelerates flow velocity while paradoxically reducing heat 

transfer efficiency. In contrast, Zainal et al. (2022) utilized similarity transformations coupled with the Runge-

Kutta-Fehlberg method to analyze Maxwell hybrid nanofluids in stagnation regions, reporting enhanced 

temperature distributions with radiation—a finding that appears contradictory to Farooq et al. (2019). This 

discrepancy suggests that flow geometry and boundary conditions critically influence the radiation-heat 

transfer relationship. 

Asghar et al. (2022) extended these investigations to rotating magnetic hybrid nanofluids using boundary layer 

analysis, discovering dual solutions (stable and unstable branches) and confirming that both Eckert number 

and radiation parameter amplify temperature distributions. Their results align with Zainal et al. (2022), 

suggesting that rotational effects do not fundamentally alter the radiation-temperature relationship established 

in non-rotating flows. 
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Nanoparticle Selection: Experimental vs. Theoretical Consensus 

A notable convergence exists across multiple studies regarding optimal nanoparticle combinations. Mutuku 

(2016) experimentally demonstrated that CuO nanoparticles in ethylene glycol provide superior cooling 

compared to Al₂O₃ and TiO₂. However, Ali et al. (2021) theoretically established that hybrid combinations of 

two oxide nanoparticles outperform single-particle suspensions in temperature enhancement. This apparent 

contradiction is reconciled by Jaafar et al. (2022), who identified the Al₂O₃/Cu hybrid as optimal due to its 

stability, high thermal conductivity, and corrosion resistance—combining the benefits observed in both earlier 

studies. 

Zainal et al. (2022) validated this Al₂O₃/Cu combination experimentally, emphasizing its long-term stability in 

Maxwell base fluids. The consensus across these studies (Ali et al., 2021; Jaafar et al., 2022; Zainal et al., 

2022) establishes Al₂O₃/Cu as the industry-preferred hybrid for thermal applications, motivating its selection in 

the current work. 

Dual/Multiple Solutions and Stability Analysis 

An intriguing pattern emerges regarding solution multiplicity in these systems. Jaafar et al. (2022) reported 

dual solutions—one steady and one unsteady—for hybrid nanofluid flow over shrinking surfaces. Asghar et al. 

(2022) reframed these as stable and unstable solutions, applying linear stability analysis to determine physical 

realizability. This methodological enhancement (stability analysis) represents a critical advancement, as it 

distinguishes mathematically valid solutions from physically observable ones. 

The prevalence of dual solutions across studies (Jaafar et al., 2022; Asghar et al., 2022) suggests that hybrid 

Maxwell nanofluids under magnetic fields exhibit inherent bifurcation behavior, necessitating stability analysis 

in future investigations. 

Recent Advances: Coupled Physics and Industrial Applications 

Recent investigations have increasingly focused on multi-physics coupling. Khan et al. (2023) modeled 

nanoparticle-enhanced grease using the Maxwell rheological framework, demonstrating not only 3% enhanced 

heat transfer but also significant friction reduction—a dual benefit crucial for lubrication industries. Wang et 

al. (2023) advanced this by incorporating the Buongiorno model to capture thermophoresis and Brownian 

motion, coupled with thermal radiation, electromagnetic effects, and chemical reactions. Their findings aligned 

with Khan et al. (2023) regarding temperature enhancement but provided deeper mechanistic insight into 

nanoparticle migration patterns. 

Vijay & Sharma (2023) employed Finite Element Method (FEM) to investigate stagnation point flow, mass 

transfer, and heat transfer in Maxwell nanofluids, corroborating the temperature enhancement trends observed 

by Wang et al. (2023) and Khan et al. (2023). The consistency across different numerical methods (HAM, 

Runge-Kutta, FEM) strengthens confidence in these qualitative trends despite quantitative variations. 

Established  gap 

From the review above, it is to our understanding that the investigations into the role of thermal radiation on 

the flow of hybrid Maxwell nanofluid over rotating surfaces, as well as shrinking and stretching surfaces, has 

garnered significant attention in recent research. However, there has been limited focus on understanding the 

impact of thermal radiation coupled with ohmic heating over a surface that linearly stretches in a magnetic 

hybrid Maxwell nanofluid context. The understanding of thermal radiation and ohmic heating have been found 

to be crucial in determining the heat insulators to be used in our gadgets and industrial machinery. Motivated 

to address this gap, the proposed work aims to explore the influence of thermal radiation and ohmic heating on 

hydromagnetic Maxwell hybrid nanofluid flow. The base fluid is Maxwell, with alumina and copper 

nanoparticles chosen as nanoparticles. This study seeks to provide a clearer understanding of the interactions 



 INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October2025 

 

Page 2117 www.rsisinternational.org  

 

between heat transfer, fluid flow, and magnetic fields in such systems, offering insights valuable for various 

industrial applications and theoretical advancements in fluid dynamics. 

METHODOLOGY 

Introduction 

In this section, the assumptions made are presented, the flow geometry is displayed and the flow model is 

formulated. The model equations are then transformed into a non-dimensional system using similarity 

variables obtained from existing literature. The numerical techniques used to solve the resulting system of 

equations is then discussed. 

Formulation of Governing Equations 

Figure 0.1: Flow geometry 

 

Figure (3.1) displays the 2-D, incompressible flow geometry. Here, a colloidal suspension of Al2O4/Cu 

nanoparticles in Maxwell base fluid form the hybrid nanofluid. The surface is stretching at a linear pace in the 

direction x ≥  0. The flow is experiencing ohmic heating, thermal radiation and a constant perpendicular 

magnetic field.  

