INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue XI November 2025

$b-I_s$ – Open Sets and Decomposition of Continuity Via Idealization

V. Jevanthi

Dept. of Mathematics, Government Arts College for Women, Sivagangai - 630562, TamilNadu, India.

DOI: https://dx.doi.org/10.51584/IJRIAS.2025.101100094

Received: 04 December 2025; Accepted: 10 December 2025; Published: 19 December 2025

ABSTRACT

In this paper, we introduce the notion of $b-I_S$ – open sets and strong B_{IS} – sets to obtain decomposition of continuity via idealization. Additionally, we investigate properties of $b-I_S$ – open sets and strong B_{IS} – sets

Key words and Phrases: semi -I_S- open sets, pre-I_S- open sets, $\alpha - I_S$ - open sets, $b - I_S$ - open sets and strong B_{IS} - sets

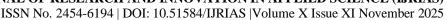
AMS Subject Classification: 54A05, 54A10.

INTRODUCTION

Ideal in topological spaces have been considered since 1966 by Kuratowski[9] and Vaidyanathaswamy[16]. After several decades, in 1990, Jankovic and Hammlet [7] investigated the topological ideals which is the generalization of general topology. Whereas in 2010, Khan and Noiri [8] introduced and studied the concept of semi local functions. In 2014, Shanthi and Rameshkumar [14] introduced semi -I_S- open sets, pre-I_S- open sets and $\alpha - I_S$ – open sets. In this paper we introduce the notions of $b - I_S$ – open sets and strong B_{IS} – sets to obtain decomposition of continuity. Let (X,τ) be a topological space and I is an ideal of subset of X. An ideal I on a topological space (X, τ) is a collection of nonempty subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^*:\wp(X)\to\wp(X)$, called the local function of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(I,\tau) = \{x \in X / U \cap A \notin Iforevery U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau / x \in U\}$ (Kuratowski 1966). A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(I,\tau)$ (Vaidyanathaswamy, 1945). When there is no chance for confusion ,we will simply write A^* for $A^*(I,\tau)$ and τ^* or $\tau^*(I)$ for $\tau^*(I,\tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal space. $\beta = \{G - A/G \in \tau, A \in I\}$ is a basis for τ^* (Jankovic and Hamlett, 1992). If $A \subset X$, cl(A) and int(A)will respectively denote the closure and the interior of A in (X, τ) and int $^*(A)$ will denote the interior of A in (X, τ^*) .

Definition1.1. Let (X, τ) be a topological space .A subset A of X is said to be semiopen[10] if there exists an open set U in X such that $U \subset A \subset cl(U)$. The complement of a semi-open set is said to be semi-closed. The collection of semi-open(resp. semiclosed) sets in X is denoted by SO(X) (resp. SC(X)). The semi-closure of A in (X, τ) is denoted by the intersection of of all semiclosed sets containing A and is denoted by SO(X).

Definition 1. 2. For $A \subset X$, $A_*(I,\tau) = \{x \in X/U \cap A \notin If or every U \in SO(X)\}$ is called the semi-local function [8] of A with respect to I and τ , where $SO(X,x) = \{U \in SO(X) : x \in U\}$. We simply write A_* instead of $A_*(I,\tau)$. It is given in [1] that $\tau^{*s}(I)$ is a topology on X, generated by the sub-basis $\{U - E : U \in SO(X) : and E \in I\}$ or



equivalently $\tau^{*s}(I) = \{U \subset X : cl^{*s}(X - U) = X - U\}$. The closure operator $cl^{*s}(A) = A \cup A_*$ and $int^{*s}(A)$ denote the interior of the set $A(X, \tau^{*s}, I)$. It is known that $\tau \subset \tau^*(I) \subset \tau^{*s}(I)$.

Lemma1.3[8]. Let (X, τ, I) be an ideal topological space and $A, B \subset X$

Then for the semi-local function the following properties hold:

- (i) If $A \subset B$, then $A_* \subset B_*$.
- (ii) If $U \in \tau$, then $U \cap A_* \subset (U \cap A)_*$

Definition 1.4.

A subset A of a topological space X is said to be

- (i) α open [12] if $A \subset \text{int}(cl(\text{int}(A)))$
- (ii) pre-open [11] if $A \subset \operatorname{int}(cl(A))$
- (iii) semi-open [10] if $A \subset cl(\text{int}(A))$.
- (iv) t-set [13] if int(A)=int(cl(A)).
- (v) b-open set [3] if $A \subset \operatorname{int}(cl(A)) \cup cl(\operatorname{int}(A))$.
- (vi) strong B-set [4] if $A = U \cap V$, where U is open, V is t-set and int(cl(A)) = cl(int(A)).

