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ABSTRACT 

Accurate mapping of aboveground biomass in tropical peatland forests remains challenging due to the 

complexity of vegetation structure, hydrological regimes, and data heterogeneity across sensors. This review 

synthesizes multi‑sensor remote sensing and machine‑learning approaches for aboveground biomass estimation 

in Vietnam’s Melaleuca wetlands, aiming to establish a standardized framework of terminology, metrics, and 

environmental covariates for future research and applications. By harmonizing key indicators such as canopy 

height, texture, soil-hydro-geomorphological variables, and validation metrics (R², RMSE), the framework 

enhances reproducibility, comparability, and data integration across scales. The study further consolidates a 

practical roadmap encompassing data acquisition, feature engineering, modeling, and validation stages - 

culminating in uncertainty‑aware biomass mapping that bridges research and operational implementation. 

Beyond synthesizing existing studies, this work provides actionable guidance for open‑access workflows and 

policy‑oriented applications in carbon accounting and wetland restoration. The proposed standardized approach 

thus supports both scientific and managerial communities in advancing sustainable management of Vietnam’s 

Melaleuca peat ecosystems and will help standardize future aboveground biomass mapping across Southeast 

Asian wetlands. 

Keywords: L-band SAR, LiDAR and GEDI, Melaleuca aboveground biomass, Multi-sensor data fusion, Spatial 

and spatio-temporal cross-validation 

INTRODUCTION 

Melaleuca-dominated wetlands are globally important carbon reservoirs and biodiversity refuges, yet their 

aboveground biomass (AGB) remains challenging to map reliably at scale. Peat accumulation, acid-sulfate soils, 

strongly coupled hydrology and microtopography, and frequent radar/optical saturation in dense stands 

complicate both field estimation and remote-sensing (RS) inference, producing spatially heterogeneous 

allometry and sensor responses that impede model transferability. Field and remote studies have documented 

substantial variation in AGB drivers and signal behavior across these substrates, underscoring the need for 

tailored approaches (Huy et al., 2016; Kappas, 2020; Nam et al., 2016; Tran et al., 2015; Zadbagher et al., 2024). 

Recent advances in multi-sensor fusion (light detection and ranging [LiDAR]/ global ecosystem dynamics 

investigation [GEDI], L-band synthetic aperture radar (SAR), Sentinel-1/2), machine learning, and 

multi-temporal analysis show promise for improving accuracy, but reported performance varies widely and is 

sensitive to validation strategy, sensor choice, and environmental covariates (Balestra et al., 2024; Musthafa & 

Singh, 2022; Nguyen et al., 2024; Zhang et al., 2019, 2020). Moreover, many studies report optimistic accuracies 

when spatial autocorrelation is not properly accounted for; best practices now emphasize spatial or 

spatio-temporal blocking for robust out-of-sample assessment (Roberts et al., 2017; Valavi et al., 2019). At the 

same time, localized allometry (diameter at breast height [DBH] - height - wood density) and site-specific 
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predictors (hydroperiod, peat depth, salinity, microtopography) critically influence both AGB and sensor signals, 

and must be integrated into modelling workflows to achieve transferable maps (Ngo et al., 2023; Tran et al., 

2015). 

This review synthesizes these developments with the explicit aim of informing robust AGB mapping in 

Melaleuca wetlands. We (i) summarize methodological accuracy and observed performance ranges and their 

drivers, (ii) evaluate multi-sensor and temporal data integration strategies, (iii) discuss computational and 

practical modelling considerations, and (iv) identify the hydrology - geomorphology - soil covariates most 

important for transferability. Throughout, we adopt consistent terminology (e.g., L-band SAR, LiDAR, GEDI, 

Sentinel-1/2) and report performance metrics using the coefficient of determination (R2) and root mean square 

error (RMSE) (Mg·ha-1) for comparability. The review concludes with a concise practical roadmap for 

scaffolded, uncertainty-aware mapping suited to Melaleuca landscapes.  

Remote Sensing-Based Aboveground Biomass Mapping: Methods, Data Integration, Validation, And 

Scaling 

Estimating AGB from RS underpins carbon accounting, REDD+, and long-term forest monitoring. In Vietnam 

where Melaleuca cajuputi (cajeput) forests are widespread across the Mekong Delta, models must be both 

accurate and scalable, yet sensitive to site-specific conditions (peat soils, acid sulfate soils, and fluctuating 

hydrology). Recent literature shows a shift from traditional regressions toward ML and multi-sensor data fusion 

(optical - SAR - LiDAR/UAV), coupled with stricter spatial-temporal validation schemes to avoid optimistic 

accuracy assessments. This section provides a review of methodological accuracy, data integration, 

computational complexity, and spatio-temporal resolution, and discusses their implications for Melaleuca forests 

in Vietnam. 