The following assumptions are made for the flow under consideration; 

1. The flow is an incompressible and steady, and can be represented as a two-dimensional boundary layer 

flow. 

2. The flow occurs over a linearly stretching flat surface along the x-direction, where x >  0. 
3. A constant perpendicular magnetic field strength is applied to the flow. 

4. The no-slip condition is obeyed on the surface. 

By modifying Zainal et al. (2022) model to incorporate body forces and ohmic heating in the momentum and 

energy equations respectively, we have the continuity equation as; 

 
∂u

∂x
+

∂v

∂y
= 0 (3.1.1) 
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The hydromagnetic maxwell hybrid nanofluid momentum equation is given as 

 u
∂u

∂x
+ v

∂u

∂y
= μhnfρhnf

∂2u

∂y2
+ 2ϑfΛ

∂u

∂y

∂2u

∂y2
+ gβ(T − T∞) −

σhnf

ρhnf
B2u (3.1.2) 

Taking into account the thermal radiation effects, the energy equation is modified to; 

 u
∂T

∂x
+ v

∂T

∂y
=

1

(ρ Cp)
hnf

(κhnf
∂2T

∂y2
−

∂q

∂y
− Q0(T − Tw)) (3.1.3) 

where, the radiative heat flux q is obtained from the Rosseland approximation as; 

q = −
4σ∗

3k∗

∂T4

∂y
 

From Taylor’s series; 

T4 ≈ 4T∞
3 T − 3T∞

4  

Therefore; 

∂q

∂y
= −

16σ∗T∞
3

3k∗

∂2T

∂y2
. 

The boundary equations to capture linear stretching and the no slip conditions are given as 

 u (0, x) = ax,   v(0, x) = 0,   T(0, x) = Tw. (3.1.4) 

where a ≥  0, such that, at a =  0, the surface is immobile and at a >  0, the surface is stretching. The free 

stream boundary conditions are; 

 u (∞, x) → 0,   T(∞, x) = T∞. (3.1.5) 

Effective properties 

The three nanoparticles, each has their thermal and electrical properties, that they contribute to the ternary 

hybrid nanofluid. The properties of the resulting ternary hybrid nanofluid is referred to as the effective 

properties. These properties have been estimated in various experimental research and models for the effective 

properties have been fitted using experimental data. Based on the work of Allehiany et al. (2023), the model 

for the effective thermal conductivity, effective electrical conductivity, effective thermal capacity, effective 

density and effective viscosity of the ternary hybrid nanofluid are; 



 INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October2025 

 

Page 2119 www.rsisinternational.org  

 

 

where κhnf and κf denote the effective and base fluid thermal conductivities, respectively, and ϕi represents the 

nanoparticle volume fraction. 

Equation (3.2.1) derives from Maxwell's effective medium theory, modeling thermal conductivity 

enhancement from nanoparticles in base fluid. The term (1−ϕ)κf represents base fluid heat transfer, while ϕiκi 

reflects nanoparticle conductive contribution. The numerator quantifies weighted enhancement; the 

denominator accounts for interfacial resistance and particle-fluid interactions. 

Equation (3.2.2) models electrical conductivity enhancement using Maxwell's theory. Metallic nanoparticles 

increase conduction through electron hopping and interfacial polarization, with ϕiσi representing nanoparticle 

contributions to charge transport. 

Equation (3.2.3) defines hybrid nanofluid heat capacity as a weighted sum of base fluid and nanoparticle 

contributions, representing combined thermal energy storage capacity of the mixture. 

Equation (3.2.4) expresses hybrid nanofluid density as mass-weighted average of base fluid and nanoparticle 

densities, accounting for volume fraction of each component in the suspension. 

Equation (3.2.5) describes viscosity increase due to nanoparticle suspension. The factor (1−ϕ)⁻² reflects 

empirical correlations for flow resistance enhancement from uniformly dispersed particles.  

and for the sake of simplicity, we rewrite the models as 

(ρcp)
hnf

= (1 − ϕ)(ρcp)
f
 + ∑ ϕi(ρcp)

i

2

i=1

 

 
κhnf

κf
=

 2(1−ϕ)ϕ κf+(1 + 2ϕ) ∑ ϕiκi
2
i=1

(2 +ϕ)ϕκf + (1−ϕ) ∑ ϕiκi
2
i=1  

, (3.2.1) 

   

 
σhnf

σf
=

 2(1−ϕ)ϕ σf+(1 + 2ϕ) ∑ ϕiσi
2
i=1

 (2 +ϕ)ϕσf + (1−ϕ) ∑ ϕiσi
2
i=1  

, (3.2.2) 

 (ρcp)
hnf

= (1 − ϕ)(ρcp)
f

+ ∑ ϕi(ρcp)
i

2
i=1 , (3.2.3) 

 ρhnf = (1 − ϕ)ρf + ∑ ϕiρi
2
i=1 , (3.2.4) 

 μhnf = μf(1 − ϕ)−2. (3.2.5) 

   

 κhnf

κf
  =

2(1 − ϕ)ϕκf + (1 +  2ϕ)Σi=1
2  ϕiκi

(2 + ϕ)ϕκf + (1 − ϕ)Σi=1
2  ϕiκi

 =  A1  ⇒ κhnf  =  A1κf 

 

(3.2.6) 

 σhnf

σf
=

2(1 −  ϕ)ϕσf + (1 +  2ϕ)Σi=1
2 ϕiσi

(2 +  ϕ)ϕσf + (1 −  ϕ)Σi=1
2 ϕiσi

= A2  ⇒  σhnf = A2σf (3.2.7) 
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                    = (1 − ϕ +
1

(ρcp)
f

∑ ϕi(ρcp)
i

2

i=1

) (ρcp)
f
 

                     = A3(ρcp)
f
                                                                                                   (3.2.8) 

             ρhnf = (1 − ϕ)ρf + ∑ ϕiρi

2

i=1

 = (1 − ϕ +
1

ρf
 ∑ ϕiρi

2

i=1

 ) ρf =  A4ρf           (3.2.9) 

             μhnf = 0.904e0.148ϕμf = A5μf                                                                               (3.2.10) 

Equation (3.2.6) simplifies thermal conductivity ratio as enhancement factor A₁, encapsulating nanoparticle 

contributions into a compact coefficient multiplying base fluid conductivity. 

