
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS)
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue X October 2025
www.rsisinternational.org
dependencies in Yoruba text more effectively. Incorporating advanced grammatical correction algorithms and
phrase-level prediction capabilities that leverage Yoruba linguistic structures, including tonal patterns, vowel
harmony, and morphological inflection systems. Extending the current methodology to develop a comprehensive
multilingual autocompletion framework encompassing multiple African languages, facilitating cross-linguistic
transfer learning and resource sharing.
REFERENCES
1. Aditi, M. (2019). Understanding RNN and LSTM. What is Neural Network? | by Aditi Mittal | Medium.
https://aditi mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e
2. Adeyemi, Q. (2022). New Yoruba Data. Kaggle. https://www.kaggle.com/datasets/adeyemiquadri1/new-
yoruba-data
3. Adeniyi, K. (2020). Lexicalisation of tonal downstep in Yoruba. Canadian Journal of Linguistics/Revue
canadienne de linguistique, 65(4), 642-669. https://doi.org/10.1017/cnj.2020.22
4. Akindele, O., Jesujoba, O., Aderonke, S., & David, I. (2024). YAD: Leveraging T5 for Improved Automatic
Diacritization of Yoruba Text. AfricaNLP workshop at ICLR 2024. http://arxiv.org/abs/2412.20218v1
5. Akinola, O., Adeyemi, A., & Alabi, J. (2021). Character-level modeling of agglutinative morphology: A case
study of Yoruba. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (pp. 78-89). https://doi.org/10.18653/v1/2021.emnlp-main.7
6. Al-Anzi, F. S., & Shalini, S. T. B. (2024). Revealing the next word and character in Arabic: An effective
blend of long Short-Term memory networks and ARABERT. Applied Sciences, 14(22),
10498. https://doi.org/10.3390/app142210498
7. Asahiah, F. O., Odejobi, O. A., & Adagunodo, E. R. (2017). Restoring tone marks in standard Yorùbá
electronic text: Improved model. Computer Science, 18(3), 301-
315. https://doi.org/10.7494/csci.2017.18.3.2128
8. Atharv, P., Pushkar, P., Sumi, P., & Aniruddha, S. (2023). Next Word Prediction using Recurrent Neural
Networks. International Journal of Progressive Research in Engineering Management and Science, 3(2), 123-
132. https://doi.org/10.58257/IJPREMS32232
9. Hifny, Y. (2018). Hybrid LSTM/MaxEnt Networks for Arabic Syntactic Diacritics Restoration. IEEE Signal
Processing Letters, 25(10), 1515–1519. https://doi.org/10.1109/LSP.2018.2865098
10. Kumar, A., & Gupta, R. (2021). Natural Language Processing for Low-Resource Languages: Current Trends
and Future Directions. Artificial Intelligence Review, 54*(1), 1-23. https://doi.org/10.1007/s10462-020-
09934-2
11. Ogheneruemu, O., Adeyemi, M., & Olatunji, S. (2023). A syllable-based LSTM network for comprehensive
diacritic restoration in Yorùbá text. Journal of African Language Studies, 3(1), 45-
60. https://doi.org/10.1016/j.jals.2023.01.004
12. Rayhan, A., & Kinzler, R. (2023). Natural Language Processing: Transforming How Machines Understand
Human Language. RG, 2(2), 34900-99200. http://doi.org/10.13140/RG.2.2.34900.99200
13. Singh, A., & Patel, M. (2022). Advances in N-gram Language Modeling for Speech Recognition. Journal of
Speech Technology, 25(1), 15-30. https://doi.org/10.1007/s10772-021-09882-4
14. Ugwu, C. C., Oyewole, A. R., Popoola, O. S., Adetunmbi, A. O., & Elebute, A. (2024). A Part of Speech
Tagger for Yoruba Language Text using Deep Neural Network. Franklin Open, 5,
100185. https://doi.org/10.1016/j.fraope.2024.100185
15. VanamaYaswanth, Ajay Kumar, Neelesh Kumar Jain, Nilesh Kumar Patel (2023). Leveraging Bi-Directional
LSTM for Robust lyrics Generation in Telugu: Methodology and Improvements. Tuijin Jishu/Journal of
Propulsion Technology, 44(3), 1908–1913. https://doi.org/10.52783/tjjpt.v44.i3.618
16. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I.
(2017). Attention is all you need. In Advances in Neural Information Processing Systems 30 (NIPS
2017). https://doi.org/10.48550/arXiv.1706.03762
17. Yang, H., & Zhang, X. (2023). N-gram-Based Autocomplete: A Study on User Behavior and Predictive
Accuracy. Computers in Human Behavior, 141, 107572. https://doi.org/10.1016/j.chb.2023.107572