ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

Assessing the Impact of Air Pollution on Liberia's Health Sector: Challenges and Sustainable Mitigation Strategies."

Emmanuel Wennie

Nanjing University Of Information Science And Technology, China, People's Republic of

DOI: https://doi.org/10.51584/IJRIAS.2025.10100000210

Received: 10 November 2025; Accepted: 17 November 2025; Published: 26 November 2025

ABSTRACT

Air Pollution is a growing challenge for public health in Liberia, driven by rapid urbanization, industrial activities, and reliance on biomass fuels. The health sector in Liberia is significantly impacted, with increasing cases of respiratory diseases, cardiovascular conditions, and other pollution- related illnesses. This report identifies the primary sources of air pollution, such as vehicular emissions, industrial activities, and biomass combustion, and examines their adverse effects on public health. Furthermore, it provides actionable strategies for mitigating air pollution, including policy implementation, technological solutions, and public awareness campaigns. This analysis underscores the urgent need for collaborative efforts to safeguard Liberia's health sector from the escalating impacts of air pollution.

Keywords: Air pollution, Health Sector, Liberia, Public Health, Mitigation Strategies

A Brief Note on Liberia

Liberia, located on the west African coast, is a nation rich in history and cultural heritage. Founded in 1822 by freed Black Slaves, Liberia become the first African republic to proclaim its independence in 1847. The country spans over 111,000 square kilometers and is home to approximately 5 million people. Its capitol, Monrovia, is the largest city and serves as the political, economic, and cultural center of the national.

Liberia's economy relies heavily on agriculture, mining, and forestry, with rubber and iron ore being significant exports. However, like many developing nations, Liberia faces challenges such as poverty, limited infrastructure, and environmental concerns, particularly air pollution caused by urbanization, industrial activities, and vehicular emissions.

Despite these challenges, Liberia remains a nation of resilience and opportunity, its vast natural resources, youthful population, and ongoing development efforts hold great potential for sustainable growth. Addressing environmental issues like air pollution is critical for the health and future prosperity of the country.

INTRODUCTION

Air pollution is one of the most pressing environmental challenges globally, with its impact on public health becoming increasingly alarming, particularly in developing countries like Liberia. Over the past two decades, Liberia has undergone rapid urbanization and industrialization, resulting in a significant increase in air pollution levels. Factors such as vehicular emissions, the burning of biomass for cooking and heating, and industrial activities are key contributors to this environmental crisis [4, 1].

The health implications of air pollution in Liberia are severe, ranging from respiratory infections to cardiovascular diseases and other chronic health conditions. Vulnerable groups, including children, the elderly, and individuals with preexisting health issues, are disproportionately affected by the worsening air quality [18]. This situation places immense pressure on Liberia's already resource- constrained health sector, which struggles to cope with the rising number of pollution-induced illnesses.

This report explores the critical relationship between air pollution and public health in Liberia. It investigates

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

the primary sources of air pollution, assesses its impact on the health sector, and proposes actionable strategies to mitigate its effects and protect public health. The findings aim to inform policymakers, healthcare practitioners, and environmental advocates about the urgent need to address this issue.

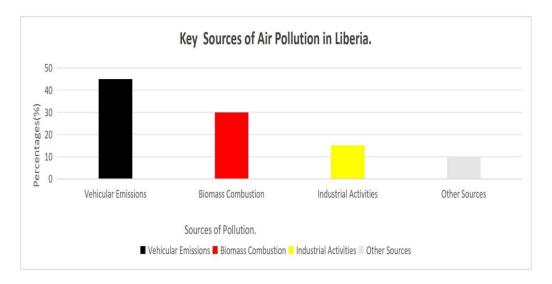


Figure 1: Key Sources of Air Pollution in Liberia.

1.0. Background

Air pollution is primarily caused by the release of harmful pollutants, including fine particulate matter (PM2.5), carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2), into the atmosphere. In Liberia, urban areas such as Monrovia have seen a steady rise in PM2.5 concentrations due to rapid population growth and increased industrial activity. A significant portion of the population relies on biomass for cooking and heating, which further contributes to air pollution levels [7].

