An Empirical Reliability Assessment and Forecast of the Auchi Power  
Distribution Network, Edo State, Nigeria.  
Umahon Ovbiagele¹*, Odiaise Friday², H.E. Amhenrior³  
¹,3Department of Electrical and Electronic Engineering, Edo State University, Uzairue, Edo State,  
Nigeria.  
²Department of Electrical and Electronic Engineering, University of Benin, Benin-City, Edo State,  
Nigeria.  
*Corresponding Author  
Received: 11 November 2025; Accepted: 18 November 2025; Published: 26 November 2025  
ABSTRACT  
This study presents an empirical reliability assessment and forecast of the Auchi power distribution network in  
Nigeria, addressing the scarcity of granular, data-driven analyses in the sector. Utilizing a case study research  
design, the study analyzed actual 2023 operational data for three 11kV feedersAuchi Town, Jattu, and Auchi  
GRAobtained from the Benin Electricity Distribution Company (BEDC). The methodology involved a  
quantitative, two-phase approach: first, computing standard reliability indices (SAIDI, SAIFI, CAIDI, ASAI)  
based on IEEE Standard 1366, and second, employing the Facebook Prophet time-series model to forecast  
ASAI values from 2024 to 2035. The empirical results for 2023 revealed critically low and variable reliability,  
with the Jattu feeder, for instance, recording an ASAI of 0.1614 in February, indicating power was available  
only 16.14% of the time. The forecast revealed starkly divergent feeder trajectories: stagnation for Auchi  
Town, seasonal variation for Jattu, and consistent improvement for Auchi GRA. These findings provide crucial  
evidence of significant service disparity and underscore the urgent need for feeder-specific investment and  
policy interventions. The study demonstrates a replicable framework combining reliability indices and  
predictive modeling to guide targeted maintenance and planning in similar contexts.  
Keywords: Reliability Indices, Predictive Modeling, Power Distribution  
LITERATURE REVIEW  
Predictive modeling has become a cornerstone of modern power system management, enabling a transition  
from reactive maintenance to proactive reliability management. Globally, machine learning techniques—  
ranging from decision trees and neural networks to advanced methods such as Long Short-Term Memory  
(LSTM) networkshave demonstrated significant effectiveness in forecasting outages and optimizing  
maintenance operations. The performance of these predictive models is commonly evaluated using  
standardized reliability indices such as the System Average Interruption Duration Index (SAIDI) and the  
System Average Interruption Frequency Index (SAIFI), which serve as essential benchmarks for assessing  
system reliability in various regions (Folarin et al., 2017; Kumar et al., 2018; Hashemi, 2021).  
The Nigerian power sector, characterized by persistent challenges such as inadequate infrastructure and  
frequent interruptions in supply (Dahunsi et al., 2022), stands to benefit substantially from the adoption of  
data-driven analytical tools. Predictive analytics provides a structured framework for prioritizing maintenance  
activities, optimizing network planning, and enhancing decision-making for improved reliability performance  
(Miroslaw Parol et al.., 2022; Parol et al., 2022). Despite these benefits, a clear limitation persists between the  
potential of predictive modeling and its practical implementation in Nigeria. Most existing studies remain  
Page 2599  
broad in scope, focusing on national policy or sector-wide challenges rather than detailed, empirical analysis at  
the feeder or substation level.  
In view of this shortcoming, the present study addresses the identified research gap by conducting a detailed  
reliability assessment and forecasting analysis for the specific 11 kV feeders of the Auchi distribution network.  
This research moves beyond national generalizations by applying a Python-based predictive modeling  
approach to a novel operational dataset. This methodology delivers granular, evidence-based insights and a  
replicable analytical framework that can inform targeted investment and operational strategies to improve  
power supply reliability in this underserved region.  
METHODOLOGY  
The research methodology was structured into three sequential phases: data collection, reliability indices  
calculation, and predictive modeling.  