Definition 1.5.

A subset A of an ideal topological space (X, τ, I) is said to be

- (i) αI open [6] if $A \subset \operatorname{int} (cl^*(\operatorname{int}(A)))$
- (ii) $\operatorname{pre} I \operatorname{open} [5] \text{ if } A \subset \operatorname{int} (cl^*(A))$
- (iii) semi -I open [6] if $A \subset cl^*(\text{int }(A))$.
- (iv) b-I open [2] if $A \subset \operatorname{int}(cl^*(A)) \cup cl^*(\operatorname{int}(A))$
- (v) t-I-set [6]if $\operatorname{int}(cl^*(A)) = \operatorname{int}(A)$
- (vi) $B_I \text{set [6] if } A = U \cap V, U \in \tau \text{ and V is a t-I-set.}$
- (vii) Strong B_I set [2] if $A = U \cap V$, $U \in \tau$ and V is a t-I-set and int $(cl^*(V)) = cl^*(int(V))$.

Definition 1.6.

A subset A of an ideal space (X, τ, I) is said to be

(i)
$$\alpha - I_s$$
 - open [14] if $A \subset \operatorname{int} \left(cl^{*s} \left(\operatorname{int} \left(A \right) \right) \right)$

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue XI November 2025

(ii) pre
$$-I_S$$
 - open [14] if $A \subset \operatorname{int}(cl^{*s}(A))$

(iii) semi
$$-I_s$$
 - open [14] if $A \subset cl^{*s}$ (int (A)).

(iv)
$$t - I_s - \text{set } [14] \text{ int } (cl^{*s}(A)) = \text{int } (A).$$

(v)
$$B_{IS}$$
 -set [14] if $A = U \cap V$, where $U \in \tau$ and V is an $t - I_S$ -set.

The family of all $\alpha - I_S$ – open (resp. Semi – I_S – open, $Pre - I_S$ – open) sets an ideal topological space (X, τ, I) is denoted by $\alpha ISO(X)(resp.SISO(X), PISO(X))$.

Lemma1.8[15].Let (X, τ, I) be an ideal topological space and $A \subset X$

If U is open in
$$(X, \tau, I)$$
, then $U \cap cl^{*s}(A) \subset cl^{*s}(U \cap A)$.

$$2.b - I_S$$
 – open set

Definition 2.1 A subset A of an ideal space (X, τ, I) is said to be a $b - I_S$ -open set

if
$$A \subset \operatorname{int} (cl^{*s}(A)) \cup cl^{*s} (\operatorname{int} (A))$$
.

Proposition 2.1Le A be a $b - I_S$ -open set such that int(A) = ϕ , then A is pre - I_S -open.

Proof: Let A be a $b-I_s$ -open set. Then we have $A \subset \operatorname{int} (cl^{*s}(A)) \cup cl^{*s} (\operatorname{int}(A))$.

If int(A) = ϕ , then cl^{*s} (int (A)) = ϕ . Therefore, $A \subset \operatorname{int}(cl^{*s}(A)) \cup cl^{*s}$ (int (A)) becomes

$$A \subset \operatorname{int} \left(cl^{*s}(A) \right)$$

Proposition 2.2 For a sub set of an ideal space (X, τ, I) the following hold.

- (i) Every open set is $b I_s$ open.
- (ii) Every semi I_s open set is $b I_s$ open.
- (iii)Every pre $-I_s$ open set is $b-I_s$ open.
- (iv)Every $b I_s$ -open set is b-open.

Proof: (i),(ii),(iii) Obvious.

(iv)Let A be $b - I_s$ – open. Then we have

$$A \subset \operatorname{int} (cl^{*s}(A)) \cup cl^{*}(\operatorname{int}(A)) \subset \operatorname{int} (A^{*s} \cup A) \cup (\operatorname{int}(A))^{*s} \cup \operatorname{int} (A) \subset \operatorname{int} (scl(A) \cup A) \cup scl(\operatorname{int}(A)) \cup \operatorname{int} (A) \subset \operatorname{int} (cl(A)) \cup cl(\operatorname{int}(A)) \cup \operatorname{int} (A) \subset \operatorname{int} (cl(A)) \cup cl(\operatorname{int}(A))$$

This shows that A is b-open.

Remark2.1. Converse of the Proposition 2.2 need not be true as seen from the following examples.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue XI November 2025

Example 2.1Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\}$ and $I = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Then

(i) $A = \{a, b, c\}$ is $b - I_s$ - open but it is not semi - I_s - open.