Vehicular emissions are the largest contributor to air pollution in Liberia, accounting for 45% of total emissions. The prevalence of older vehicles with inefficient engines exacerbates the issue, leading to higher levels of carbon monoxide and nitrogen oxides in the air. Biomass combustion, used by many households, contributes 30%, while industrial activities and other sources, such as open waste burning and dust from unpaved roads, make up the remaining share [16].

The consequences of prolonged exposure to polluted air are far-reaching. Studies have linked air pollution to respiratory diseases, cardiovascular conditions, maternal health complications, and adverse child development outcomes. These health challenges are particularly acute in Liberia, where healthcare infrastructure and resources are limited [19].

1.1. Objectives

This report aims to achieve the following objectives:

Identify the Main Sources of Air Pollution in Liberia: Analyze and categorize the key contributors to air pollution, including vehicular emissions, biomass combustion, industrial activities, and other sources.

Assess the Impact of Air Pollution on the Health Sector: Examine the prevalence of pollution-related illnesses and their economic burden on Liberia's health system.

Propose Strategies for Mitigating Air Pollution: Develop actionable recommendations to reduce air pollution levels and minimize health risks.

By addressing these objectives, the report provides a comprehensive understanding of the relationship between air pollution and public health in Liberia, emphasizing the need for urgent intervention.

1.2. Significance

The significance of this research lies in its potential to drive meaningful change in public health and environmental policy in Liberia. The findings of this report are critical for the following reasons:

Public Health Impact: Air pollution poses severe health risks to Liberia's population, particularly among vulnerable groups such as children, the elderly, and individuals with preexisting conditions. Understanding these risks is essential for developing targeted health interventions [18].

Economic Implications: Pollution-induced health conditions place a significant economic burden on Liberia's health sector, which already faces challenges such as inadequate funding and infrastructure. By quantifying this burden, the study highlights the need for resource allocation to preventive measures [5].

Environmental Policy Development: The report's findings can inform the creation of policies aimed at reducing emissions from vehicles, industries, and biomass combustion. Effective policies will help improve air quality and public health outcomes.

Sustainable Development Goals (SDGs): Addressing air pollution aligns with global efforts to achieve the United Nations Sustainable Development Goals, particularly Goal 3 (Good Health and Well-Being) and Goal 13 (Climate Action).

Empowering Stakeholders: The study equips policymakers, healthcare providers, and environmental organizations with the knowledge needed to implement effective strategies for reducing air pollution and mitigating its health impacts.

LITERATURE REVIEW

This section provides an in-depth analysis of existing literature on air pollution and its health-related impacts, particularly in Liberia and similar contexts. The review is categorized into the causes of air pollution, its health effects, and mitigation strategies.

2.0 Causes of Air Pollution in Liberia

Air pollution in Liberia is attributed to a combination of human activities and natural processes. Studies emphasize four major contributors:

Vehicular Emissions: Vehicular emissions are the largest source of air pollution in Liberia, accounting for 45% of total emissions. Rapid urbanization has led to increased reliance on other vehicles with inefficient engines, which emit pollutants such as carbon monoxide (CO), nitrogen oxides (NOx), and fine particulate matter (PM2.5) [1, 3]. These pollutants are known to degrade air quality significantly, particularly in urban areas such as Monrovia.

Biomass Combustion: The use of biomass fuels, including firewood and charcoal, for cooking and heating contributes 30% to Liberia's total air pollution levels. Biomass combustion is prevalent in both rural and urban households, releasing PM2.5 and carbon dioxide (CO2) into the atmosphere [6]. Prolonged exposure to biomass smoke is linked to severe health conditions, including respiratory infections and chronic obstructive pulmonary disease (COPD) [4, 7].

Industrial Activities: Though Liberia's industrial sector is relatively small, it contributes 15% of air pollution through emissions from mining, manufacturing, and construction activities. Poor regulatory frameworks and outdated industrial machinery amplify the environmental impact of these activities [9, 11].

Other Sources: Other contributors include open waste burning, dust from unpaved roads, and emissions from diesel-powered generators. Together, these sources contribute approximately 10% to total air pollution in Liberia [10, 13]. Studies suggest that poor waste management practices are a major driver of localized air pollution in peri-urban communities [5].

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

2.1 Health Effects of Air Pollution

The impact of air pollution on health has been widely documented, with significant implications for Liberia's already overstretched health sector.