3.1. Data Collection and Reliability Indices Calculation  
The foundation of this study is empirical outage data obtained from the Benin Electricity Distribution  
Company (BEDC) for three 11kV feedersAuchi Town, Jattu, and GRAcovering the period from January  
to December 2023. The raw dataset contained detailed records for each interruption event, including the date,  
time out, time in, duration (in hours), the number of affected customers, and the nature of the fault (e.g., Load  
Shedding, Earth Fault, Rupture of J&P Fuse). This data was meticulously cleaned and organized using  
Microsoft Excel to ensure accuracy and completeness before computational analysis. A sample of this  
preprocessed data for the Auchi Town feeder in January 2023 is presented in Table 1, illustrating the structure  
and nature of the records used.  
Table 1: Sample of Preprocessed Outage Data for Auchi Town Feeder (January 2023)  
S/N Date  
No.  
customers  
of Customer  
hour  
Time  
Out  
Time  
In  
Duration in  
Hours  
Nature of Fault  
1
1/1/2023  
00:00  
00:00  
11:00  
00:00  
00:00  
06:00  
00:00  
06:00  
06:04  
10:30  
17:00  
00:00  
06:00  
02:00  
09:00  
19:00  
04:00  
03:00  
16:40  
04:00  
08:00  
16:37  
15:00  
21:00  
03:00  
17:00  
2
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
4876  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Earth Fault  
2
1/1/2023  
1/1/2023  
1/1/2023  
1/1/2023  
2/1/2023  
2/1/2023  
3/1/2023  
3/1/2023  
3/1/2023  
3/1/2023  
3/1/2023  
4/1/2023  
9
21942  
19504  
9752  
3
8
4
4
5
3
7314  
6
10.67  
26013.46  
9752  
7
4
Load shedding  
Load shedding  
Earth Fault  
8
2
4876  
9
10.55  
4.5  
4
25720.9  
10971  
9752  
10  
11  
12  
13  
Load shedding  
Load shedding  
Load shedding  
Earth Fault  
3
7314  
11  
26818  
Page 2600  
14  
15  
16  
17  
4/1/2023  
5/1/2023  
5/1/2023  
5/1/2023  
00:00  
06:00  
17:20  
00:00  
03:00  
15:00  
00:00  
02:00  
3
2438  
2438  
2438  
2438  
7314  
Load shedding  
Rupture J&P fuse  
Load shedding  
9
21942  
16261.46  
4876  
6.67  
2
Load shedding  
No. Date  
Start Time End Time Duration (hrs) Load (kVA) Energy  
(kWh)  
Cause  
18 6/1/2023 06:00  
19 6/1/2023 00:00  
20 7/1/2023 06:02  
21 7/1/2023 19:03  
22 7/1/2023 00:00  
23 8/1/2023 06:00  
24 8/1/2023 00:00  
25 9/1/2023 12:00  
26 9/1/2023 18:00  
27 9/1/2023 23:00  
28 9/1/2023 00:00  
29 10/1/2023 05:00  
30 10/1/2023 00:00  
31 11/1/2023 07:00  
32 11/1/2023 17:00  
33 11/1/2023 00:00  
34 12/1/2023 06:00  
35 13/1/2023 00:00  
36 13/1/2023 16:18  
37 14/1/2023 00:00  
38 14/1/2023 05:00  
39 15/1/2023 00:00  
40 15/1/2023 05:00  
41 15/1/2023 16:00  
42 16/1/2023 00:00  
43 16/1/2023 05:00  
22:30  
02:00  
18:20  
20:03  
03:00  
15:00  
04:00  
14:00  
21:00  
00:00  
02:00  
13:00  
05:00  
16:00  
21:00  
03:00  
13:00  
04:00  
22:00  
02:00  
22:00  
02:00  
13:00  
22:00  
02:00  
21:00  
16.5  
2
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
40227  
4876  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Rupture J&P fuse  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Rupture J&P fuse  
Load shedding  
Over current  
12.3  
1
29987.4  
2438  
