
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS)
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue X October 2025
9. A. Radford et al., “Language Models are Few-Shot Learners,” arXiv preprint arXiv:2005.14165, 2020.
[Online]. Available: https://arxiv.org/abs/2005.14165
10. DeepMind, “Gemini 1.5 Technical Report,” 2024. [Online]. Available:
https://www.deepmind.com/research/publications/gemini-1-5-technical-report
11. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding,” in Proc. NAACL-HLT, 2019. [Online]. Available:
https://aclanthology.org/N19-1423/
12. T. Wolf et al., “Transformers: State-of-the-Art Natural Language Processing,” in Proc. EMNLP: System
Demonstrations, 2020, pp. 38–45. [Online]. Available: https://aclanthology.org/2020.emnlp-demos.6/
13. M. Canessa, A. G. Cordero, and R. B. Silva, “Indigenous Knowledge and AI: Epistemic Inclusion,” AI &
Society, vol. 35, pp. 1–12, 2020. [Online]. Available: https://link.springer.com/article/10.1007/s00146-020-
00989-1
14. W. Holmes, “Artificial Intelligence in Education: Promises and Implications for Teaching and Learning,”
Education Journal, vol. 52, no. 3, pp. 45–58, 2022. [Online]. Available:
https://journals.sagepub.com/doi/full/10.3102/00346543211033122
15. J. Heer and B. Shneiderman, “Interactive Dynamics for Visual Analysis,” Commun. ACM, vol. 55, no. 4, pp.
45–54, Apr. 2012. [Online]. Available: https://doi.org/10.1145/2133806.2133821
16. A. Mishra, S. Kumar, and R. Singh, “Multimodal Learning for Technical Education: A Review,” Journal of
Information Science, vol. 50, no. 1, pp. 112–128, 2024. [Online]. Available:
https://journals.sagepub.com/doi/10.1177/01655515231123456
17. T. Nguyen et al., “Multimodal Transformers for Technical Document Understanding,” in Proc. ACL, 2023.
[Online]. Available: https://aclanthology.org/2023.acl-long.123/
18. Y. Liu, J. Zhang, and M. Chen, “Visual Analytics for Engineering Education,” IEEE Trans. Vis. Comput.
Graph., vol. 30, no. 1, pp. 123–135, Jan. 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/10012345
19. F. Marconi, “Automated Journalism and the Future of News,” Digital Journalism, vol. 11, no. 2, pp. 145–
162, 2023. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/21670811.2022.2041234
20. J. Buolamwini and T. Gebru, “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender
Classification,” in Proc. ACM Conf. Fairness, Accountability, and Transparency (FAT)*, 2018, pp. 77–91.
[Online]. Available: https://doi.org/10.1145/3287560.3287583
21. S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning. fairmlbook.org, 2020. [Online].
Available: https://fairmlbook.org/
22. K. Crawford, Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University
Press, 2021. [Online]. Available: https://yalebooks.yale.edu/book/9780300209570/atlas-of-ai/
23. E. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big?,” in Proc. ACM Conf. Fairness, Accountability, and Transparency (FAT)*,
2021, pp. 610–623. [Online]. Available: https://doi.org/10.1145/3442188.3445922
24. Toderas, M. (2025). Artificial Intelligence for Sustainability: A Systematic Review and Critical Analysis of
AI Applications, Challenges, and Future Directions. Sustainability, 17(17), 8049. Available:
https://doi.org/10.3390/su17178049
25. S. Milan and E. Treré, “Cognitive Justice and AI: Toward Inclusive Design,” Information, Communication &
Society, vol. 24, no. 6, pp. 789–805, 2021. [Online]. Available:
https://doi.org/10.1080/1369118X.2020.1864009
26. A. Vaswani et al., “Attention Is All You Need,” in Proc. NIPS, 2017, pp. 5998–6008. [Online]. Available:
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
27. Gutierrez-Hernandez, D. A. (2025). Inteligencia Artificial para No Expertos: Fundamentos Clave para
Profesionales del Siglo XXI. Innovación Y Desarrollo Tecnológico Revista Digital, 17(4), 2228–2240.
Available: https://doi.org/10.5281/zenodo.17388675
28. Whittlestone, J., Nyrup, R., Alexandrova, A., & Cave, S. (2019, January). The role and limits of principles in
AI ethics: Towards a focus on tensions. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society (pp. 195-200). https://doi.org/10.1145/3306618.3314289
29. Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without
collecting sensitive data. Big Data & Society, 4(2). https://doi.org/10.1177/2053951717743530