(ii) $A = \{a, b, c\}$ is $b - I_s$ - open but it is not open.

Example 2.2. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $I = \{\phi, \{c\}\}$

(i) $A = \{b, c\}$ is $b - I_s$ - open but it is not pre $-I_s$ - open.

Example 2.3. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $I = \{\phi, \{b\}\}\}$.

Then $A = \{a, c, d\}$ is not b open but it is $b - I_s$ - open.

3. Strong B_{IS} – set

Definition 3.1. A subset A of an ideal space (X, τ, I) is called strong B_{IS} – set if $A = U \cap V$, where $U \in \tau$ and V is a $t - I_S$ – set and int $(cl^{*s}(V)) = cl^{*s}(\text{int}(V))$.

Proposition 3.1 Let (X, τ, I) be an ideal space and $A \subset X$. If A is a strong B_{IS} – set, then A is a B_{IS} – set.

Proof: Obvious

Remark 3.1. Converse of the Proposition 3.1 need not be true as seen from the following example.

Example 3.1Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $I = \{\phi\}$.

If $A = \{b\}$, then $\operatorname{int}(cl^{*s}(A)) = \{\phi\}$ and $\operatorname{int}(A) = \{\phi\}$. Hence A is a $t - I_S$ – set. Clearly A is a B_{IS} – set. But $\operatorname{int}(cl^{*s}(A)) = \{\phi\}$ and $cl^{*s}(\operatorname{int}(A)) = \{b\}$. Hence $\operatorname{int}(cl^{*s}(V)) \neq cl^{*s}(\operatorname{int}(V))$. So A is not a strong B_{IS} – set.

Theorem3.1 Let (X, τ, I) be an ideal space and $A \subset X$. Then the following conditions are equivalent:

- (i) A is open;
- (ii) A is $b I_s$ open and a strong B_{ls} set.

Proof: (i) \Rightarrow (ii) By Proposition 2.2, every open set is $b - I_S$ – open. On the other hand every open set is strong B_{IS} – set, because X is $t - I_S$ – set and int $(cl^{*s}(X)) = cl^{*s}(int(X))$.

 $(ii) \Rightarrow (i)$ Let A be $b-I_S$ open and a strong B_{IS} set. Then $A \subset \operatorname{int} \left(cl^{*s}(A) \right) \cup cl^{*s} \left(\operatorname{int}(A) \right) = \operatorname{int} \left(cl^{*s}(U \cap V) \right) \cup cl^{*s} \left(\operatorname{int}(U \cap V) \right)$ where U is open and V is a $t-I_S$ set and $\operatorname{int} \left(cl^{*s}(V) \right) = cl^{*s} \left(\operatorname{int}(V) \right)$. Hence $A \subset \left(\operatorname{int} \left(cl^{*s}(U) \right) \cap \operatorname{int} \left(cl^{*s}(V) \right) \right) \cup \left(cl^{*s} \left(\operatorname{int}(U) \right) \cap cl^{*s} \left(\operatorname{int}(V) \right) \right)$

$$\Rightarrow A \subset U \cap (\operatorname{int}(cl^{*s}(V)) \cup cl^{*s}(\operatorname{int}(V)))$$

$$\Rightarrow A \subset U \cap \operatorname{int}\left(cl^{*s}(V)\right)$$

$$\Rightarrow$$
 $A \subset U \cap \operatorname{int}(V) = \operatorname{int}(U) \cap \operatorname{int}(V) = \operatorname{int}(U \cap V) = \operatorname{int}(A)$.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue XI November 2025

So A is open.

Remark3.2. The notion of A is $b - I_S$ -openness is different from that of strong B_{IS} - sets.

- (i) In Example 2.1 $A = \{b, c\}$ is not $b I_s$ open .But int $(cl^{*s}(A)) = cl^{*s}(int(A)) = int(A) = \{b\}$.So A is a strong B_{IS} set.
- (ii) In Example 2.1 $A = \{a,b,c\}$ is $b I_S$ open .But int $(cl^{*s}(A)) = X$, $cl^{*s}(int(A)) = \{a,b,d\}$, int $(A) = \{a,b\}$. So A is not a strong B_{IS} set.

Decomposition of continuity

Definition 4.1.A function $f:(X,\tau)\to((Y,\sigma))$ is said to be b continuous[3] if for every $V\in\sigma$, $f^{-1}(V)$ is b open set of (X,τ) .