3
7314  
9
21942  
9752  
4
2
4876  
3
7314  
1
2438  
2
4876  
8
19504  
12190  
21942  
9752  
5
9
4
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Rupture J&P fuse  
Load shedding  
Load shedding  
Load shedding  
3
7314  
7
17066  
9752  
4
5.7  
2
13896.6  
4876  
17  
2
41446  
4876  
8
19504  
14628  
4876  
6
2
16  
39008  
Page 2601  
44 17/1/2023 00:00  
45 17/1/2023 07:00  
46 17/1/2023 16:00  
47 18/1/2023 00:00  
48 18/1/2023 05:00  
49 19/1/2023 00:00  
50 19/1/2023 05:00  
51 19/1/2023 14:00  
52 20/1/2023 00:00  
53 20/1/2023 05:00  
54 20/1/2023 16:22  
55 21/1/2023 00:00  
56 21/1/2023 05:00  
57 21/1/2023 17:00  
58 22/1/2023 00:00  
59 22/1/2023 05:00  
60 23/1/2023 00:00  
61 23/1/2023 06:00  
62 23/1/2023 18:00  
63 23/1/2023 23:00  
64 24/1/2023 00:00  
65 24/1/2023 06:00  
66 24/1/2023 17:00  
67 25/1/2023 02:20  
68 25/1/2023 13:00  
69 25/1/2023 23:00  
70 26/1/2023 00:00  
71 26/1/2023 05:00  
72 27/1/2023 01:35  
73 27/1/2023 06:30  
74 27/1/2023 12:00  
75 28/1/2023 05:00  
05:00  
14:00  
00:00  
02:00  
19:10  
02:00  
09:00  
00:00  
02:00  
14:30  
22:00  
02:00  
15:00  
22:00  
02:00  
14:00  
03:00  
15:00  
21:00  
00:00  
02:00  
14:00  
21:00  
04:00  
20:00  
00:00  
02:00  
22:00  
04:00  
09:45  
20:00  
14:35  
5
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
2438  
12190  
17066  
19504  
4876  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
7
8
2
14.17  
2
34546.46 Load shedding  
4876  
9752  
24380  
4876  
23161  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Earth fault  
4
10  
2
9.5  
5.63  
2
13725.94 Load shedding  
4876  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Over current  
10  
5
24380  
12190  
4876  
2
9
21942  
7314  
3
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Rupture J&P fuse  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Load shedding  
Rupture J&P fuse  
Load shedding  
9
21942  
7314  
3
1
2438  
2
4876  
8
19504  
9752  
4
1.67  
7
4071.46  
17066  
2438  
1
2
4876  
17  
2.42  
3.25  
8
41446  
5899.96  
7923.5  
19504  
9.58  
23356.04 Earth Fault  
Page 2602  
76 28/1/2023 17:40  
77 29/1/2023 01:00  
78 29/1/2023 05:00  
79 29/1/2023 14:00  
80 30/1/2023 05:00  
81 31/1/2023 05:00  
82 31/1/2023 14:00  
22:00  
03:00  
11:00  
22:00  
21:00  
10:00  
04:00  
4.33  
2
2438  
2438  
2438  
2438  
2438  
2438  
2438  
10556.54 Load shedding  
4876  
Load shedding  
Over current  
6
14628  
19504  
39008  
12190  
34132  
8
Load shedding  
Load shedding  
Load shedding  
Load shedding  
16  
5
14  
3.2 Computation of Reliability Indices  
Using the aggregated parameters, the standard reliability indices were computed for each feeder monthly in  
accordance with IEEE Standard 1366. The relevant equations used in these computations are presented as  
follows.  
The System Average Interruption Duration Index (SAIDI) is calculated as:  
SAIDI =  
(3.1)  
where is the restoration time for each interruption, and  
interruption event.  
is the number of interrupted customers for each  
The System Average Interruption Frequency Index (SAIFI) is calculated as:  
SAIFI =  
(3.2)  
where is the number of interruptions.  
