4. Kolat, M., Kővári, B., Bécsi, T., & Aradi, S. (2023). Multi-agent Reinforcement Learning for
Traffic Signal Control: A Cooperative Approach. Sustainability, 15(4), 3479.
5. Qi, F., He, R., Yan, L., Yao, J., Wang, P., & Zhao, X. (2022, August). Traffic Signal Control with
Deep Q-Learning Network (DQN) Algorithm at Isolated Intersection. In 2022 34th Chinese
Control and Decision Conference (CCDC) (pp. 616-621). IEEE.
6. Jiang, S., Huang, Y., Jafari, M., & Jalayer, M. (2021). A Distributed Multi-agent Reinforcement
Learning with Graph Decomposition Approach for Large-scale Adaptive Traffic Signal
Control. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14689-14701.
7. Cornell University, 2019. Diagnosing Reinforcement Learning for Traffic Signal Control. [Online]
Available at: https://arxiv.org/abs/1905.04716
[Accessed 24 September 2024].
8. Ge, H., Gao, D., Sun, L., Hou, Y., Yu, C., Wang, Y., & Tan, G. (2021). Multi-agent Transfer
Reinforcement Learning with Multi-view Encoder for Adaptive Traffic Signal Control. IEEE
Transactions on Intelligent Transportation Systems, 23(8), 12572-12587.
9. Jiang, X., Zhang, J. and Wang, B. (2022) ‘Energy-Efficient Driving for Adaptive Traffic Signal
Control Environment via Explainable Reinforcement Learning’, Applied Sciences (Switzerland),
12(11). Available at: https://doi.org/10.3390/app12115380.
10. Kim, D. and Jeong, O. (2020) ‘Cooperative Traffic Signal Control with Traffic Flow Prediction in
Multi-intersection’, Sensors (Switzerland), 20(1). Available at: https://doi.org/10.3390/s20010137.
11. Munuhwa, S., 2020. Approaches for Reducing Urban Traffic Congestion in the City of Harare.
[Online] Available at:
https://www.researchgate.net/publication/361860503_Approaches_for_Reducing_Urban_Traffic_
Congestion_in_the_City_of_Harare [Accessed 11 October 2024].
12. Papageorgiou, M., Diakaki, C., Dinopoulou, V., Kotsialos, A., & Wang, Y. (2003). Review of Road
Traffic Control Strategies. Proceedings of the IEEE, 91(12), 2043-2067.
13. Ma, J., Li, C., Hong, L., Wei, K., Zhao, S., Jiang, H., & Qu, Y. (2025). Vision-based attention deep
q-network with prior-based knowledge. Applied Intelligence, 55(6), 565.
14. Zheng, G. et al. (2019) ‘Diagnosing Reinforcement Learning for Traffic Signal Control’. Available
at: http://arxiv.org/abs/1905.04716.
15. Spatharis, C. and Blekas, K. (2024) ‘Multiagent Reinforcement Learning for Autonomous Driving
in Traffic Zones with Unsignalized Intersections’, Journal of Intelligent Transportation Systems:
Technology, Planning, and Operations, 28(1), pp. 103–119. Available at:
https://doi.org/10.1080/15472450.2022.2109416.
16. Wang, T., Cao, J. and Hussain, A. (2021) ‘Adaptive Traffic Signal Control for Large-scale Scenario
with Cooperative Group-based Multi-agent Reinforcement Learning’, Transportation Research
Part C: Emerging Technologies, 125, p. 103046. Available at:
https://doi.org/10.1016/J.TRC.2021.103046.
17. Haimerl, M., Colley, M. and Riener, A. (2022) ‘Evaluation of Common External Communication
Concepts of Automated Vehicles for People with Intellectual Disabilities’, Proceedings of the
ACM on Human-Computer Interaction, 6(MHCI). Available at: https://doi.org/10.1145/3546717.
18. Cui, H. et al. (2020) ‘Convolutional neural network for recognizing highway traffic congestion’,
Journal of Intelligent Transportation Systems: Technology, Planning, and Operations. Taylor and
Francis Inc., pp. 279–289. Available at: https://doi.org/10.1080/15472450.2020.1742121.