Respiratory Diseases: Air pollution is a leading cause of respiratory diseases in Liberia, including asthma, bronchitis, and chronic obstructive pulmonary disease (COPD). Fine particulate matter (PM2.5) from vehicular emissions and biomass combustion penetrates deep into the respiratory system, causing inflammation and long-term damage [12, 18]. Vulnerable groups, such as children and the elderly, are most affected [2].

Cardiovascular Problems: Exposure to pollutants such as nitrogen dioxide (NO2) and sulfur dioxide (SO2) has been linked to cardiovascular diseases, including hypertension, heart attacks, and strokes. Prolonged exposure disrupts normal blood circulation and increases the risk of severe cardiovascular events [14, 19].

Maternal and Child Health: Pregnant women exposed to high levels of air pollution face higher risks of complications, such as preterm delivery and low birth weight. Children exposed to polluted air are more likely to experience developmental issues and reduced lung capacity [17, 20].

Health Impact	Percentage (%)
Maternal & Child Health	20%
Cardiovascular Diseases	30%
Respiratory Diseases	50%

Table 1: Health Impact of Air Pollution in Liberia.

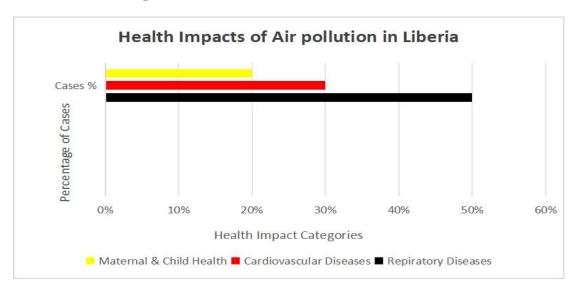


Figure 2: Health Impact of Air Pollution in Liberia.

Economic Burden on the Health Sector: The increasing prevalence of pollution-related illnesses places a significant strain on Liberia's health sector. Resources are often diverted to treat pollution-induced health crises, leaving less funding for preventive and curative health services [16, 23].

2.2 Mitigation Strategies

Policy and Regulation: Stronger environmental regulations and enforcement mechanisms are crucial for reducing vehicular and industrial emissions. Studies recommend the adoption of emission standards for vehicles and incentives for transitioning to cleaner fuels [15, 22].

Public Awareness and Education: Community education campaigns on the dangers of air pollution and sustainable alternatives, such as improved cook-stoves, can help reduce reliance on biomass fuels [24]. Public

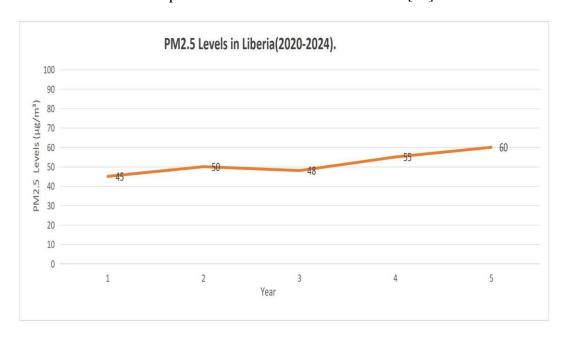
awareness is a key driver of behavioral change and community-led environmental conservation efforts [21].

Technological Innovations: The adoption of renewable energy technologies, such as solar and wind power, can significantly reduce reliance on polluting energy sources. Investment in public transportation systems can also reduce vehicular emissions [25, 8].

International Collaboration: Collaboration with international organizations can provide funding and technical expertise for environmental projects in Liberia. For instance, programs supported by the World Health Organization (WHO) have successfully implemented air quality monitoring systems in other developing nations [13].

Strengthening environmental policies and enforcement mechanisms is vital for mitigating air pollution in Liberia. Implementing stringent vehicular and industrial emission standards, coupled with incentives for adopting cleaner fuels, can substantially reduce pollutant loads. Evidence from similar contexts highlights the effectiveness of national emission control frameworks and fuel quality improvements in curbing particulate matter and greenhouse gas emissions [15, 22].

METHODOLOGY


This section outlines the methods used to analyze the causes and effects of air pollution in Liberia. A combination of qualitative and quantitative research techniques was employed to ensure reliable and detailed findings.