METHODOLOGICAL ACCURACY 

Reported model performance for RS-based AGB is commonly summarized with R2 and RMSE. Across studies, 

observed R2 values vary widely (approx. 0.59 - 0.95), with RMSE dependent on forest type, sensor combination, 

and modelling strategy; for comparability this review reports RMSE in Mg·ha-1 where possible (Nguyen et al., 

2024; Zhang et al., 2019, 2020). In general, models that integrate structural information (LiDAR/GEDI) with 

spectral and radar predictors and that use advanced learning architectures report the highest fits (deep-learning 

examples reaching R2 ≈ 0.93 - 0.95 in some settings), while single-source optical models more frequently 

occupy the lower end of the observed range. Structurally complex or radar/optically saturated systems (e.g., 

tropical peat swamp forests) often yield substantially lower test R2 (≈ 0.21 - 0.70), reflecting signal saturation 

and heterogeneous allometry (Zadbagher et al., 2024). 

Machine learning approaches (random forest [RF], support vector regression, gradient-boosted trees, and neural 

networks) typically reduce prediction error relative to simple linear or multiple regression baselines, particularly 

when spectral and structural predictors are combined; ensemble or stacking strategies further improve robustness 

in many comparative studies (Chen et al., 2023; Khan et al., 2024; Nguyen et al., 2024; Zhang et al., 2020). 

A critical caveat is validation strategy. Random k-fold cross-validation (CV) that ignores spatial (and temporal) 

autocorrelation routinely produces optimistic accuracy estimates. To obtain realistic out-of-sample performance 

and to assess transferability across hydrological zones or management units, studies should use spatial or 

spatio-temporal blocking (with block sizes informed by empirical autocorrelation) or leave-one-region-out tests 

(Roberts et al., 2017; Valavi et al., 2019). Authors are also encouraged to report multiple complementary metrics 

(e.g., R2, RMSE in Mg·ha-1, MAE, bias) and to quantify predictive uncertainty (e.g., bootstrap, quantile 

estimates, or prediction intervals) so that users can judge both central tendency and spread. 

We recommend reporting both central tendency and uncertainty - providing R2 and RMSE (Mg·ha-1) together 

with prediction intervals or quantiles - prioritizing multi-sensor, structurally informed predictor sets 

(LiDAR/GEDI with SAR and optical) in saturation-prone or structurally complex stands; assessing 

transferability using spatial or spatio-temporal blocking (or leave-one-region-out) to avoid optimistic bias; and 

adopting tree-based ensembles (RF, extreme gradient boosting [XGBoost]/light gradient boosting machine 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue X October 2025 

 

 

 

 

 

www.rsisinternational.org Page 475 

  

 

  

  

[LightGBM]) as robust baselines, reserving complex deep architectures for cases with substantial structural 

supervision and large training samples. 

Table 1 provides a concise summary of the objectives, data sources, model families, validation strategies, and 

metrics referenced throughout Section 2. 

Data integration level 

A growing body of evidence shows that integrating multiple sensors and field data materially improves AGB 

estimation by mitigating sensor-specific limitations (e.g., optical/radar saturation) and by recovering canopy 

structure. In practice, structural sources (LiDAR or GEDI) combined with L-band SAR and high-resolution 

optical imagery (e.g., Sentinel-2) generally outperform single-source configurations, particularly in 

high-biomass or heterogeneous wetlands (Balestra et al., 2024; Musthafa & Singh, 2022; Vafaei et al., 2018; 

Wang et al., 2023). 

Field plots and ecologically relevant covariates (topography, peat depth, soils, hydrological metrics) remain 

essential for calibration and for improving model generalization across substrate and management gradients.  

Local allometry (DBH - height - wood density) provides mechanistic anchors for translating structural 

predictions into AGB and reduces bias when substrate properties vary (Tran et al., 2015; Zadbagher et al., 2024). 

Temporal depth further strengthens inference: multi-epoch LiDAR or GEDI combined with continuous 

optical/SAR time series captures biomass trajectories (decline, recovery) and improves long-term monitoring 

and change detection (Loh et al., 2022; Musthafa & Singh, 2022; Naik et al., 2021). 