Equation (3.2.7) simplifies electrical conductivity ratio as enhancement factor A₂, condensing nanoparticle 

effects into a multiplicative term for streamlined analysis. 

Equation (3.2.8) rewrites heat capacity as A₃(ρcp)f, where A₃ represents the normalized enhancement factor 

from nanoparticle thermal storage contributions. 

Equation (3.2.9) expresses density as A₄ρf, where A₄ captures mass-weighted contribution of nanoparticles, 

simplifying density calculations in governing equations. 

Equation (3.2.10) correlates viscosity using empirical formula with exponential dependence on volume 

fraction ϕ, defining enhancement factor A₅ for flow resistance. 

Similarity Transformation 

The flow model (3.1.1 -3.1.5) will be transformed to a non-dimensional system of ordinary differential 

equations using similarity variables 

η = ya
1
2ϑ

f

−
1
2,    u = ax

d

dη
f(η),     v = −a

1
2ϑ

f

1
2f(η),    T = T∞ + (Tw − T∞)Θ(η).         (3.3.1) 

The shooting technique will be employed in the conversion of the resulting dimensionless boundary conditions 

to their equivalent initial conditions. The shooting technique is used because the method of solution of the 

resulting ODEs will be numerical techniques. Solving BVPs using numerical techniques is difficult and 

borderline impossible sometimes, therefore, the shooting technique assists in overcoming this setback.  The 

resulting IVP’s approximate solutions will be obtained using RK in MATLAB bvp4c solver. The results will 

be presented as graphs. The outcomes will be analysed and discussed. Conclusions will be drawn from the 

study results and suitable recommendations will be presented. 

Since η is a function of y only, then ηy = a
1

2ϑ
f

−
1

2 and ηx = 0. The first partial derivatives of u with respect to x 

and y are found as follows; 

∂u

∂x
=

d

dx
(ax

d

dη
f(η)) = a

d

dη
f(η)

d

dx
(x) = a

d

dη
f(η) 

∂u

∂y
=

d

dη
(ax

d

dη
f(η))

dη

dy
 

        = ax
d

dη
(

d

dη
f(η))

dη

dy
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        = ax
d2

dη2
f(η)

dη

dy
                                                                           (3.3.3) 

These equations apply the chain rule to transform partial derivatives from Cartesian (x,y) to similarity variable 

η, simplifying boundary layer equations through coordinate transformation. 

The second partial derivative of u with respect to y is as follows; 

∂2u

∂y2
=

∂

∂y
(

∂u

∂y
) =

∂

∂y
(ax

d2

dη2
f(η)

dη

dy
) 

        =
d

dη
(ax

d2

dη2
f(η)

dη

dy
)

dη

dy
 

        = ax
d3

dη3
f(η) (

dη

dy
)

2

                                                        (3.3. .4) 

Second derivative transformation using chain rule twice, converting ∂²u/∂y² from Cartesian to similarity 

coordinates, yielding third-order derivative in η with squared transformation factor. 

Next is to consider the first partial derivatives of the variable v with respect x and y are as follows; 

∂v

∂x
= 0 

∂v

∂y
=

∂

∂y
(−a

1
2ϑ

f

1
2

d

dη
f(η)) =

∂

∂y
(−a

1
2ϑ

f

1
2

d

dη
f(η))

dη

dy
 

      = −a
1
2ϑ

f

1
2

d

dη
f(η)

dη

dy
.                                                           (3.3.5) 

Partial derivatives of velocity component v: ∂v/∂x vanishes identically, while ∂v/∂y transforms through chain 

rule, introducing fractional powers and transformation coefficient dη/dy. 

The second partial derivative of v with respect to y is as follows; 

∂2v

∂y2
=

∂

∂y
(

∂v

∂y
) =

∂

∂y
(−a

1
2ϑ

f

1
2

d

dη
f(η)

dη

dy
) 

        =
d

dη
(−a

1
2ϑ

f

1
2

d

dη
f(η)

dη

dy
)

dη

dy
 

        = −a
1
2ϑ

f

1
2

d

dη
(

d

dη
f(η)

dη

dy
)

dη

dy
 

        = −a
1
2ϑ

f

1
2

d2

dη2
f(η) (

dη

dy
)

2

                                                (3.3.6) 

The temperature T is a function of Θ which is a function of η and as a result, T is independent of x. The partial 

derivative of T with respect to x is zero so that 

∂T

∂x
= 0, 

and the partial derivatives of T with respect to y is obtained as 
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∂T

∂y
=

∂

∂y
(T∞ + (Tw − T∞)Θ(η)) = (Tw − T∞)

d

dη
(Θ(η))

dη

dy
  

∂2T

∂y2
=

∂

∂y
(

∂T

∂y
) =

∂

∂y
((Tw − T∞)

d

dη
(Θ(η))

dη

dy
) 

        = (Tw − T∞)
∂

∂y
(

d

dη
(Θ(η))

dη

dy
) 

        = (Tw − T∞)
d

dη
(

d

dη
(Θ(η))

dη

dy
)

dη

dy
 

        = (Tw − T∞)
d2

dη2
(Θ(η)) (

dη

dy
)

2

                                         (3.3.7) 

Temperature derivatives transform from Cartesian to similarity coordinates. First derivative ∂T/∂y and second 

derivative ∂²T/∂y² involve temperature difference (Tw - T∞), dimensionless function Θ(η), and transformation 

factor dη/dy. 