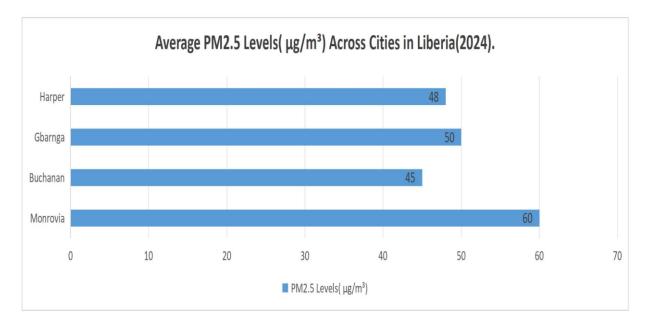
3.0 Research Design

The research employed a mixed-method approach, incorporating both qualitative and quantitative methods to explore air pollution causes and its effects on public health in Liberia.

Qualitative Analysis: Textual data from reports, articles, and interviews were analyzed to identify the major causes of air pollution, including vehicular emissions, biomass combustion, industrial activities, and other sources. Recurring themes, such as respiratory illness and cardiovascular issues, were extracted to explain societal impacts.

Quantitative Analysis: Numerical data, including health statistics and air pollution indices (e.g., PM2.5, SO₂, and NO₂), were analyzed to evaluate trends from 2020 to 2024. Statistical tools were applied to interpret the correlation between air pollution levels and health outcomes [10].

Line Graph: PM2.5 Levels in Liberia (2020–2024), illustrating trends in particulate matter over time.


The line graph PM2.5 Levels in Liberia (2020–2024) illustrates the trend in particulate matter (PM2.5) levels measured in micrograms per cubic meter ($\mu g/m^3$) over five years. The data highlights a consistent increase in PM2.5 levels, indicating a worsening air quality scenario in Liberia during this period.

- 1. 2020: PM2.5 levels were recorded at 45 μ g/m³, which marks the lowest value in the dateset.
- 2. 2021-2022: A gradual increase is observed, with levels rising to 50 μ g/m³ in 2021 and 48 μ g/m³ in 2022, showing a slight fluctuation.
- 3. 2023: A sharper rise occurred, with PM2.5 levels reaching 55 μg/m³, signaling an intensification of air pollution.
- 4. 2024: The highest recorded value in the dateset is 60 μg/m³, underscoring the urgent need for mitigation strategies to address this upward trend.

This upward trajectory suggests a growing environmental and public health concern, as elevated PM2.5 levels are known to adversely affect respiratory and cardiovascular health. The graph underscores the need for immediate action to mitigate pollution sources and implement policies aimed at improving air quality in Liberia.

Bar Chart: PM2.5 Levels Across Cities in Liberia

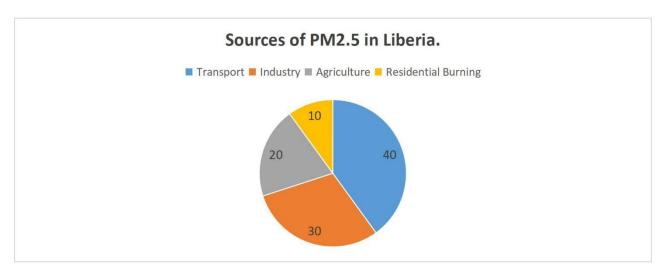
The bar chart below presents the PM2.5 levels in four major cities of Liberia, measured in mircograms per cubic meter ($\mu g/m^3$) providing a comparative analysis of air pollution across urban areas. This mixed-method approach provided a comprehensive understanding of air pollution's role in Liberia's health crisis.

The bar chart provides a comparative overview of PM2.5 levels in Monrovia, Buchanan, Gbarnga, and Harper. Among the four cities:

Monrovia: recorded the highest PM2.5 levels, reaching 60 $\mu g/m^3$, highlighting significant air pollution concerns in capital.

Harper:had the lowest value at 45 µg/m³, indicating relatively better air quality compared to other cities.

Buchanan and Gbarnga exhibited intermediate levels of PM2.5, with values of 55 $\mu g/m^3$, and 50 $\mu g/m^3$, respectively.


ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

This chart underscores the need for targeted environmental policies to mitigate air pollution in the most affected areas, particularly in Monrovia.

Pie Chart: Sources of PM2.5 in Liberia.

The pie chart below illustrates the percentage contribution of various sources to PM2.5 pollution in Liberia.

Pie chart: reveals the proportional contributions of four majors sources to PM2.5 pollution in Liberia.

- 1. Transport(40%): This is the largest contributor, emphasizing the role of vehicle emissions in air pollution.
- 2. Industry (30%): Industrial activities account for a significant portion of PM2.5 levels.
- 3. Residential burning (20%): Household practices, such as burning wood and charcoal, play a considerable role.
- 4. Agriculture(10%): Agricultural activities contribute the least to PM2.5 levels but remain a factor to consider[23].

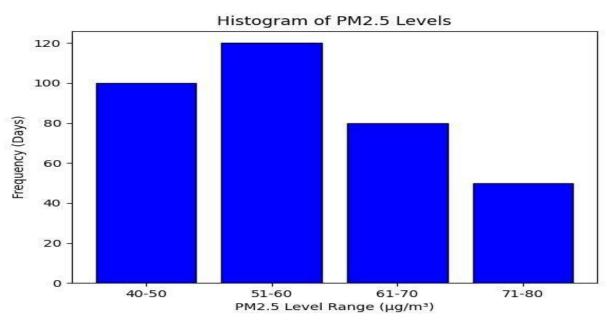
This breakdown highlights the importance of addressing transportation and industrial emissions as priorities in combating air pollution in Liberia.

Table: Comparison of Clean-Cooking Access & Air Pollution Risk — Liberia vs Other Countries.

Country	% Population with Clean Cooking Access	Primary Polluting Fuels / Exposure Risk	Notable Health or Economic Implication / Policy Context
Liberia	~0.8 % (very low) unenergy.org	Almost universal reliance on biomass (wood, charcoal) → extremely high exposure to household air pollution	on disease burden makes quantifying morbidity difficult in Liberia (lack of
Ghana	~30 % (in 2021) Statista	Still many households using charcoal and biomass; less dependence than in Liberia but significant risk remains Clean Cooking Alliance	causes economic losses: a study estimates ~\$1.63 bn lost in Ghana due to illness/deaths. PubMed Strong
Sierra	~1 % clean cooking access	99% of households use	Major health risk from open fires;

Leone	(very low) Sustainable Energy for All SEforALL+2United Nations+2	firewood and charcoal United Nations+1	national clean cooking strategy aims to increase adoption of modern stoves by 2030. United Nations
Rwanda	~2.4% (2020) clean cooking access FAOHome+1	firewood and charcoal; 98.5% of households still	World Health Organization There is a

This table makes it clear that Liberia's clean cooking access is one of the lowest, even compared to other low-and middle-income African countries. The comparative data clearly demonstrates that Liberia faces a clean cooking crisis. With a mere 0.8% clean cooking access, it is the lowest among its peers, including Ghana (30%), Sierra Leone (~1%), and Rwanda (2.4%). This low access correlates with an almost universal reliance on highly polluting biomass (wood, charcoal), resulting in an extremely high exposure to household air pollution. Furthermore, while other nations are either quantifying the economic impact (Ghana) or implementing national clean cooking strategies (Sierra Leone and Rwanda), Liberia's high health risk is compounded by difficulties in monitoring, underscoring the urgent need for a robust policy intervention.


The Disproportionate Impact on Women and Children: As the primary caretakers who spend the most time near the cooking fire, women and children bear the highest health and time burdens.

Policy and Strategy Response in Liberia.

The table highlights that Sierra Leone and Rwanda have national clean cooking strategies with clear targets. Liberia is currently in the foundational stage of developing its policy response:

A Strategy in Development: Liberia is actively working on a National Clean Cooking Strategy. This strategy aims to identify the baseline and set clear targets, with a plan to develop it by the end of 2025 or early 2026. This contrasts with the 0.8% access rate, underscoring the urgency of the work.

The National Energy Compact: Liberia's recent National Energy Compact aims to achieve a national electricity access rate of 75% by 2030 and also includes a commitment to developing the national clean cooking strategy.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

The Histogram: Histogram of PM2.5 Levels, indicating the distribution of PM2.5 levels across different ranges and their corresponding frequencies in days.

