3. Qadri, S. A. A., Huang, N. F., Wani, T. M., & Bhat, S. A. Plant Disease Detection and Segmentation
using End-to-End YOLOv8: A Comprehensive Approach. IEEE 13th International Conference on
Control System, Computing and Engineering (ICCSCE), 2023, pp. 155-160. IEEE.
https://doi.org/10.1109/ICCSCE58721.2023.10237169.
4. Wang, X., Liu, J. Vegetable Disease Detection Using an Improved YOLOv8 Algorithm in the
Greenhouse Plant Environment. Sci Rep 14, 2024, 4261. https://doi.org/10.1038/s41598-024-54540-9.
5. Abid, M. S. Z., Jahan, B., Al Mamun, A., Hossen, M. J., & Mazumder, S. H. Bangladeshi Crops Leaf
Disease Detection Using YOLOv8. Heliyon, 10, 2024, (18),
https://doi.org/10.1016/j.heliyon.2024.e36694.
6. Jackulin, C., & Murugavalli, S. A Comprehensive Review on Detection of Plant Disease using Machine
Learning and Deep Learning Approaches. Measurement: Sensors, 24, 2022, 100441.
https://doi.org/10.1016/j.measen.2022.100441.
7. Alatawi, A. A., Alomani, S. M., Alhawiti, N. I., & Ayaz, M. Plant disease detection using AI based
VGG-16 model. International Journal of Advanced Computer Science and Applications, 2022, 13(4).
https://doi.org/10.14569/IJACSA.2022.0130484.
8. Sujatha, R., Chatterjee, J. M., Jhanjhi, N. Z., & Brohi, S. N. Performance of deep learning vs machine
learning in plant leaf disease detection. Microprocessors and Microsystems, 2021,
https://doi.org/10.1016/j.micpro.2020.103615.
9. Panchal, A. V., Patel, S. C., Bagyalakshmi, K., Kumar, P., Khan, I. R., & Soni, M.. Image-based Plant
Diseases Detection Using Deep Learning. Materials Today: Proceedings, 80, 2021, pp. 3500-3506.
https://doi.org/10.1016/j.matpr.2021.07.281.
10. Badgujar, C. M., Poulose, A., & Gan, H. Agricultural Object Detection with You Only Look Once
(YOLO) Algorithm: A Bibliometric and Systematic LiterSature Review. Computers and Electronics in
Agriculture, 223, 2024, 109090. https://doi.org/10.1016/j.compag.2024.109090.
11. Alif, M. A. R., & Hussain, M. YOLOv1 to YOLOv10: A Comprehensive Review of YOLO Variants
and their Application in the Agricultural Domain. arXiv Preprint, 2024,
arXiv:2406.10139. https://doi.org/10.48550/arXiv.2406.10139.
12. Sonawane, S., & Patil, N. N. Comparative performance analysis of YOLO object detection algorithms
for weed detection in agriculture. Intelligent Decision Technologies, (Preprint), 2024, pp. 1-13.
https://doi.org/10.3233/IDT-240978.
13. Cuong, N. H. H., Trinh, T. H., Meesad, P., & Nguyen, T. T.. Improved YOLO Object Detection
Algorithm to Detect Ripe Pineapple Phase. Journal of Intelligent & Fuzzy Systems, 43(1), 2022, pp.
1365-1381. https://doi.org/10.3233/JIFS-213251.
14. Lippi, M., Bonucci, N., Carpio, R. F., Contarini, M., Speranza, S., & Gasparri, A.. A YOLO-based Pest
Detection System for Precision Agriculture. 29th Mediterranean Conference on Control and Automation
(MED) 2022, (pp. 342-347). https://doi.org/10.1109/MED51440.2021.9480344.
15. Ahmad, B., Noon, S. K., Ahmad, T., Mannan, A., Khan, N. I., Ismail, M., & Awan, T. Efficient Real-
Time Detection of Plant Leaf Diseases Using YOLOv8 and Raspberry Pi. VFAST Transactions on
Software Engineering, 12(2), 250-259. https://doi.org/10.21015/vtse.v12i2.1869.
16. Kavaliauskas, M., & Sledevič, T. Identification of Tomato Leaf Disease using YOLOv8 Detection
Models on GPU and Raspberry Pi. IEEE Open Conference of Electrical, Electronic and Information
Sciences (eStream) 1501 MR, 2024. pp. (1-3). https://doi.org/10.1109/eStream61684.2024.10542533
17. Dinesh, R., Mohan, H., Kumar, A. S., Mathai, A., & Deepak, S. Autonomous IoT-Integrated Tomato
Plant Disease Detection: Harnessing YOLOv8 Algorithm and Micro-Navigation for Precision
Agriculture. IEEE Recent Advances in Intelligent Computational Systems (RAICS) 2024, (pp. 1-6).
https://doi.org/10.1109/RAICS61201.2024.10689940.
18. Aftab, S., Lal, C., Beejal, S. K., & Fatima, A. Raspberry Pi (Python AI) For Plant Disease Detection.
Int. J. Curr. Res. Rev, 14, 2022, pp (36-42) http://dx.doi.org/10.31782/IJCRR.2022.14307.
19. Soetedjo, A., & Hendriarianti, E. Plant Leaf Detection and Counting in a Greenhouse During Day and
Night Time using A Raspberry Pi NoIR Camera. Sensors, 21(19), 2021, 6659.
https://doi.org/10.3390/s21196659
20. Sankar, M., Mudgal, D. N., & Jalinder, M. M. Green Leaf Disease Detection Using Raspberry Pi. 1st
International Conference on Innovations in Information and Communication Technology (ICIICT),
2019, (pp. 1-6). IEEE. https://doi.org/10.1109/ICIICT1.2019.8741508.