Definition 4.2. A function $f:(X,\tau,I)\to ((Y,\sigma))$ is said to be B_{IS} – continuous [14] (resp. semi – I – continuous [6], pre–I – continuous [5]) if for every $V\in \sigma$, $f^{-1}(V)$ is a B_{IS} – set(resp. semi – I – open set, pre–I – open set) of (X,τ,I) .

Definition 4.3. A function $f:(X,\tau,I)\to ((Y,\sigma))$ is said to be $\alpha-I_S$ – continuous[14](resp. semi $-I_S$ – continuous [14], pre $-I_S$ – continuous[14]) if for every $V\in \sigma$, $f^{-1}(V)$ is an $\alpha-I_S$ – open set(resp. semi $-I_S$ – open set, pre $-I_S$ – open set) of (X,τ,I) .

Definition 4.4. A function $f:(X,\tau,I)\to((Y,\sigma))$ is said to be $b-I_S$ – continuous, (resp. strong B_{IS} – continuous) if for every $V\in\sigma$, $f^{-1}(V)$ is a $b-I_S$ – set(resp. a strong B_{IS} – set)of (X,τ,I) .

Proposition 4.1 Let (X, τ, I) be an ideal space. If a function $f:(X, \tau, I) \to (Y, \sigma)$ is

semi $-I_s$ – continuous(res. pre $-I_s$ – continuous), then f is $b-I_s$ – continuous.

Proof: This is an immediate consequence of Proposition 2.2 (ii) and (iii).

Proposition 4.2 Let (X, τ, I) be an ideal space. If a function $f:(X, \tau, I) \rightarrow ((Y, \sigma))$

 $b-I_s$ – continuous, then f is b continuous.

Proof: This is an immediate consequence of Proposition 2.2 (iv).

Proposition 4.3 Let (X, τ, I) be an ideal space. If a function $f: (X, \tau, I) \rightarrow ((Y, \sigma))$

strong B_{IS} – continuous, then f is B_{IS} – continuous.

Proof: This is an immediate consequence of Proposition 3.1 (i).

Theorem 4.1. Let (X, τ, I) be an ideal space. For a function $f:(X, \tau, I) \to ((Y, \sigma))$ the following conditions are equivalent:

(i)f is continuous;

(ii) f is $b - I_s$ – continuous and strong B_{Is} – continuous.

Proof: This is an immediate consequence of Theorem 3.1.

REFERENCES

- 1. M.E.Abd El –Monsef,E.F.Lashien and A.A.Nasef,Some topological operators via ideals,Kyungpook Math.J..32.No 2(1992)273-284.
- 2. [2] A.Caksu Guler and G.Aslim,b-I-open sets and decomposition of continuity via idealization, Proceedings of Institute of Mathematics and Mecanics, National Academy of Sciences of Azerbaijan, Vol. 22, pp. 27-32, 2005.
- 3. Dimitrije Andrijevi.C,On b-open sets,MATHEMAT,48(1996),59-64.
- 4. J.Dontchev, Strong B-sets and another decomposition of continuity, Acta. Mathh. Hungar., 75(1997), 259-265.
- 5. J.Dontchev,Idealization of Ganster —Reilly decomposition theorems,http://arxiv.org/abs/Math.GN/9901017,5 Jan.1999
- 6. E.Hatir and T.Noiri,On decompositions of continuity via idealization,Acta.Math.Hunger.96(2002)341-349.
- 7. D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- 8. M.Khan and T.Noiri,Semi-local functions in ideal topological spaces,J.Adv.Res.Pure Math.2(2010),36-42
- 9. K.Kuratowski, Topology, Vol. I, Academic press, New York, 1966.
- 10. N.Levine, Semi-open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- 11. A.S.Mashhour, M.E.Abd. El-Monsef and S.N. El-deeb, On pre-continuous and weak pre-continuous mappings, Pro. Math. Phys. Soc.. Egypt, 53(1982), 47-53.
- 12. O.Njasted,On some nearly open sets,Pacific J.Math.15(1965),961-970
- 13. P.Samuels ,A topology formed from a given topology and ideal, Journal of the London Mathematical Society, Vol. 10, No. 4, pp. 409-416, 1975.
- 14. R.Shanthi and M.Rameshkumar, A decomposition of continuity in ideal topological spaces by using semi-local functions, Asian J.Math.Appl.(2014),1-11
- 15. R.Shanthi and M.Rameshkumar,On αI_s open sets and αI_s continuous functions,J.Math.Comput.Sci.5(2015).No.5,615-625.
- 16. R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960