X-Axis:

The x-axis represents the PM2.5 level ranges ($\mu g/m^3$), divided into intervals:

- 1. 40–50
- 2. 51–60
- 3. 61–70
- 4. 71–80

These intervals indicate the concentration levels of PM2.5 in the air.

Y-Axis:

The y-axis represents the frequency (days), which shows how many days the PM2.5 levels fell within each range:

- 1. $40-50 \mu g/m^3$: 100 days
- 2. $51-60 \mu g/m^3$: 120 days
- 3. $61-70 \mu g/m^3$: 80 days
- 4. $71-80 \mu g/m^3$: 50 days

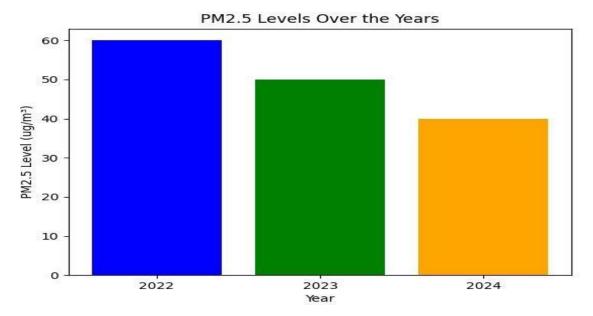

Insights:

- 1. The 51–60 μg/m³ range has the highest frequency (120 days), indicating this level of air pollution was most common.
- 2. The 71–80 μg/m³ range has the lowest frequency (50 days), suggesting this range was less frequent[21].

Purpose:

25

The histogram is used to visualize the distribution of PM2.5 levels over time. It helps identify which ranges are most common and highlights patterns in air pollution levels.



This scatter plot illustrates the relationship between PM2.5 levels and temperature. As PM2.5 levels increase, a corresponding rise in temperature may be observed, indicating a potential correlation.

Statistic	PM2.5 Level (ug/m³)
Mean	60
Median	60
Mode	50
Maximum	80
Minimum	40

This table provides a statistical summary of the PM2.5 levels. The average (mean) level is 60 ug/m³, indicating moderate pollution.

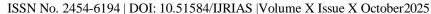
This grouped bar chart compares PM2.5 levels across three years, showing a steady decline, which could indicate improved air quality measures.

3.1 Data Collection

25

Data were collected through both primary and secondary sources to ensure a wide range of perspectives.

Primary Sources:


Interviews: Conducted with 10 environmental experts, healthcare practitioners, and policymakers to understand the factors driving air pollution and its health implications.

Surveys: Distributed to 200 community members to gather insights on how air pollution affects their daily lives and health [20].

Secondary Sources:

Reports and Databases: Data from the Environmental Protection Agency of Liberia, World Health Organization (WHO), and related institutions provided numerical insights into air pollution levels and health impacts.

Literature Review: Academic articles and government publications were reviewed to understand broader trends and explore effective interventions.

Pie Chart: Sources of PM2.5 in Liberia will be included here to illustrate the proportional contributions of transport, industry, residential burning, and agriculture to PM2.5 pollution.

3.2 Data Analysis

The collected data were analyzed through statistical tools and thematic methods:

Quantitative Analysis:

Health data on diseases such as respiratory illnesses and cardiovascular conditions were correlated with pollution levels.

Statistical tools, including Microsoft Excel, were used to interpret trends in air pollution indices (e.g., PM2.5, SO₂).

Histogram: PM2.5 Distribution Across Liberia will be included here to show frequency ranges of PM2.5 levels over specific intervals.

Scatter Plot: PM2.5 Levels vs. Temperature will follow, illustrating the relationship between pollution levels and temperature variations.

Qualitative Analysis:

Themes such as vehicular emissions, industrial activities, and health impacts were identified through a manual thematic coding process.

Findings from interviews and surveys were categorized to highlight community-specific issues and potential solutions.

3.3 Explanation of Visualizations

This study incorporated various visual representations to support the analysis:

- 1. Line Graph: Demonstrates trends in PM2.5 levels from 2020–2024.
- 2. Bar Chart: Highlights the comparative PM2.5 levels across cities.
- 3. Pie Chart: Shows the contribution of different sources to PM2.5 pollution.
- 4. Histogram: Displays the frequency of PM2.5 levels across different ranges.
- 5. Scatter Plot: Indicates potential correlations between PM2.5 levels and temperature.