The Customer Average Interruption Duration Index (CAIDI) is calculated as:  
CAIDI =  
(3.3)  
The Average Service Availability Index (ASAI) is calculated as:  
(N × H ) − ∑  
ASAI =  
N × H  
where  
(3.4)  
is the total number of customers,  
is the total hours in the period, and ∑  
is the sum of customer  
interruption durations.  
3.3. Predictive Modeling with Prophet  
To forecast future reliability, the Average Service Availability Index (ASAI) was chosen as the key predictive  
metric. The monthly ASAI values for 2023 were formatted into a time-series dataset. The Facebook Prophet  
library, an open-source procedure for forecasting time-series data based on an additive model, was employed.  
Prophet was selected for its particular robustness to missing data and shifts in the trend, and its ability to  
Page 2603  
effectively capture seasonal effects (Taylor & Letham, 2018), which aligns well with the characteristics of  
power outage data. The model was trained on the 2023 data and used to generate monthly ASAI forecasts for  
the period 20242035.  
RESULTS AND DISCUSSION  
4.1. Reliability Assessment for 2023  
The calculated reliability indices for the three feeders in 2023 are presented in Tables 2, 3, and 4. The results  
reveal critically low and variable service availability across the network.  
Table 2: Reliability Indices for Auchi Town 11kV Feeder (2023)  
Auchi 2023 Reliability Indices  
Month  
Jan  
SAIDI  
485.44  
419.05  
353.33  
347.52  
318.96  
372.81  
397.18  
410.14  
428.49  
331.44  
432.71  
474.97  
CAIDI  
5.92  
6.87  
7.52  
7.55  
6.25  
6.32  
5.59  
6.84  
6.70  
4.04  
6.01  
5.52  
SAIFI  
82  
ASAI  
Failure Rate  
0.1102  
0.0908  
0.0632  
0.0639  
0.0685  
0.0819  
0.0954  
0.0807  
0.0889  
0.1102  
0.1000  
0.1156  
0.3475  
0.3764  
0.5251  
0.5173  
0.5713  
0.4822  
0.4662  
0.4479  
0.4048  
0.5548  
0.3991  
0.3613  
Feb  
Mar  
Apr  
May  
Jun  
61  
47  
46  
51  
59  
Jul  
71  
Aug  
Sep  
Oct  
60  
64  
82  
Nov  
Dec  
72  
86  
Table 3: Reliability Indices for Jattu 11kV Feeder (2023)  
Jattu 2023 Reliability Indices  
Month  
Jan  
SAIDI  
402.28  
563.59  
378.65  
301.79  
330.19  
315.49  
CAIDI  
6.09  
SAIFI  
66  
ASAI  
Failure Rate  
0.0887  
0.4589  
0.1614  
0.4911  
0.5813  
0.5560  
0.5617  
Feb  
10.44  
6.88  
54  
0.0804  
Mar  
Apr  
55  
0.0739  
7.94  
38  
0.0528  
May  
7.03  
47  
0.0632  
Jun  
5.95  
53  
0.0736  
Page 2604  
Jul  
388.67  
371.97  
317.41  
469.77  
444.78  
484.77  
5.80  
7.15  
5.57  
6.81  
6.35  
7.03  
67  
52  
57  
69  
70  
69  
0.4772  
0.5000  
0.5592  
0.3686  
0.3823  
0.3488  
0.0900  
0.0699  
0.0792  
0.0927  
0.0972  
0.0927  
Aug  
Sep  
Oct  
Nov  
Dec  
Table 4: Reliability Indices for Auchi GRA 11kV Feeder (2023)  
GRA 2023 Reliability Indices  
Month  
Jan  
SAIDI  
451.94  
334.37  
305.38  
333.52  
338.94  
282.08  
304.71  
388.46  
380.43  
422.50  
384.71  
402.58  
CAIDI  
5.20  
5.87  
5.18  
6.67  
4.64  
4.34  
4.42  
5.47  
5.01  
5.09  
4.63  
4.97  
SAIFI  
87  
ASAI  
Failure Rate  
0.1170  
0.0848  
0.0793  
0.0694  
0.0981  
0.0903  
0.0927  
0.0954  
0.1056  
0.1116  
0.1153  
0.1089  
0.3925  
0.5023  
0.5894  
0.5373  
0.5439  
0.6083  
0.5901  
0.4777  
0.4718  
0.4322  
0.4660  
0.4589  
Feb  
Mar  
Apr  
May  
Jun  
57  
59  
50  
73  
65  
Jul  
69  
Aug  
Sep  
Oct  
71  
76  
83  
Nov  
Dec  
83  
81  
4.2. Forecasted ASAI Trends (2024-2035)  
The forecast of ASAI values from 2024 to 2035 for the three feeders are presented in Tables 5, 6, and 7, while  
Figures 1, 2, and 3 present the forecast trends.  