By substituting ηy we have 

∂u

∂x
= a

d

dη
f(η) 

∂u

∂y
= ax

d2

dη2
f(η)

dη

dy
 

      = ax
d2

dη2
f(η) (a

1
2ϑ

f

−
1
2) 

      = ax (a
1
2ϑ

f

−
1
2)

d2

dη2
f(η) 

      = x√
a3

ϑf

d2

dη2
f(η)                                       (3.3.8) 

∂2u

∂y2
= ax

d3

dη3
f(η) (

dη

dy
)

2

 

         = ax
d3

dη3
f(η) (a

1
2ϑ

f

−
1
2)

2

 

         =
a2x

ϑ

d3

dη3
f(η)                                           (3.3.9) 

∂v

∂x
= 0 

∂v

∂y
= −a

1
2ϑ

f

1
2

d

dη
f(η)

dη

dy
 

      = −a
1
2ϑ

f

1
2

d

dη
f(η) (a

1
2ϑ

f

−
1
2) 

      = −a
d

dη
f(η).                              (3.3.10) 

∂2v

∂y2
= −a

1
2ϑ

f

1
2

d2

dη2
f(η) (

dη

dy
)

2
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       = −a
1
2ϑ

f

1
2

d2

dη2
f(η) (a

1
2ϑ

f

−
1
2)

2

 

        = −√
a3

ϑf

d2

dη2
f(η).                                               (3.3.11) 

∂T

∂y
= (Tw − T∞)

d

dη
Θ(η)

dη

dy
 

       = (Tw − T∞) (a
1
2ϑ

f

−
1
2)

d

dη
Θ(η).                       (3.3.12) 

∂2T

∂y2
= (Tw − T∞)

d2

dη2
(Θ(η)) (

dη

dy
)

2

 

         =
a(Tw − T∞)

ϑ

d2

dη2
(Θ(η))                           (3.3.13) 

Equations (3.3.8)-(3.3.9): Substituting similarity variable ηy yields simplified velocity derivatives. ∂u/∂y 

combines transformation factors, while ∂²u/∂y² becomes a²x/ϑ times third derivative in η-space. 

Equations (3.3.10)-(3.3.11): Transverse velocity derivatives: ∂v/∂x vanishes, ∂v/∂y simplifies to -a·d/dη·f(η), 

and ∂²v/∂y² reduces to negative square root term involving kinematic viscosity ϑ. 

Equations (3.3.12)-(3.3.13): Temperature derivatives after substitution: ∂T/∂y contains temperature difference 

and transformation factor; ∂²T/∂y² simplifies to a(Tw-T∞)/ϑ times second derivative of dimensionless 

temperature Θ(η). 

Consider the left hand side of equation (3.1.2) and we have 

LHS = u
∂u

∂x
+ v

∂u

∂y
 

        = (ax
d

dη
f(η)) (a

d

dη
f(η)) + (−a

1
2ϑ

f

1
2f(η)) (x√

a3

ϑf

d2

dη2
f(η)) 

        = (a2x) (
d

dη
f(η))

2

+ (−a2x)f(η)
d2

dη2
f(η) 

        = a2x ((
d

dη
f(η))

2

− f(η)
d2

dη2
f(η))                            (3.3.14) 

Left-hand side of momentum equation transforms by substituting velocity derivatives, combining convective 

terms u∂u/∂x and v∂u/∂y into simplified expression involving first and second derivatives in η-coordinates. 

Next is the right hand side of equation (3.1.2) and we have 

RHS =
μhnf

ρhnf
(

∂2u

∂y2
)  +  2ϑfΛ (

∂u

∂y
) (

∂2u

∂y2
) + gβ(T − Tinfty) −  (

σhnf

ρhnf
) B2u                               
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           =
μhnf

ρhnf
(

a2x

ϑf

d3f(η)

dη3
) + 2ϑfΛx (√

a3

ϑf
)

d2f(η)

dη2

a2x

ϑf

d3f(η)

dη3
+ gβ(Tw − T∞)Θ(η)

−
σhnf

ρhnf

B2 (ax
d

dη
 f(η)),                             

           = a2x (
μhnf

ρhnfϑf

d3f(η)

dη3
+ 2Λax√

a

ϑf

d2f(η)

dη2

d3f(η)

dη3
+

gβ(Tw − T∞)

a2x
Θ(η)

−
σhnf

aρhnf

B2
d

dη
 f(η)).                                             (3.3.15) 

Right-hand side of momentum equation transforms by substituting derivatives, incorporating viscous diffusion, 

Darcy-Forchheimer porous terms, thermal buoyancy, and magnetic field effects into simplified η-coordinate 

expression with nanofluid properties. 