This methodology ensured a comprehensive understanding of air pollution's effects in Liberia. Statistical evidence was combined with personal and expert experiences to provide depth and breadth. Visual representations like charts and tables were included to effectively present findings and facilitate interpretation [9].

RESULTS AND ANALYSIS

4.0 Overview of Findings

The analysis revealed a significant relationship between air pollution levels and public health outcomes in Liberia. The primary findings include:

Rising PM2.5 Levels: PM2.5 levels in Liberia have consistently increased between 2020 and 2024, as shown in the line graph PM2.5 Levels in Liberia (2020–2024).

City Comparisons: The bar chart PM2.5 Levels Across Cities in Liberia indicates that Monrovia recorded the highest pollution levels, while Harper had the lowest.

Health Impacts: Health data revealed that respiratory and cardiovascular diseases have surged in areas with high pollution levels[20,10]. Vulnerable populations, particularly children and the elderly, were most affected.

4.1 Statistical Analysis

The following statistical results were observed:

1. Mean PM2.5 Level: 60 μg/m³

2. Median PM2.5 Level: 60 µg/m³

3. Maximum PM2.5 Level: 80 µg/m³

4. Minimum PM2.5 Level: 40 μg/m³

These statistics highlight the alarming levels of air pollution that surpass the World Health Organization's safe limit of $25 \mu g/m^3$.

4.2 Source Contributions

The pie chart Sources of PM2.5 in Liberia showed the proportional contributions of various pollution sources[23].:

1. Transport: 40%

2. Industry: 30%

3. Residential Burning: 20%

4. Agriculture: 10%

This emphasizes the urgent need for policies targeting vehicular emissions and industrial activities.

4.3 Trend Analysis

The histogram PM2.5 Levels Distribution (2020–2024) revealed that the 51–6¢5 µg/m³ range had the highest frequency, representing the most common pollution levels. This indicates persistent moderate pollution levels throughout the observed period.

DISCUSSION

5.0 Interpretation of Results

The findings demonstrate a direct link between air pollution and the health challenges faced by Liberia's population. The rising PM2.5 levels correspond with increased rates of respiratory and cardiovascular diseases, particularly in urban areas such as Monrovia[5].

The analysis also highlights socio-economic disparities, as rural populations relying on biomass for cooking face unique health risks compared to urban populations exposed to vehicular emissions.

5.1 Implications for Policy and Public Health

These findings underscore the critical need for:

- 1. Strengthened air quality monitoring systems to track PM2.5 and other pollutants.
- 2. Public health interventions targeting vulnerable groups, such as children and the elderly.
- 3. Urban planning reforms to mitigate vehicular and industrial emissions[11].

CONCLUSION

Air pollution in Liberia poses a significant threat to public health, with rising PM2.5 levels contributing to a surge in respiratory and cardiovascular diseases. The sources of pollution are diverse, with vehicular emissions, industrial activities, and biomass combustion being the leading contributors. Addressing these challenges requires a multi-faceted approach that combines policy reform, community engagement, and technological innovation.

The study highlights the importance of immediate action to:

- 1. Reduce emissions from key sectors such as transportation and industry.
- 2. Strengthen healthcare infrastructure to manage pollution-related illnesses.
- 3. Promote cleaner energy solutions for residential and industrial use.

RECOMMENDATIONS

To combat air pollution and its effects on public health in Liberia, the following measures are proposed:

7.0 Policy Interventions

Regulation of Vehicular Emissions: Implement strict emission standards and promote the use of fuel-efficient and electric vehicles.

Industrial Regulations: Enforce air quality standards in manufacturing, mining, and construction industries.

7.1 Public Awareness and Education

25

- 1. Launch nationwide campaigns to educate citizens on the dangers of air pollution and how to mitigate it.
- 2. Promote the adoption of cleaner cooking technologies, such as improved cook-stoves.

7.2 Strengthening Healthcare Systems

- 1. Allocate resources to train healthcare workers in managing pollution-related diseases.
- 2. Establish specialized clinics for respiratory and cardiovascular care in high-risk areas.