Table 1. Summary comparison of workflow stages for AGB mapping 

Stage Key 

recommendation 

Typical 

sensors/data 

Recommended 

models 

Validation Metric

s 

Data 

acquisitio

n 

Use structural 

scaffolds + 

wall-to-wall 

sensors; include 

field plots and env 

covariates 

LiDAR 

(UAV/airborne) or 

GEDI; 

Sentinel-1/2; 

L-band SAR; field 

plots; 

hydrological/topo/

soil layers 

N/A (data stage) N/A Data 

vol high 

(depend

s on 

LiDAR

) 

Feature 

engineeri

ng /fusion 

Late feature fusion 

of structure + 

spectral + SAR; 

include peat/soil/ 

hydrological 

covariates 

Canopy height 

model metrics, 

height percentiles, 

spectral indices, 

SAR backscatter 

and polarimetry, 

peat depth, 

hydroperiod 

RF/XGBoost/LightG

BM → ensemble 

stacking → deep 

learning (DL) (if 

abundant labels) 

N/A (see 

modelling) 

mediu

m 

Modellin

g 

Start with 

tree-based 

baselines; progress 

to DL only with 

dense structural 

supervision 

As above RF/XGBoost/LightG

BM (baseline); 

Stacking ensembles; 

DL (CNNs) when 

LiDAR/ GEDI 

supervision present 

Use 

spatial/spatio-temp

oral blocking for 

hyperparameter 

tuning 

Baselin

e: low - 

mediu

m; DL: 

high 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue X October 2025 

 

 

 

 

 

www.rsisinternational.org Page 476 

  

 

  

  

Validatio

n and 

transfer 

-ability 

Use 

spatial/spatio-temp

oral block CV or 

leave-one-region-o

ut; report stratified 

errors 

Validation samples 

from LiDAR 

strips/ independent 

plots 

N/A Spatial block CV 

(block size 

informed by 

autocorrelation); 

report out-of-region 

tests 

low - 

mediu

m 

Metrics 

and 

uncertaint

y 

Report central 

tendency + spread; 

stratify by 

substrate/hydro 

class 

R2, RMSE 

(Mg·ha-1), MAE, 

bias; show 

prediction 

intervals/quantiles 

N/A Report metrics for 

each validation fold 

and by strata 

low 

Operation

al notes 

Document 

preprocessing, 

seeds, versions; 

present stratified 

error maps 

Radiometric/terrai

n correction, 

co-registration, 

speckle filtering 

N/A   

Computational complexity 

Computational cost and model complexity are central considerations when selecting methods for AGB mapping 

because gains in predictive accuracy frequently entail higher requirements for compute, storage, and labeled 

structural supervision. Deep architectures (e.g., convolutional neural networks, autoencoders) and ensemble 

stacking/boosting typically deliver superior accuracy and scalability for large, multi-sensor datasets, but they 

demand substantial graphics processing unit (GPU)/central processing unit (CPU) resources, careful 

hyperparameter tuning, and rigorous data preprocessing, especially for regional-scale, multi-source inputs 

(Khan et al., 2024; Zhang et al., 2019). 

By contrast, traditional regression and simple allometric models remain computationally lightweight and 

interpretable but often generalize poorly in settings affected by spectral/ radar saturation or high structural 

heterogeneity. Tree-based methods (RF, XGBoost/LightGBM) offer a pragmatic middle ground: they are 

computationally efficient, robust to heterogeneous predictors, and serve as strong baselines when training data or 

computational budgets are limited (Chen et al., 2023; Zhang et al., 2020). 

From a practical data-science perspective, we recommend the following conventions: (i) use spatial or 

spatio-temporal block CV (with block sizes guided by empirical spatial autocorrelation) for hyperparameter 

selection to avoid leakage and inflated performance estimates; (ii) standardize multi-source preprocessing 

(radiometric and terrain correction, co-registration, speckle filtering) and document these steps; and (iii) adopt 

late feature fusion with tree-based learners as robust baselines, moving to compact DL solutions only when 

abundant structural supervision (e.g., LiDAR/GEDI scaffolds) and large, diverse training samples are available 

(Nguyen et al., 2024; Roberts et al., 2017; Valavi et al., 2019). 

When sample sizes or computational resources are constrained, RF, XGBoost, or LightGBM should serve as the 

default baselines. Deep learning should be reserved for settings with dense labels and structural scaffolds (e.g., 

LiDAR/GEDI), with training and inference compute quantified and reported. Hyperparameters should be 

selected using spatial or spatio-temporal blocking to obtain realistic estimates of transferability. Finally, 

preprocessing pipelines should be fully documented, with reproducible settings (random seeds, software 

versions) explicitly stated. 

Temporal and spatial resolution 

Spatial and temporal resolution jointly determine the suitability of sensors and modelling strategies for AGB 

estimation: fine spatial detail captures structure at plot and stand scales, whereas temporal depth enables 

monitoring of dynamics and disturbance-driven trajectories. 
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At the plot and stand scale, UAV or airborne LiDAR delivers high-fidelity three-dimensional structure (e.g., 

CHM metrics and height percentiles) that correlate strongly with AGB and are especially valuable when fused 

with high-resolution optical imagery (Wang et al., 2023; Yan et al., 2024). These structural data are ideal for 

deriving local allometry and for calibrating models that require detailed canopy scaffolding. 

For regional, wall-to-wall mapping the recommended approach is to use LiDAR/GEDI strips or footprints as 

calibration scaffolds and extrapolate with satellite imagery and SAR (Sentinel-1/2 and L-band where available). 