Combining the left and right hand sides and equation (3.1.2) becomes 

a2x ((
d

dη
f(η))

2

− f(η)
d2

dη2
f(η))

= a2x (
μhnf

ρhnfϑf

d3f(η)

dη3
+ 2Λax√

a

ϑf

d2f(η)

dη2

d3f(η)

dη3
+

gβ(Tw − T∞)

a2x
Θ(η)

−
σhnf

aρhnf
B2

d

dη
 f(η))                                       (3.3.16) 

(
d

dη
f(η))

2

− f(η)
d2

dη2
f(η)

=
μhnf

ρhnfϑf

d3f(η)

dη3
+ 2Λax√

a

ϑf

d2f(η)

dη2

d3f(η)

dη3
+

gβ(Tw − T∞)

a2x
Θ(η)

−
σhnf

aρhnf
B2

d

dη
 f(η)                                                   (3.3.17) 

Combining left and right sides yields transformed momentum equation in η-coordinates, balancing convective 

acceleration with viscous diffusion, porous medium resistance, thermal buoyancy, and magnetic damping 

effects. 

Simplified momentum equation balances inertial terms with viscous diffusion, Darcy-Forchheimer porous 

resistance, thermal buoyancy force, and Lorentz magnetic force in dimensionless similarity coordinates.  

Now, by using equations (3.2.7) and (3.2.9), we have 

σhnf

aρhnf
 =

A2σf

aA4ρf
,

μhnf

ρhnfϑf
 =

A5μf

A4ρfϑf
=

A5

A4
                   (3.3.18) 
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and the momentum equation becomes 

(
df

dη
)

2

− f
d2f

dη2
=

A5

A4

d3f

dη3
+ 2Λax√

a

ϑf

d3f

dη3

d2f

dη2
+

gβ(Tw − T∞)

a2x
Θ −

A2σf

aA4ρf
B2  (

df

dη
) 

which is the same as 

A5

A4

d3f

dη3
+ 2Λax√

a

ϑf

d3f

dη3

d2f

dη2
− (

df

dη
)

2

+ f
d2f

dη2
+

gβ(Tw − T∞)

a2x
Θ −

A2σf

aA4ρf

B2  (
df

dη
) = 0 

(
A5

A4

+ 2Λax√
a

ϑf

d2f

dη2
)

d3f

dη3
− (

df

dη
)

2

+ f
d2f

dη2
+

gβ(Tw − T∞)

a2x
Θ −

A2σf

aA4ρf

B2 (
df

dη
) = 0 

(
A5

A4
+ 2We

d2f

dη2
)

d3f

dη3
− (

df

dη
)

2

+ f
d2f

dη2
+ GrΘ −

A2

A4
M

df

dη
= 0                    (3.3.19) 

Using enhancement factor ratios simplifies momentum equation into dimensionless form with coefficients 

A₅/A₄, introducing Weissenberg number (We), Grashof number (Gr), and magnetic parameter (M) for compact 

representation. 

where 

We = Λax√
a

ϑf

,   Gr =
gβ(Tw − T∞)

a2x
,   M =  

σfB
2

aρf

. 

Next stage is to consider the energy equation (3.1.3) 

u
∂T

∂x
+ v

∂T

∂y
−

1

(ρcp)
hnf

(κhnf

∂2T

∂y2
+

16σ∗T∞
3

3k∗

∂2T

∂y2
− Q0(T − Tw)) = 0                   (3.3.20) 

and on substitutions, we have 

0 − (a
1
2ϑ

f

1
2f(η)) (a

1
2ϑ

f

−
1
2(Tw − T∞)

d

dη
Θ(η)) −

1

(ρcp)
hnf

(κhnf +
16σ∗T∞

3

3k∗
)

a(Tw − T∞)

ϑf

d2

dη2
Θ(η)

+
Q0(Tw − T∞)

(ρcp)
hnf

(Θ − 1) = 0, 

− (f(η)
d

dη
Θ(η)) − (

κhnf

(ρcp)
hnf

+
16σ∗T∞

3

3k∗(ρcp)
hnf

)
1

ϑf

d2

dη2
Θ(η) +

Q0(Θ − 1)

a(ρcp)
hnf

= 0. 

Weissenberg number (We) measures viscoelastic effects, Grashof number (Gr) represents buoyancy-driven 

flow, and magnetic parameter (M) quantifies electromagnetic damping strength in the system. 

Energy equation (3.3.20): Energy equation balances convective heat transfer with thermal conduction 

(including radiation effects) and heat generation/absorption, transformed into similarity coordinates using 

temperature and velocity derivatives. 

Substituting equations (3.2.6) and (3.2.8) 
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− (f(η)
d

dη
Θ(η)) − (

A1κf

A3(ρcp)
f
ϑf

+
16σ∗T∞

3

3k∗A3(ρcp)
f
ϑf

)
d2

dη2
Θ(η) +

Q0(Θ − 1)

aA3(ρcp)
f

= 0.    (3.3.21) 

Recall that the thermal diffusivity αf of the base fluid is defined as αf =
κf

(ρcp)
f

 and so the equation becomes 

− (f(η)
d

dη
Θ(η)) − (

A1αf

A3ϑf
+

16σ∗T∞
3

3k∗A3(ρcp)
f
ϑf

)
d2

dη2
Θ(η) +

Q0(Θ − 1)

aA3(ρcp)
f

= 0.        (3.3.22) 

Substituting enhancement factors and thermal diffusivity definition (αf = κf/(ρcp)f) simplifies energy equation 

into compact dimensionless form with ratios A₁/A₃, incorporating radiation and heat generation effects.  