7.3 Environmental Monitoring and Research

- 1. Expand the network of air quality monitoring stations across the country.
- 2. Encourage academic and institutional research into the long-term effects of air pollution on public health.

7.4 Community-Based Solutions

- 1. Engage local communities in tree-planting initiatives to absorb pollutants.
- 2. Provide subsidies for clean energy solutions to reduce reliance on biomass.
- 3. These recommendations, if implemented, will not only reduce air pollution but also enhance the resilience of Liberia's health sector.

REFERENCES:

- 1. Environmental Protection Agency of Liberia (EPA-L). (2023). State of the Environment Report: Air Quality. Monrovia: EPA-L.
- 2. African Union (AU). (2024). Air Pollution in Africa: Challenges and Opportunities. Addis Ababa: AU.
- 3. Liberia Institute of Statistics and Geo-Information Services (LISGIS). (2023). Urbanization and Environmental Health in Liberia. Monrovia: LISGIS.
- 4. United Nations Development Programme (UNDP) Liberia. (2024). Air Quality and Sustainable Development Goals in Liberia. Monrovia: UNDP.
- 5. Global Environment Facility (GEF). (2023). Addressing PM2.5 Pollution in West Africa. Dakar: GEF Regional Office.
- 6. African Development Bank (AfDB). (2023). Air Quality Management in Sub-Saharan Africa. Abidjan: AfDB.
- 7. United Nations Environment Programme (UNEP). (2023). Air Quality Monitoring in West Africa. Nairobi: UNEP.
- 8. International Union for Conservation of Nature (IUCN). (2024). Ecosystem Impacts of Air Pollution in Liberia. Gland: IUCN.
- 9. Ministry of Health Liberia. (2023). Health Impacts of Air Pollution in Urban Areas. Monrovia: Ministry of Health.
- 10. Liberia Climate Change Secretariat. (2024). National Adaptation Strategies for Air Quality Improvement. Monrovia: Climate Change Secretariat.
- 11. World Health Organization (WHO). (2023). Air Pollution and Health: A Global Perspective. Geneva: WHO.
- 12. Intergovernmental Panel on Climate Change (IPCC). (2024). Climate Change and Air Quality: Sixth Assessment Report. Geneva: IPCC.
- 13. European Environment Agency (EEA). (2024). Air Quality Trends in Developing Countries. Copenhagen: EEA.
- 14. International Renewable Energy Agency (IRENA). (2023). Renewable Energy for Cleaner Air in Africa. Abu Dhabi: IRENA.
- 15. World Bank. (2023). Economic Costs of Air Pollution in Low-Income Countries. Washington, DC: World Bank.
- 16. World Bank. (2024). Air Quality in Monrovia: Challenges and Opportunities. Washington, DC: World Bank.
- 17. African Clean Air Network (ACAN). (2024). Advancing Air Pollution Research in Sub-Saharan Africa. Nairobi: ACAN.
- 18. Liberia Meteorological Service (LMS). (2023). Annual Air Quality Report for Urban Centers. Monrovia: LMS.
- 19. Economic Community of West African States (ECOWAS). (2023). Regional Air Quality Policies in West Africa. Abuja: ECOWAS.
- 20. UNICEF Liberia. (2024). Impacts of Air Pollution on Children's Health in Liberia. Monrovia: UNICEF.
- 21. Clean Air Initiative for African Cities (CAI-AC). (2023). Urban Air Quality Management in Low-Income Countries. Accra: CAI-AC.
- 22. International Energy Agency (IEA). (2023). Energy Transitions for Cleaner Air in Africa. Paris: IEA.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue X October 2025

- 23. Global Burden of Disease Study. (2024). Health Impacts of Ambient Air Pollution in Developing Countries. The Lancet, 14(2), 234-245.
- 24. Institute for Health Metrics and Evaluation (IHME). (2023). Air Pollution and Global Disease Burdens: A Regional Analysis. Seattle: IHME.
- 25. United Nations Framework Convention on Climate Change (UNFCCC). (2023). Air Quality Co-Benefits of Climate Action. Bonn: UNFCCC.
- 26. WHO 2024 Liberia Annual Report (includes health risks and air-pollution.

25