This scaffold-and-extrapolate strategy typically reduces mapping error relative to satellite-only approaches 

because it preserves structural anchors while providing full spatial coverage (Wang et al., 2023). 

Temporal depth improves robustness and enables change detection: multi-epoch LiDAR or GEDI combined 

with continuous optical and SAR time series captures biomass trajectories (decline and recovery) and stabilizes 

estimates across variable acquisition conditions (Loh et al., 2022; Musthafa & Singh, 2022; Naik et al., 2021). 

Recent reviews highlight multi-temporal, multi-platform fusion as a key route to accurate and stable long-term 

monitoring (Balestra et al., 2024). More specifically, explicitly integrating seasonal and disturbance-driven 

variability is critical for accurately quantifying biomass dynamics and carbon flux in Melaleuca wetlands. These 

ecosystems are subject to strong seasonal hydrological pulses and periodic disturbances (e.g., fire or selective 

logging), which significantly alter AGB over short time scales. By leveraging dense time-series data from 

sensors like Sentinel or Landsat, it is possible to move beyond static AGB maps to dynamic monitoring systems. 

Methodologies such as time-series change detection and break-point analysis can identify the timing and 

magnitude of biomass loss or gain, providing crucial information for carbon accounting and management 

interventions (DeVries et al., 2015; Zhu, 2017). Therefore, future modeling roadmaps should prioritize the 

integration of these temporal metrics as predictive covariates to capture the full spectrum of AGB variability.  

Practical note: choose sensor stacks according to scale and objective-use UAV/airborne LiDAR where detailed 

structural inference and local allometry are required; use GEDI/L-band + Sentinel-1/2 with LiDAR strips for 

regional mapping; and incorporate multi-temporal series when the goal is change detection or long-term 

monitoring.  

Model Applicability to Melaleuca forests 

Applicability of remote-sensing AGB models in Melaleuca ecosystems depends critically on (i) the match 

between training data and target domain, (ii) the sensor stack and degree of structural supervision, and (iii) the 

inclusion of environmental covariates that capture peat/acid-sulfate dynamics. Models trained on mineral-soil 

forests or on limited site conditions frequently underperform when transferred to peatland Melaleuca stands 

because of systematic differences in allometry, soil dielectric properties, and hydrological regime (Huy et al., 

2016; Nam et al., 2016; Tran et al., 2015). 

Scaffolded multi-sensor models (LiDAR/GEDI + L-band SAR + Sentinel-2) are most applicable when structural 

anchors overlap the target domain and field plots adequately sample the principal substrate and hydrological 

classes. Under these conditions, tree-based ensembles and well-regularized deep architectures typically yield 

transferable estimates with explicit uncertainty quantification (Nguyen et al., 2024; Wang et al., 2023). 

Key limitations and risk factors. 

Domain shift: differences in peat depth, salinity/acid sulfate status, hydrological alteration (drainage canals) and 

stand age/density create systematic biases if absent from training data. 

Sensor saturation and structural heterogeneity: optical and C-band SAR indicators saturate at high biomass; 

L-band and LiDAR mitigate but do not fully remove ambiguity in complex canopies (Zadbagher et al., 2024). 

Sparse structural supervision: where LiDAR/GEDI coverage or field plot density is low, expect larger 

extrapolation errors and spatially clustered uncertainty. 

Recommended pre-deployment checks. 
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Domain diagnostic: compare distributions of key predictors (height metrics, hydroperiod proxies, peat depth, 

spectral indices) between training and target areas; flag areas with large covariate shift. 

Scaffold availability: ensure structural anchors (LiDAR strips, GEDI, representative plots) exist across main 

substrate/hydrological strata; if absent, restrict inference or increase uncertainty. 

Pilot external validation: reserve independent LiDAR strips or holdout regions for leave-one-region-out testing 

to estimate realistic transfer error. 

Mapping products and reporting. 

Deliverables should include wall-to-wall AGB map plus (i) pixelwise (or grid) uncertainty estimates (e.g., 

prediction intervals or quantile maps), (ii) stratified error summaries by peat/soil class and hydrological class, 

and (iii) a short “usage note” that identifies areas where models extrapolate beyond training support. Explicitly 

report validation protocol (spatial/spatio-temporal blocking), sample sizes per strata, and any preprocessing 

choices that materially affect inference (e.g., hydrologic digital elevation model [DEM] flattening). 

Practical thresholding guidance. 

- Treat regions with no structural scaffolding and with strong covariate shift as low confidence and avoid issuing 

fine-scale AGB estimates without additional data collection. 

- Use RF/GBM baselines for rapid operational mapping and reserve DL for contexts with dense LiDAR/plot 

supervision. For formal reporting, always accompany maps with stratified uncertainty and a clear statement of 

transferability limits. 