Also setting 

1

Pr
=

αf

ϑf

,   R =
4σ∗T∞

3

k∗ϑf(ρcp)
f

     and    Q =
Q0

a(ρcp)
f

 

we have 

− (f(η)
d

dη
Θ(η)) − (

A1

A3Pr
+

4

3
R)

d2

dη2
Θ(η) +

Q

A3

(Θ − 1) = 0, 

(
A1

A3Pr
+

4

3
R)

d2

dη2
Θ(η) + (f(η)

d

dη
Θ(η)) −

Q

A3

(Θ − 1) = 0               (3.3.23) 

Prandtl number (1/Pr = αf/ϑf), radiation parameter (R), and heat generation parameter (Q) transforms energy 

equation into simplified form with A₁/A₃ ratios. 

Finally, we consider the boundary conditions. Based on the choice of the similarity variables as η = ya
1

2ϑ
f

−
1

2, 

we have 

at y = 0,   η = 0       and  as y → ∞, η → ∞. 

Starting at the wall where y = 0, 

u(0, x) = ax       ⇒      
df

dη
= 1     at   η = 0 

v(0, x) = 0          ⇒      f = 1     at   η = 0 
T(0, x) = Tw        ⇒     Θ = 1     at   η = 0 

At the free stream, 

u(∞, x) → 0        ⇒          f ′ → 0     as    η → ∞ 
T(∞, x) → T∞         ⇒          Θ → 0     as    η → ∞ 

Boundary conditions transform using similarity variable η. At wall (y=0, η=0): velocity matches stretching, 

no-penetration, and isothermal conditions. At free stream (η→∞): velocity and temperature gradients vanish.  

The dimensionless equations are therefore 
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(
A5

A4
+ 2We

d2f

dη2
)

d3f

dη3
− (

df

dη
)

2

+ f
d2f

dη2
+ GrΘ −

A2

A4
M

df

dη
= 0                   (3.3.24) 

(
A1

A3Pr
+

4

3
R)

d2

dη2
Θ(η) + f(η)

d

dη
Θ(η) −

Q

A3

(Θ − 1) = 0                             (3.3.25) 

with the condition 

f = 0,   
df

dη
= 1,   Θ = 1     at   η = 0                                      (3.3.26) 

f ′ → 0, Θ → 0     as    η → ∞                                            (3.3.27) 
where 

We = Λax√
a

ϑf
,   Gr =

gβ(Tw − T∞)

a2x
,   M =  

σfB
2

aρf
                 (3.3.28) 

αf =
κf

(ρcp)
f

,   
1

Pr
=

αf

ϑf

,   R =
4σ∗T∞

3

k∗ϑf(ρcp)
f

,   Q =
Q0

a(ρcp)
f

         (3.3.29) 

Dimensionless governing equations (3.3.24-3.3.25) couple momentum and energy with boundary conditions 

(3.3.26-3.3.27). Parameters We, Gr, M, Pr, R, Q characterize viscoelasticity, buoyancy, magnetism, thermal 

diffusion, radiation, and heat generation respectively. 

Thermophysical Properties 

The nanoparticles under study are that made from Al₂O₃ and Cu and the choice of base-fluid is molten 

polyethylene (a Maxwell fluid). The thermophysical properties of the base-fluid and that of the nanoparticles 

are obtained from literature and are recorded in table (3.1). 

Table 3.1: Thermophysical properties 

 κ ρ cp ρcp μ 

Al2O3 40 3970 765 3037050 - 

Cu 400 8933 385 3439205 - 

molten polyethylene 0.253 1115 2430 2709450 18.376 

 

By substituting these values into equations (3.2.6 - 3.2.9), we have the following 

A1 =
0.506(1 − ϕ)ϕ + (1 + 2ϕ)(34.5ϕ1 + 1.2ϕ2)

0.253(2 + ϕ)ϕ + (1 − ϕ)(34.5ϕ1 + 1.2ϕ2)
, 

A2 =
21.4(1 − ϕ)ϕ × 10−5 + (1 + 2ϕ)(6.3ϕ1 + 4.25ϕ2) × 107

10.7(2 + ϕ)ϕ × 10−5 + (1 − ϕ)(6.3ϕ1 + 4.25ϕ2) × 107
, 

A3 = 1 − ϕ +
(2011147ϕ1 + 1546600ϕ2)

2709450
, 

A4 = 1 − ϕ +
(5060ϕ1 + 2200ϕ2)

1115
. 

Substituting nanoparticle properties into equations (3.2.6-3.2.9) yields explicit enhancement factors A₁ through 
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A₄, representing thermal conductivity, electrical conductivity, heat capacity, and density modifications from 

nanoparticle volume fractions ϕ₁ and ϕ₂. 

Numerical Procedure 

The coupled PDEs governing the MHD flow of hybrid nanofluid is reformulated as a coupled system of ODEs 

through the use of similarity transformation. The resulting the ODEs comes with some boundary conditions at 

the free stream and some initial conditions at the boundary layer. This kind of problem cannot be solved by 

simply adopting a numerical procedure due to the inclusion of boundary conditions. The problem concerning 

the boundary conditions is solved by bringing in the method of Shooting Technique; which seeks the initial 

condition that best satisfies the boundary condition. The Runge Kutta method is used to solve the coupled 

ODEs with the initial conditions. The numerical results are graphed and the results are discussed herewith.  

Analysis of Results 

Introduction 

The parameters that emerged from the nondimensionalisation process are varied to simulate the flow. By 

varying a parameter while fixing other parameters, the profiles for velocity and temperature of the flow are 

plotted against the dimensionless distance η. In any case a parameter is fixed, the following values are chosen 

as the default for the parameters; 

We = 0.1,   Gr = 1,   M = 2,   Pr = 7,   Q = 0.21,   R = 0.1,   ϕ1 = ϕ2 = 0.1. 