Table 5: Forecasted ASAI Values for Auchi Town Feeder (20242035)  
Mont 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035  
h
Jan  
0.458 0.459 0.459 0.459 0.460 0.460 0.460 0.461 0.461 0.461 0.461 0.462 0.462  
9
2
5
8
1
4
7
3
6
9
2
5
Feb  
0.161 0.161 0.162 0.162 0.162 0.162 0.163 0.163 0.163 0.164 0.164 0.164 0.165  
4
7
3
6
9
2
5
8
1
4
7
Page 2605  
Mar 0.491 0.491 0.491 0.492 0.492 0.492 0.492 0.493 0.493 0.493 0.494 0.494 0.494  
1
4
7
3
6
9
2
5
8
1
4
7
Apr  
0.581 0.581 0.581 0.582 0.582 0.582 0.583 0.583 0.583 0.584 0.584 0.584 0.584  
3
6
9
2
5
8
1
4
7
3
6
9
May 0.556 0.556 0.556 0.556 0.557 0.557 0.557 0.558 0.558 0.558 0.559 0.559 0.559  
3
6
9
2
5
8
1
4
7
3
6
Jun  
Jul  
0.561 0.562 0.562 0.562 0.562 0.563 0.563 0.563 0.564 0.564 0.564 0.565 0.565  
7
3
6
9
2
5
8
1
4
7
3
0.477 0.477 0.477 0.478 0.478 0.478 0.479 0.479 0.479 0.479 0.480 0.480 0.480  
2
5
8
1
4
7
3
6
9
2
5
8
Aug 0.5  
0.500 0.500 0.500 0.501 0.501 0.501 0.502 0.502 0.502 0.503 0.503 0.503  
3
6
9
2
5
8
1
4
7
3
6
Sep  
Oct  
0.559 0.559 0.559 0.560 0.560 0.560 0.561 0.561 0.561 0.561 0.562 0.562 0.562  
2
5
8
1
4
7
3
6
9
2
5
8
0.368 0.368 0.369 0.369 0.369 0.370 0.370 0.370 0.371 0.371 0.371 0.371 0.372  
6
9
2
5
8
1
4
7
3
6
9
2
Nov 0.382 0.382 0.382 0.383 0.383 0.383 0.384 0.384 0.384 0.385 0.385 0.385 0.385  
3
6
9
2
5
8
1
4
7
3
6
9
Dec  
0.348 0.349 0.349 0.349 0.35 0.350 0.350 0.350 0.351 0.351 0.351 0.352 0.352  
8
1
4
7
3
6
9
2
5
8
1
4
Table 6: Forecasted ASAI Values for Jattu Feeder (20242035)  
Mont 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035  
h
Jan  
0.458 0.452 0.445 0.439 0.434 0.429 0.424 0.420 0.415 0.411 0.408 0.404 0.401  
9
1
8
9
4
3
5
0
8
8
1
6
3
Feb  
0.161 0.178 0.194 0.210 0.225 0.239 0.253 0.266 0.279 0.292 0.304 0.316 0.327  
4
3
5
1
1
5
4
8
7
2
3
0
3
Mar 0.491 0.483 0.475 0.468 0.462 0.456 0.450 0.444 0.439 0.434 0.429 0.425 0.421  
1
2
8
8
2
0
1
6
4
5
9
5
4
Apr  
0.581 0.571 0.562 0.553 0.545 0.537 0.529 0.522 0.515 0.509 0.503 0.497 0.492  
3
4
1
3
0
1
7
6
9
6
6
9
5
May 0.556 0.546 0.537 0.529 0.521 0.514 0.507 0.500 0.494 0.487 0.482 0.476 0.471  
0
7
9
6
7
2
1
4
0
9
1
6
4
Jun  
Jul  
0.561 0.552 0.543 0.535 0.527 0.519 0.512 0.506 0.499 0.493 0.487 0.482 0.477  
7
4
6
3
4
9
8
1
7
6
8
3
1
0.477 0.469 0.462 0.455 0.448 0.442 0.436 0.431 0.425 0.420 0.416 0.411 0.407  
2
5
2
3
8
6
7
2
9
9
2
7
5
Page 2606  
Aug 0.500 0.491 0.484 0.476 0.469 0.463 0.457 0.451 0.445 0.440 0.435 0.431 0.426  
0
8
1
8
9
4
2
4
9
7
8
1
7
Sep  
Oct  