Synthesis And Implications for Melaleuca Wetlands 

Integrative overview 

This integrative overview synthesizes the principal methodological insights from Sections 2.1 - 2.4 and 

highlights their practical implications for mapping Melaleuca wetlands. Across studies, highest predictive 

performance is achieved by scaffolded, multi-sensor approaches that combine structural information 

(LiDAR/GEDI) with radar (notably L-band) and optical inputs, while rigorous spatial or spatio-temporal 

validation is essential to avoid optimistic accuracy estimates (Nguyen et al., 2024; Roberts et al., 2017; Zhang et 

al., 2019, 2020). Environmental covariates tied to peat and hydrological dynamics (peat depth, hydroperiod, 

salinity, microtopography) consistently improve model transferability when they are represented in training data 

(Huy et al., 2016; Tran et al., 2015; Zadbagher et al., 2024). 

Key takeaways: 

Scaffolded fusion is central: Use LiDAR/GEDI strips or footprints as structural anchors and extrapolate with 

Sentinel-1/2 and L-band SAR for wall-to-wall mapping. 

Validation defines realism: Spatial or spatio-temporal blocking (or leave-one-region-out tests) should be 

standard for hyperparameter selection and performance reporting to estimate true transfer error. 

Model choice should match data and compute: RF/XGBoost/LightGBM are robust baselines for most 

operational contexts; deep learning is justified when dense structural supervision and large, diverse training 

samples exist. 

Environmental strata matter: Always stratify results (and report errors) by peat/soil/ hydrological classes to 

expose heterogeneous performance and inform management use. 

Report uncertainty and limits: Deliverables must include stratified uncertainty maps and concise usage notes that 

identify low-confidence extrapolation zones. 
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For implementation guidance and worked examples that operationalize these principles, see Table 1, Table 2, 

and Section 3.2.3. 

Implications for Melaleuca (with hydrology - geomorphology - soil variables) 

Synthesis and principal recommendations. 

For Melaleuca-dominated wetlands, reliable AGB mapping requires workflows that (i) anchor remote-sensing 

predictions in locally derived allometry (DBH - height - wood density), (ii) employ multi-sensor fusion with 

emphasis on structural scaffolds (LiDAR or GEDI) and L-band SAR to mitigate optical/C-band saturation, (iii) 

explicitly incorporate environmental covariates reflecting peat and acid-sulfate dynamics, and (iv) evaluate 

transferability using spatial or spatio-temporal blocking across hydrological and management strata (Bui et al., 

2024; Huy et al., 2016; Luo et al., 2024; Musthafa & Singh, 2022; Nam et al., 2016; Tran et al., 2015).  

Table 2. Per-study summary 

No Reported metric(s) (best / representative) Sources 

1 SSAE (deep model): R2 = 0.935, RMSE = 15.67 Mg·ha-1 Zhang et al. (2019) 

2 Best performing (CatBoost/aggregated): R2 ≈ 0.72, RMSE = 45.63 Mg·ha-1 

(CatBoost aggregated). Ensemble/tree-based mean R2 ≈ 0.69 - 0.71, RMSE ≈ 46 - 

48 Mg·ha-1 

Zhang et al. (2020) 

3 Tent_ASO_BP (NN): R2 = 0.74, RMSE = 11.54 Mg·ha-1 (best configuration 

reported). Comparators: RF R2 = 0.54 (RMSE 21.33), SVR R2 = 0.52 (RMSE 

17.66), PLSR R² = 0.50 (RMSE 16.52) 

Chen et al. (2023) 

4 Reported model range R2 ≈ 0.615 - 0.754. Best RF: R2 = 0.754; reported MAE = 

78.5 Mg·ha-1, %RMSE = 13.57% (abstract) 

Nguyen et al. 

(2024) 

5 Best (SVM reported): R2 = 0.70, RMSE = 83.65 Mg·ha-1, MAE = 74.43 Mg·ha-1 - 

highlights lower accuracies in structurally complex/high-biomass peat forests 

Zadbagher et al. 

(2024) 

6 Combination (Sentinel-2A + ALOS-2 PALSAR-2), best model (SVR): R2 = 0.73, 

RMSE = 38.68 Mg·ha-1 (SVR, Sentinel + ALOS) 

Vafaei et al. (2018) 

7 LiDAR-based (UAV strip) model (larch): R2 = 0.923, RMSE = 13.92 Mg·ha-1 

(leave-one-out CV). Sentinel-based models (using LiDAR sampling) achieved 

LiDAR-validation accuracies up to ~ 0.74 - 0.79 (R2 or % accuracy reported) and 

Sentinel-based RMSEs (field vs LiDAR validation sets) 

Wang et al. (2023) 

Key environmental predictors and mechanistic role 

Below are the predictor groups we recommend including as covariates or stratification layers; a detailed list with 

measurement/derivation notes is provided in Table 3. 