Recall that the flow velocity is similar to f′ and temperature is similar to Θ, hence, in the following discussion, 

the same notations shall be retained for these flow properties. 

RESULTS AND DISCUSSION 

The parameters that emerged from the nondimensionalisation process are varied to simulate the flow. By 

varying a parameter while fixing other parameters, the profiles for velocity and temperature of the flow are 

plotted against the dimensionless distance η. In any case a parameter is fixed, the following values are chosen 

as the default for the parameters; 

We = 0.1,   Gr = 1,   M = 2,   Pr = 7,   Q = 0.21,   R = 0.1,   ϕ1 = ϕ2 = 0.1. 

Recall that the flow velocity is similar to f′ and temperature is similar to Θ, hence, in the following discussion, 

the same notations shall be retained for these flow properties. 

Effect of Grashof Number 

The Grashof number Gr measures the ratio of buoyancy to viscous forces, often arising in natural convection 

and defined in this study as 

Gr =
gβ(Tw − T∞)

a2x
. 

The behaviour of temperature with increasing Grashof number is shown in figure (4.1) while the behaviour of 

velocity is illustrated in figure (4.2). The figures illustrated a decrease in temperature and an increase in 

velocity with Grashof number. A rise in Grashof number is a consequence of increasing buoyancy force which 

enhances flow velocity but reduces thermal boundary layer. Hence, as Grashof number rises, temperature goes 

down and velocity goes up. 

Figure 4.1: Effects of temperature to Grashof number 
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Figure 4.2: Effects of Velocity to Grashof number 

 

Effect of Magnetic field 

A magnetised hybrid nanofluid flow experiences an opposing force called Lorenz force. This implies that 

Lorenz force becomes stronger as magnetism increases and therefore, the flow experiences more opposition. In 

this study, the magnitude of magnetism is obtained as 

M =
σfB

2

aρf
. 

We increase M, consequently increasing Lorenz force, and study the response of temperature and velocity to 

increasing magnetism. Figures (4.3) and (4.4) display the behaviours. The stronger the magnetism, the higher 
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the temperature becomes but the lower the velocity. Fluid motion get impeded by the Lorenz force and thereby 

slow down the fluid particles, causing a reduction in velocity. The drag in the flow produce thermal energy 

which increases the temperature if the flow, hence an increase in flow temperature. 

Figure 4.3: Effects of Temperature to Magnetism M on Temperature Profile Θ(η) 

 

Higher magnetic parameters induce Joule heating through electrical resistance, elevating fluid temperature. 

Electromagnetic work dissipates as thermal energy, increasing Θ throughout. Arrows indicate temperature 

enhancement with stronger fields. 

Figure 4.4: Effects of Temperature to Magnetism M on Velocity Profile f'(η) 

 

Increasing M strengthens Lorentz force, opposing fluid motion and retarding momentum diffusion. This 

creates steeper velocity gradients near the wall and thinner momentum boundary layers, as arrows indicate. 

Effect of Volume Fraction 

The volume fractions for the nanoparticles are ϕ1 and ϕ2, where 1 represents alumina (Al₂O₃) nanoparticles and 

2 represents copper (Cu) nanoparticle. In this study, we have considered only the case where the two volume 

fractions are equal ϕ1 = ϕ2. Figure (4.5) shows the behaviour of the temperature of flow as ϕ1 and ϕ2 increase. 

The temperature increases as ϕ1 and ϕ2 get bigger. Increasing ϕ1 and ϕ2 increases the surface area of the solid 

particles and thereby allowing quick exchange of heat energy. This is responsible for the rise in temperature as 

ϕ1 and ϕ2 increase. However, figure (4.6) shows that velocity decreases with increasing ϕ1 and ϕ2. Due to the 
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increase in ϕ1 and ϕ2, nanoparticles agglomeration tends to cause a retardation in the flow and thereby reducing 

velocity as ϕ1 and ϕ2 gets larger. 

Figure 4.5: Effects of Temperature to Volume fractions 

 

Figure 4.6: Effects of Velocity  to Volume fractions 

 

CONCLUSION AND RECOMMENDATION 

Conclusion 

This study considers the flow of fluid obtained by releasing two nanoparticles of different solid materials in the 

molten polyethylene. The flow is represented in mathematical form as a coupled PDE with some initial-

boundary condition, which is reformulated as a coupled ODEs by the use of similarity transformation. We 

employed the shooting technique to find an analogous the initial value problem to the initial-boundary 

condition problem. By varying a parameter while keeping other parameter fixed, the flow is simulated and the 
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following results were obtained; 

 Decrease in temperature and increase in velocity with Grashof number: As the Grashof number 

increases, indicating stronger buoyancy forces relative to viscous forces, the temperature decreases. This 

is because the fluid experiences less resistance from buoyancy, allowing it to flow more freely and 

increase in velocity. 

 Magnetism raises temperature but lowers velocity: The introduction of magnetism increases the fluid 

temperature due to heat generation from magnetic nanoparticles. However, it also decreases fluid 

velocity, possibly due to altered flow patterns or increased frictional forces. 

 Temperature increases but velocity decreases as volume fraction increases: Higher nanoparticle 

concentration leads to increased fluid temperature due to enhanced thermal conductivity or heat 

generation. However, the fluid velocity decreases as nanoparticles impede flow, causing greater 

resistance. 