0.559 0.549 0.541 0.532 0.524 0.517 0.510 0.503 0.497 0.491 0.485 0.480 0.474  
2
9
1
8
9
5
4
7
4
3
6
1
9
0.368 0.381 0.393 0.404 0.415 0.426 0.436 0.446 0.455 0.464 0.473 0.482 0.490  
6
2
2
7
7
3
5
3
7
8
6
0
2
Nov 0.382 0.394 0.406 0.417 0.428 0.438 0.448 0.458 0.467 0.476 0.485 0.493 0.502  
3
6
3
6
4
8
8
5
8
8
5
9
0
Dec  
0.348 0.361 0.374 0.386 0.397 0.408 0.419 0.429 0.439 0.448 0.458 0.467 0.475  
8
8
2
1
5
5
1
4
3
9
2
2
9
Table 7: Forecasted ASAI Values for Auchi GRA Feeder (20242035)  
Mont 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035  
h
Jan  
0.392 0.405 0.418 0.430 0.443 0.456 0.469 0.482 0.494 0.507 0.520 0.533 0.546  
5
3
1
9
7
5
3
1
9
7
5
3
1
Feb  
0.502 0.512 0.522 0.532 0.543 0.553 0.563 0.573 0.583 0.594 0.604 0.614 0.624  
3
5
7
9
1
3
5
7
9
1
3
5
7
Mar 0.589 0.597 0.605 0.612 0.620 0.628 0.636 0.644 0.651 0.659 0.667 0.675 0.683  
4
2
0
8
6
4
2
0
8
6
4
2
0
Apr  
0.537 0.547 0.556 0.566 0.576 0.586 0.596 0.605 0.615 0.625 0.635 0.645 0.654  
3
1
9
7
5
3
1
9
7
5
3
1
9
May 0.543 0.553 0.563 0.572 0.582 0.591 0.601 0.611 0.620 0.630 0.639 0.649 0.659  
9
5
1
7
3
9
5
1
7
3
9
5
1
Jun  
Jul  
0.608 0.616 0.624 0.632 0.641 0.649 0.657 0.665 0.673 0.682 0.690 0.698 0.706  
3
5
7
9
1
3
5
7
9
1
3
5
7
0.590 0.598 0.606 0.615 0.623 0.632 0.640 0.648 0.657 0.665 0.674 0.682 0.690  
1
5
9
3
7
1
5
9
3
7
1
5
9
Aug 0.477 0.489 0.500 0.512 0.524 0.535 0.547 0.558 0.570 0.582 0.593 0.605 0.616  
7
3
9
5
1
7
3
9
5
1
7
3
9
Sep  
Oct  
0.471 0.483 0.494 0.506 0.517 0.528 0.540 0.551 0.563 0.574 0.585 0.597 0.608  
8
2
6
0
4
8
2
6
0
4
8
2
6
0.432 0.444 0.457 0.469 0.481 0.494 0.506 0.519 0.531 0.543 0.556 0.568 0.581  
2
6
0
4
8
2
6
0
4
8
2
6
0
Nov 0.466 0.477 0.489 0.500 0.512 0.524 0.535 0.547 0.558 0.570 0.582 0.593 0.605  
0
6
2
8
4
0
6
2
8
4
0
6
2
Dec  
0.458 0.470 0.482 0.494 0.506 0.518 0.530 0.542 0.554 0.566 0.578 0.590 0.602  
9
9
9
9
9
9
9
9
9
9
9
9
9
Figure 1: Forecasted ASAI Trend for Auchi Town 11 kV Feeder (2023-2035) (A line graph showing a nearly  
flat, horizontal trend for all months over the forecast period, indicating stagnation.)  
Page 2607  
Figure 2: Forecasted ASAI Trend for Jattu 11 kV Feeder (2023-2035) (A line graph showing diverging trends,  
with values for months like January and March decreasing, while values for months like February and  
November increase over the forecast period.)  
Figure 3: Forecasted ASAI Trend for Auchi GRA 11 kV Feeder (2023-2035) (A line graph showing  
consistent upward trend for all months over the forecast period, indicating steady improvement.)  