- Hydrology: inundation duration/hydroperiod, water-table depth, flood timing, and distance to canals/ditches (as 

a proxy for drainage alteration). The hydrological regime influences canopy vitality and stem allometry, while 

also modulating dielectric and optical signals through its effects on moisture content; omitting hydrological 

metrics partly explains cross-site failures in transferability (Dang et al., 2022; Huy et al., 2016; Nguyen et al., 

2016). 

- Soils and peat characteristics: peat depth, bulk density, soil salinity/acidity (acid sulfate indicators), and texture. 

These substrate properties influence growth rates, wood density, and electromagnetic contrasts 
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(microwave/optical), and therefore strongly affect both predictive bias and generalization from mineral soils to 

peatlands (Huy et al., 2016; Kappas, 2020; Tran et al., 2015). 

- Geomorphology and microtopography: relative elevation (from hydrologically corrected DEMs), local 

slope/curvature, and distance to levees/ridges. In very flat peat landscapes even small elevation differences can 

control hydroperiod and vegetation structure; including these covariates materially improves spatial 

transferability (Ngo et al., 2023; Nguyen and Nguyen, 2017). 

Table 3: Public datasets for environmental covariates 

Covariate 

class 

Variable 

examples 

Dataset Provider Access Primary 

citation 

Hydrology 

(hydro-peri

od) 

Water 

occurrence, 

seasonality, 

recurrence 

Global 

Surface 

Water (v1.4) 

EC JRC https://global-surface-water.appsp

ot.com/download 

Pekel et al. 

(2016) 

Hydrology 

(networks) 

Flow 

accumulation/ 

direction, 

distance‑to‑ 

channel 

HydroSHED

S (core 

products v1) 

WWF/ 

USGS 

consortium 

https://www.hydrosheds.org/prod

ucts 

HydroSHE

DS 

Technical 

Doc. 

(2022) 

Topograph

y (DEM) 

Elevation, 

slope, TWI 

Copernicus 

DEM 

GLO‑30 

ESA/ 

Copernicus 

https://dataspace.copernicus.eu/ex

plore-data/data-collections/copern

icus-contributing-missions/collect

ions-description/COP-DEM 

- 

Soils 

(texture/ 

peat) 

Sand/silt/clay; 

soil class; 

proxies for peat 

SoilGrids 

250 m (v2.0) 

ISRIC https://soilgrids.org/ Hengl et al. 

(2017); de 

Sousa et al. 

(2021) 

Wetlands/ 

peat extent 

Tropical 

wetlands and 

peatland 

likelihood 

Tropical 

wetlands/pea

t model 

Gumbricht 

et al. 

- Gumbricht 

et al. 

(2017) 

Coastal 

wetland 

(optional) 

Mangrove 

extent (blue‑ 

carbon context) 

Global 

Mangrove 

Watch (v3.0) 

JAXA/ 

Partners 

https://www.globalmangrovewatc

h.org/ 

Bunting et 

al. (2018) 

Practical modelling roadmap 

Scaffold and local allometry. Acquire or identify structural anchors (UAV/airborne LiDAR strips, GEDI 

footprints) and derive local DBH - height - wood density relationships where possible to translate structure → 

AGB. 

Predictor fusion. Combine structural scaffolds with wall-to-wall Sentinel-1/2 and L-band SAR (when available) 

plus the hydrology/peat/geomorphology layers listed above (Section 2.2, Table 1). Late feature fusion into 

tree-based ensembles (RF/ XGBoost/LightGBM) makes a robust operational baseline; escalate to DL when 

dense structural supervision and large training sets exist. 

Validation and transfer testing. Use spatial and spatio-temporal blocking (block sizes guided by empirical 
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autocorrelation) and reserve independent LiDAR strips or holdout regions (leave-one-region-out) to quantify 

realistic out-of-domain error (Roberts et al., 2017; Valavi et al., 2019). Stratify validation by peat/soil/hydro 

class. 

Uncertainty and reporting. Produce wall-to-wall AGB maps accompanied by pixel-wise uncertainty (quantiles 

or prediction intervals), stratified error summaries, and a concise usage note identifying low-confidence 

extrapolation areas (Musthafa & Singh, 2022; Ngo et al., 2023). 

Operational cautions and decision rules 

In regions lacking structural scaffolds and showing strong covariate shift (e.g., substantial differences in peat 

depth or hydroperiod vs. training sites), treat fine-scale AGB estimates as low confidence and prioritize targeted 

LiDAR/plot collection before operational mapping. 

When computational or sample constraints exist, favor tree-based ensemble baselines (RF/GBM) and report 

their limitations explicitly; report RMSE in Mg·ha-1 and include stratified error tables. 

Always document preprocessing choices that affect hydrologic/geomorphic predictors (e.g., hydrologic DEM 

flattening, peat depth interpolation methods), since such choices materially influence extrapolation behavior. 