Industrial Applications 

These findings directly inform: 

 Heat exchanger optimization: Tailoring nanoparticle concentration and magnetic fields maximizes 

heat transfer while minimizing pressure drop 

 Polymer extrusion control: Adjusting thermal and flow parameters improves product uniformity and 

reduces defects 

 Thermal management systems: Hybrid nanofluids offer superior cooling performance for electronics 

and automotive applications 

 Magnetorheological processing: Magnetic field control enables real-time adjustment of flow and 

thermal characteristics 

Recommendation 

Based on the findings of this study, the following are recommended:  

1. There is a crucial need for experimental validation of the simulation results. Conducting rigorous 

experiments would not only validate the accuracy of the model but also provide a real-world context for 

understanding the observed phenomena. By comparing simulation results with experimental data, 

researchers can gain confidence in the predictive capabilities of the model and refine it further.  

2. Exploring the effects of varying nanoparticle properties, such as size, shape, and surface characteristics, 

could yield valuable insights. Understanding how these factors influence fluid behaviour and thermal 

dynamics could lead to the development of optimized nanoparticle designs for specific applications. This 

avenue of research has the potential to unlock new possibilities in areas such as heat transfer 

enhancement and nanofluid-based technologies. 

3. In addition to nanoparticle properties, investigating the impact of external factors on the system is 

essential. Factors such as pressure variations, different fluid compositions, or external fields could 

significantly influence fluid flow and temperature distribution. Exploring these factors could not only 

expand the scope of potential applications but also enhance our understanding of the system's robustness 

and adaptability. 
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The Matlab Code 

clc; clear all; format compact 

global We Gr M Pr R Q phi mu_f phi kappa sigma rho cp 

mu_f = 18.376; We = 0.1; Gr = 1; M = 2; Pr = 7; Q = 0.21; R = 0.1; 

phi = [0.1, 0.1]; tspan=linspace(0,7,500); x_initial = zeros(1,5); i=1; 

%nanoparticles are Al2O3 and Cu 

%base fluid is molten polyethylene 

kappa = [40, 400, 0.253]; sigma = [6.3e7,4.25e7,10.7e-5]; 

rho = [3970, 8933, 1115]; cp = [765, 385, 2430]; 

Legend_Entries = []; txt_var = "phi"; Line_Style = ["k-", "g-", "r-", "b-"]; 

for Val = [0.1, 0.15, 0.2, 0.25] 

    phi = [Val, Val];  

    solinit=bvpinit(tspan,x_initial); 

    sol = bvp4c(@Fluid,@Bc,solinit); 

    t = sol.x; s = sol.y; 

    %Legend_Entries = [Legend_Entries,strcat(txt_var," = ", num2str(Val))]; 

    Legend_Entries = [Legend_Entries,strcat("\phi_1 = \phi_2 = ", num2str(Val))]; 

    txt = Line_Style(i); 

    if i ~= 4 

        figure(2), plot(t,s(2,:),txt,'LineWidth',2) 

        hold on 

        figure(4), plot(t,s(4,:),txt,'LineWidth',2) 

        hold on 

    elseif i == 4 
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        figure(2), plot(t,s(2,:),txt,'LineWidth',2) 

        xlabel(" dimensionless distance \eta") 

        ylabel("velocity, f^\prime(\eta)") 

        legend(Legend_Entries); legend('boxoff') 

        txt_vel = strcat(txt_var,"_velocity"); 

        saveas(gcf,txt_vel,'fig')    

        figure(4), plot(t,s(4,:),txt,'LineWidth',2) 

        xlabel(" dimensionless distance \eta") 

        ylabel("temperature, \Theta(\eta)") 

        legend(Legend_Entries); legend('boxoff') 

        txt_temp = strcat(txt_var,"_temperature"); 

        saveas(gcf,txt_temp,'fig')        

end 

 i=i+1; 

end     

function res = Fluid(eta,x) 

global We Gr M Pr R Q phi mu_f phi kappa sigma rho cp 

    f = x(1); f_p = x(2); f_pp = x(3); theta = x(4); theta_p = x(5); 

    PHI = sum(phi); 

    A1_num = 2*(1-PHI)*PHI*kappa(3) + (1 + 2*PHI)*sum(phi.*kappa(1:2)); 

    A1_den = (2+PHI)*PHI*kappa(3) + (1 - PHI)*sum(phi.*kappa(1:2)); 

    A1 = A1_num/A1_den; 

    A2_num = 2*(1-PHI)*PHI*sigma(3) + (1 + 2*PHI)*sum(phi.*sigma(1:2)); 

    A2_den = ((2+PHI)*PHI*sigma(3) + (1 - PHI)*sum(phi.*sigma(1:2))); 

    A2 = A1_num/A1_den; 

%    A2 = (1-PHI + sum(phi.*sigma(1:2))/sigma(3)); 

    A3 = 1 - PHI + sum(phi.*rho(1:2).*cp(1:2))/(rho(3)*cp(3)); 

    A4 = 1 - PHI + sum(phi.*rho(1:2))/rho(3); 
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    A5 = 0.904*exp(0.148*PHI); 

    dx1 = x(2); dx2 = x(3);  

    dx3 = (f_p^2 - f*f_pp - Gr*theta + (A2/A4)*M*f_p)/((A5/A4) + We*f_pp); 

    dx4 = x(5); 

    dx5 = (-f*theta_p + Q*(theta - 1)/A3)/(A1/(A3*Pr) + (4*R/3)); 

    res = [dx1, dx2, dx3, dx4, dx5]; 

end 

function res = Bc(y0,yinf) 

global We Gr M Pr R Q phi mu_f phi kappa sigma rho cp 

    res = [y0(1) 

        y0(2)-1 

        y0(4)-1 

        yinf(2) 

        yinf(4)]; 

end 
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