a
DISCUSSION OF FINDINGS  
The forecasted ASAI trends from 2024 to 2035 paint a starkly contrasting picture of the future reliability of the  
three 11 kV feeders, as summarized in Table 8.  
Table 8: Summary of Forecasted Reliability Trends  
Feeder  
Name  
Figure  
Reference  
Table  
Reference  
Overall Trend  
Stagnant  
Key Observation  
Auchi  
Town  
Figure 1  
Figure 2  
Figure 3  
Table 5  
Table 6  
Table 7  
No significant change forecasted;  
reliability remains critically low.  
Jattu  
Diverging  
Improving  
Mixed forecast; some months show  
improvement while others show decline.  
Auchi  
GRA  
Consistent, positive growth in ASAI  
across all months.  
Auchi Town Feeder: A State of Stagnation. Figure 1 and Table 5 show an almost perfectly flat trend. The  
ASAI values are forecasted to remain virtually constant over the entire 13-year period. This forecast suggests a  
state of stagnation, implying that no significant improvements in the feeder's infrastructure, maintenance, or  
operational practices are anticipated. The reliability, which starts at a critically low level, is predicted to remain  
so, indicating a severe and unaddressed reliability crisis.  
Jattu Feeder: A Complex, Diverging Future. Figure 2 and Table 6 reveal a clear diverging trend. The ASAI  
for some months is forecasted to decrease, while for others it is forecasted to increase. This indicates a seasonal  
shift in reliability patterns, suggesting that factors affecting reliability are expected to impact certain months  
more negatively in the future. This mixed forecast points to an uncertain and unpredictable future for  
customers on this feeder.  
Auchi GRA Feeder: A Trajectory of Consistent Improvement. Figure 3 and Table 7 display a strong and  
consistent upward trend across all months. This is a positive forecast, indicating planned and sustained  
improvements in the feeder's reliability, likely due to targeted investments or proactive maintenance.  
Overall, the data highlights a significant disparity in the projected quality of electricity service, strongly  
suggesting that utility planning and investment are not uniform. Auchi GRA is being prioritized while Auchi  
Town is neglected, and Jattu receives inconsistent attention.  
CONCLUSION  
This study provided a granular, data-driven assessment and forecast of the reliability of the Auchi distribution  
network. The 2023 baseline data confirmed critically low levels of service availability across all three feeders.  