Explicitly integrating hydrology, geomorphology, and soil/peat variables into scaffolded, multi-sensor 

modelling workflows is essential for producing transferable and actionable Melaleuca AGB products. For 

implementation templates, code snippets, and recommended predictor derivations, see Section 3.2.3, Table 1, 

and Table 3. 

Temporal and disturbance factors  

Seasonal dynamics and discrete disturbances (e.g., floods, fires, harvesting, storm damage) strongly influence 

AGB patterns and carbon fluxes in Melaleuca wetlands. To account for these effects, we extend the framework 

with time‑aware predictors and validation:  

Multi‑temporal stacks. Build seasonal/monthly composites from Sentinel‑1 and Sentinel‑2 (e.g., pre‑flood, 

peak‑flood, post‑flood) and include temporal statistics (median, IQR, trend) as features; demonstrations in the 

Mekong Delta show the value of dense SAR/optical time series for flood hydrology (Lam et al., 2023; Tran et al., 

2022). 

Hydrological regime dynamics. Derive flood frequency, duration, and timing from multi‑year water masks and 

SWIR‑based moisture anomalies to capture inter‑annual variability; global surface‑water seasonality layers 

provide a robust baseline (Pekel et al., 2016).. 

Disturbance proxies. Integrate fire occurrence/burned area, logging footprints, and storm tracks; encode recency 

(days since event), intensity, and cumulative disturbance history. Validated burned‑area products and algorithms 

support time‑series disturbance mapping in tropical peatlands (Boschetti et al., 2019; Giglio et al., 2018). 

Space–time validation. Complement spatial blocking with temporal or space-time blocked cross‑validation 

(train on years t…t-k, test on t+1) to assess robustness under seasonal shifts and event shocks (Roberts et al., 

2017; Valavi et al., 2019). 

Change‑aware features. For flux‑relevant analyses, include Δ‑features (year‑to‑year change in SAR/optical 

indices) and report bias/variance separately for disturbed vs. non‑disturbed strata. 

Uncertainty reporting. Map higher predictive uncertainty for periods immediately following major disturbances 

or transitional hydrological phases, and follow AGB unit/uncertainty conventions when leveraging GEDI 

products (Kellner et al., 2023; Dubayah et al, 2022). 

This time‑aware extension improves reliability of biomass estimates under dynamic wetland conditions and 
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supports standardized AGB mapping across Southeast Asian wetlands facing similar seasonal and disturbance 

regimes. 

Operational feasibility, cost‑effectiveness, and regional generalizability 

Operational uptake of multi‑sensor AGB mapping depends on cost‑effectiveness and implementation feasibility. 

At national MRV scales, monitoring and transaction costs can erode the net benefits of result‑based payments if 

system design is not cost‑sensitive (Köhl, Neupane, & Mundhenk, 2020). Practical pathways therefore prioritize 

open and routinely updated sensors - Sentinel‑1/2 and L‑band SAR mosaics - combined with reproducible 

processing on cloud platforms to reduce hardware and maintenance burdens (Gorelick et al., 2017; Shimada et 

al., 2014; JAXA&EORC, 2022). Method guidance from REDD+ MRV frameworks emphasizes transparent 

protocols, adequate sampling, and uncertainty management to balance precision with affordability (Böttcher et 

al., 2009; Herold et al., 2011; GOFC‑GOLD, 2011). In data‑ and capacity‑limited contexts, a tiered modeling 

strategy - starting with tree‑based ensembles and escalating to deep learning only when wall‑to‑wall inputs and 

measurable accuracy gains are present - helps contain costs while meeting reporting requirements (Roberts et al., 

2017; Valavi et al., 2019). 

Generalizability beyond Vietnam is supported by shared ecological and data conditions across Southeast Asian 

wetlands. Peat‑dominated lowlands in Peninsular Malaysia, Sumatra, and Borneo show comparable 

hydrological regimes and disturbance histories, with region‑wide declines in peat swamp forest cover since the 

1990s that motivate standardized, repeatable mapping (Miettinen et al., 2016; Mishra et al., 2021). At broader 

scales, tropical wetland/peat distributions and pan‑tropical biomass products provide consistent reference layers 

for stratification and benchmarking (Gumbricht et al., 2017; Avitabile et al., 2016; Tootchi, Jost, & Ducharne, 

2019). In practice, transfer is achieved by harmonizing environmental strata (peat depth, soil texture, flood 

regime), applying blocked space-time validation, and leveraging regional time‑series demonstrations from the 

Mekong Delta for flood‑driven variability (Lam et al., 2023; Tran et al., 2022). This combination of open data, 

cost‑aware design, and explicit uncertainty reporting strengthens regional comparability and helps standardize 

future AGB mapping across Southeast Asian wetlands. 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

