ACKNOWLEDGMENTS
We acknowledge all our collaborators and team members who made this work possible at Validus Institute Inc.
We also acknowledge Portland State University, Department of Electrical and Computer Engineering, led by
Dr. Faryar Etesami for his guidance and support.
REFERENCES
1. Berg, W. A., Zhang, Z., Lehrer, D., Jong, R. A., Pisano, E. D., Barr, R. G., Böhm-Vélez, M., Mahoney,
M. C., Evans, W. P., Larsen, L. H., Morton, M. J., Mendelson, E. B., Farria, D. M., Cormack, J. B.,
Marques, H. S., Adams, A., Yeh, N. M., Gabrielli, G., & ACRIN 6666 Investigators. (2012). Detection
of breast cancer with addition of annual screening ultrasound or a single screening MRI to
mammography in women with elevated breast cancer risk. JAMA, 307(13), 1394–1404.
https://doi.org/10.1001/jama.2012.388
2. Bunnell, A., Valdez, D., Strand, F., Glaser, Y., Sadowski, P., & Shepherd, J. A. (2025). Artificial
intelligence–enhanced handheld breast ultrasound for screening: A systematic review of diagnostic test
accuracy. PLOS Digital Health, 4(9), e0001019. https://doi.org/10.1371/journal.pdig.0001019
3. Duffy, S. W., Agbaje, O., Tabár, L., Vitak, B., Bjurstam, N., Björneld, L., Myles, J. P., & Warwick, J.
(2005). Overdiagnosis and overtreatment of breast cancer: Estimates of overdiagnosis from two trials
of mammographic screening for breast cancer. Breast Cancer Research, 7(6), 258.
https://doi.org/10.1186/bcr1354
4. Eisemann, N., Bunk, S., Mukama, T., Baltus, H., Elsner, S. A., Gomille, T., Hecht, G., Heywang-
Köbrunner, S., Rathmann, R., Siegmann-Luz, K., Töllner, T., Vomweg, T. W., Leibig, C., & Katalinic,
A. (2025). Nationwide real-world implementation of AI for cancer detection in population-based
mammography screening. Nature Medicine. https://doi.org/10.1038/s41591-024-03408-6
5. Giordano, L., von Karsa, L., Tomatis, M., Majek, O., de Wolf, C., Lancucki, L., del Moral, A., &
Esperanza, M. (2012). Mammographic screening programmes in Europe: Organization, coverage and
participation. Journal of Medical Screening, 19(Suppl 1), 72–82.
https://doi.org/10.1258/jms.2012.012085
6. Kim, S., Fischetti, C., Guy, M., Hsu, E., Fox, J., & Young, S. D. (2024). Artificial intelligence (AI)
applications for point-of-care ultrasound (POCUS) in low-resource settings: A scoping review.
Diagnostics, 14(15), 1669. https://doi.org/10.3390/diagnostics14151669
7. Khazaei, H., Khajehee, B., Khazaei, D., Oteibi, M., Abbas, K., Balaguru, B. (2025). Leveraging Vertex
AI for automated ultrasound image analysis: A comprehensive review. IJLTEMAS,14(8), 264–274.
https://doi.org/10.51583/IJLTEMAS.2025.1408000033
8. Lee, S. E., Yoon, J. H., Son, N. H., Han, K., & Moon, H. J. (2024). Screening in patients with dense
breasts: Comparison of mammography, artificial intelligence, and supplementary ultrasound. American
Journal of Roentgenology, 222(1), e2329655. https://doi.org/10.2214/AJR.23.29655
9. Nicholson, W. K., Silverstein, M., Wong, J. B., Barry, M. J., Chelmow, D., Coker, T. R., … U.S.
Preventive Services Task Force. (2024). Screening for breast cancer: U.S. Preventive Services Task
Force recommendation statement. JAMA, 331(22), 1918–1930. https://doi.org/10.1001/jama.2024.5534
10. Ohuchi, N., Suzuki, A., Sobue, T., Kawai, M., Yamamoto, S., Zheng, Y. F., … Ishida, T. (2016).
Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer
in the Japan Strategic Anti-cancer Randomized Trial (J-START): A randomized controlled trial. The
Lancet, 387(10016), 341–348. https://doi.org/10.1016/S0140-6736(15)00774-6
11. Oteibi, M., Tamimi, A., Abbas, K., Tamimi, G., Khazaei, D., & Khazaei, H. (2024). Advancing digital
health using AI and machine learning solutions for early ultrasonic detection of breast disorders in
women. International Journal of Research and Innovation in Applied Science, 11(9), 590–601.
https://doi.org/10.51244/IJRSI.2024.11110039
12. Oteibi, M., Khazaei, H., Abbas, K., Balaguru, B., Williams, A. R., & Etesami, F. (2025). Breast
imaging and omics for non-invasive integrated classification (BIONIC). International Journal of
Research and Innovation in Applied Science, 10(8), 826–835.
https://doi.org/10.51584/IJRIAS.2025.100800094
13. Oteibi, M., Tamimi, A., Abbas, K., Tamimi, G., Khazaei, D., & Khazaei, H. (2025). Breast tumor