The forecasting exercise revealed starkly divergent paths: consistent improvement for Auchi GRA, complex  
seasonal variation for Jattu, and debilitating stagnation for Auchi Town. These findings underscore a critical  
service disparity within the same network. The study demonstrates the efficacy of combining standard  
reliability indices with predictive modeling to diagnose specific problems and anticipate future performance,  
Page 2608  
providing a replicable framework for utility managers and policymakers in similar contexts. The forecast for  
Auchi Town, in particular, serves as a stark warning that without intervention, customers on this feeder will  
continue to endure an unreliable power supply for the foreseeable future.  
RECOMMENDATIONS  
Based on the findings of this study, the following recommendations are proposed:  
1. Prioritize Investment in the Auchi Town Feeder: The Benin Electricity Distribution Company  
(BEDC) and relevant regulatory bodies should initiate an urgent, capital-intensive rehabilitation project  
for the Auchi Town feeder. This should include infrastructure upgrades and the implementation of an  
automated fault management system to address the forecasted stagnation.  
2. Conduct Root Cause Analysis for Disparate Performance: A detailed investigation should be  
commissioned to understand why the Auchi GRA feeder is projected to improve while others are not.  
This will help identify successful strategies that can be replicated across the network.  
3. Adopt Data-Driven Planning as Standard Practice: BEDC should institutionalize the methodology  
demonstrated in this study. Regular computation of reliability indices and forecasting should be  
integrated into the utility's planning cycle to enable proactive, evidence-based decision-making.  
REFERENCES  
1. I. F. Onuoha, "Power sector reform and electricity generation in Nigeria," Journal of Energy in  
Southern Africa, vol. 23, no. 2, pp. 1015, 2012.  
2. F. M. Dahunsi, O. A. Abdul-Lateef, A. O. Melodi, A. A. Ponnle, O. A. Sarumi, and K. A. Adedeji,  
"Smart grid systems in Nigeria: Prospects, issues, challenges, and way forward," FUOYE Journal of  
Engineering and Technology, vol. 7, no. 2, pp. 183192, 2022.  
3. E. T. Fasina, "Localised energy systems in the Nigerian power network," Energy Journal of Nigeria,  
vol. 12, no. 4, pp. 112118, 2019.  
4. U. Udo and O. Belo, "The Nigerian Electricity Act 2023: Illuminating the path towards power sector  
transformation in Nigeria," Journal of Nigerian Energy Law, vol. 35, no. 2, pp. 89102, 2023.  
5. S. M. Folarin, G. A. Adepoju, and O. A. Akinloye, "Reliability assessment of a power distribution  
system using artificial neural networks," Nigerian Journal of Electrical Engineering, vol. 13, no. 2,  
pp. 4557, 2017.  
6. S. Kumar, R. K. Saket, D. K. Dheer, J. B. Holm-Nielsen, and P. Sanjeevikumar, "Reliability  
enhancement of electrical power systems including impacts of renewable energy sources: A  
comprehensive review," IET Generation, Transmission & Distribution, vol. 14, no. 10, pp. 1635–  
1644, 2020.  
7. M. Hashemi, "The economic value of unsupplied electricity: Evidence from Nepal," Energy  
Economics, vol. 95, Article 105124, 2021.  
8. M. Parol, J. Kozłowski, and P. Kacejko, "Impact of distributed generation on reliability indices in  
medium-voltage distribution systems," Energies, vol. 15, no. 11, p. 4082, 2022.  
9. M. Parol, K. Piotrowski, and A. Parol, "Reliability analysis of MV electric distribution networks  
including distributed generation and ICT infrastructure," Energies, vol. 15, no. 14, p. 5311, 2022.  
10. S. J. Taylor and B. Letham, "Forecasting at scale," The American Statistician, vol. 72, no. 1, pp. 37–  
45, 2018.  
Page 2609