This review consolidates advances in multi‑sensor remote sensing and machine learning for AGB estimation in 

Vietnam’s Melaleuca wetlands and proposes a standardized framework of terminology, indicators, and 

environmental covariates tailored to tropical peatland ecosystems. By unifying key metrics such as canopy 

structural parameters, hydro‑geomorphological indices, and model validation criteria (R², RMSE), the study 

enhances methodological consistency and reproducibility across different research settings. Beyond serving as a 

synthesis, the framework provides a replicable roadmap for multi‑sensor data integration - spanning data 

acquisition, feature engineering, modeling, validation, and uncertainty quantification. This approach strengthens 

national‑level biomass monitoring and carbon accounting and helps standardize future AGB mapping across 

Southeast Asian wetlands where similar ecological and data constraints prevail. 

Future Recommendations 

We recommend using LiDAR/GEDI strips or footprints as calibration scaffolds, extrapolating wall-to-wall with 

Sentinel-1/2 and L-band SAR, adopting late feature fusion with RF/XGBoost/LightGBM as robust baselines, 

and escalating to compact deep learning only when dense structural supervision is available, and reporting 

uncertainty (prediction intervals/quantiles) with stratified errors by peat/soil/hydrological classes.  

To bridge the gap between technical advancement and real-world application in carbon management, future 

efforts should focus on developing open-access tools and pre-trained models. We recommend leveraging 

cloud-based geospatial platforms such as Google Earth Engine (GEE), which offers cost-effective and 

operationally feasible Big Earth Data processing capabilities, particularly crucial for resource-constrained 

governmental agencies (Gorelick et al., 2017). Specifically, developing a user-friendly workflow within GEE 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue X October 2025 

 

 

 

 

 

www.rsisinternational.org Page 483 

  

 

  

  

can automate the complex pre-processing steps required for multi-sensor data fusion (e.g., Sentinel-1/2 and 

GEDI). Furthermore, to promote transferability and reduce modeling time, the research community should 

prioritize the public release of standardized training datasets and pre-trained tree-based machine learning models 

(e.g., RF) via open-source repositories (e.g., GitHub/GEE Apps) (Wu, 2020). This approach will enable local 

users to rapidly generate high-accuracy AGB maps, integrating crucial uncertainty parameters (Amitrano et al., 

2023), thereby directly supporting more transparent conservation planning and greenhouse gas inventory 

reporting. 

To establish the robustness and generalizability of remote sensing and machine learning methodologies, future 

studies must extend beyond the localized scope of Vietnam’s Melaleuca wetlands. We recommend conducting 

multi-regional comparative studies that evaluate the performance of AGB models calibrated in the Mekong 

Delta against other regional tropical peat swamp forest ecosystems, such as those in Borneo (Indonesia) or the 

Malay Peninsula (Malaysia). These ecosystems present similar vegetation structures and geochemical 

conditions but often exhibit a higher range of AGB saturation, providing a necessary stress test for the algorithms 

(Lohberger et al., 2013; Zadbagher et al., 2024). This comparison should specifically analyze how critical 

environmental covariates - such as peat depth, seasonal hydrology, and salinity/acid-sulfate conditions - 

influence model accuracy and bias across different regions. By quantifying these differences, researchers can 

develop adaptive AGB models capable of self-adjusting based on region-specific input data, thereby maximizing 

their utility for carbon accounting at a broader scale. 

To transform AGB maps from a research tool into a reliable decision-support document, prioritizing the further 

standardization of uncertainty quantification is essential. Future studies should move beyond merely reporting 

aggregate statistics like RMSE and R2. We recommend adopting a comprehensive framework to assess AGB 

map accuracy, including three essential elements (Weisbin et al., 2014; Sannier et al., 2022): 

Prediction intervals (PIs) and quantiles: Providing a point estimate for AGB is insufficient. Studies must 

calculate and map 95% prediction intervals (95% PIs) or other quantiles for every pixel. This transforms the map 

from a single-value assertion into a statement of spatial confidence, transparently communicating the risk of 

over- or underestimation, which is particularly crucial in areas with dense canopies where signal saturation is 

common. 

Bias analysis: Conditional bias is a prevalent issue in machine learning models where input data are unevenly 

distributed. Advanced statistical techniques (such as model-assisted statistical regression) must be used to model 

and adjust for map bias (Sannier et al., 2022). This analysis specifically quantifies whether the model 

systematically over- or under-predicts in specific areas, such as high-biomass peat swamp forests, thereby 

facilitating the creation of bias-adjusted maps suitable for carbon reporting standards. 

Uncertainty source decomposition: Explicitly analyze and decompose the main sources of uncertainty, 

including: field measurement errors, allometric model errors, and remote sensing errors. This decomposition 

helps prioritize future efforts to reduce overall uncertainty most effectively. 
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