• We can further study the physical characteristics, such as skin friction coefficient, and also analyze the
problem using radiation and magnetohydrodynamic effects to understand the causes of stenosis, which may aid
in the treatment of arterial stenosis.
REFERENCES
1. Hayat, T.; Nadeem, S. Heat transfer enhancement with Ag-CuO/water hybrid nanofluid. Results Phys.
2017, 7, 2317–2324. [CrossRef]
2. Nadeem, S.; Ijaz, S. Single wall carbon nanotube (SWCNT) examination on blood flow through a
multiple stenosed artery with variable nanofluid viscosity. AIP Adv. 2015, 5, 107217. [CrossRef]
3. Ghadikolaei, S.; Gholinia, M. Terrific effect of H2 on 3D free convection MHD flow of C2H6O2H2O
hybrid base fluid to dissolve Cu nanoparticles in a porous space considering the thermal radiation and
nanoparticle shapes effects. Int. J. Hydrog. Energy 2019, 44, 17072–17083. [CrossRef]
4. Ghadikolaei, S.; Gholinia, M.; Hoseini, M.; Ganji, D. Natural convection MHD flow due to MoS2-Ag
nanoparticles suspended in C2H6O2H2O hybrid base fluid with thermal radiation. J. Taiwan Inst.
Chem. Eng. 2019, 97, 12–23. [CrossRef]
5. Ijaz, S.; Sadiq, M.A. Inspiration of Induced Magnetic Field on a Blood Flow of Prandtl Nanofluid
Model with Stenosis. Curr. Nanosci. 2014, 10, 753–765. [CrossRef]
6. Elnaqeeb, T.; Shah, N.A.; Mekheimer, K. Hemodynamic Characteristics of Gold Nanoparticle Blood
Flow Through a Tapered Stenosed Vessel with Variable Nanofluid Viscosity. BioNanoScience 2019, 9,
245–255. [CrossRef]
7. Nadeem, S.; Ijaz, S.; Akbar, N.S. Nanoparticle analysis for blood flow of Prandtl fluid model with
stenosis. Int. Nano Lett. 2013, 3, 35. [CrossRef]
8. Ahmed, A.; Nadeem, S. Biomathematical study of time-dependent flow of a Carreau nanofluid through
inclined catheterized arteries with overlapping stenosis. J. Cent. South Univ. 2017, 24, 2725–2744.
[CrossRef]
9. Ijaz, S.; Nadeem, S. Examination of nanoparticles as a drug carrier on blood flow through catheterized
composite stenosed artery with permeable walls. Comput. Methods Programs Biomed. 2016, 1339, 83–
94. [CrossRef] [PubMed]
10. Akhtar, S.; McCash, L.B.; Nadeem, S.; Saleem, S.; Issakhov, A. Mechanics of non-Newtonian blood
flow in an artery having multiple stenosis and electroosmotic effects. Sci. Prog. 2021, 104, 1–15.
[CrossRef] [PubMed]
11. Liu, J.; Wang, G.; Zhang, L.; Shi, Y.; Zhang, H.; Yao, S.-C. Numerical simulation of single bubble
boiling behavior. Propuls. Power Res. 2017, 6, 117–125. [CrossRef]
12. Hussain, A.; Hassan, A.; Al Mdallal, Q.; Ahmad, H.; Rehman, A.; Altanji, M.; Arshad, M. Heat
transportation enrichment and elliptic cylindrical solution of time-dependent flow. Case Stud. Therm.
Eng. 2021, 27, 101248. [CrossRef]
13. Choudhari, P.; Panse, M. Finite Element Modeling and Simulation of Arteries in the Human Arm to
Study the Aortic Pulse Wave Propagation. Procedia Comput. Sci. 2016, 93, 721–727. [CrossRef]
14. Durantes, R.; Moon, J.; Pacheco, R.; Pacheco-Vega, A. Numerical Modeling of Single-Phase Fluid-
Flow in Wavy Micro-Channels. In White Papers and Application Notes; California State University-
Los Angeles: Los Angeles, CA, USA, 2020. Available online:
https://www.comsol.com/paper/numerical-modeling-of-single-phase-fluid-flow-in-wavy-micro-
channels-9371(accessedon 28 November 2021).
15. Ghadikolaei, S.; Gholinia, M. 3D mixed convection MHD flow of GO-MoS2 hybrid nanoparticles in
H2O-(CH2OH)2 hybrid base fluid under the effect of H2 bond. Int. Commun. Heat Mass Transf. 2020,
110, 104371. [CrossRef]
16. Tripathi, J.; Vasu, B.; Bég, O.A.; Gorla, R.S.R. Unsteady hybrid nanoparticle-mediated magneto-
hemodynamics and heat transfer through an overlapped stenotic artery: Biomedical drug delivery
simulation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1175–1196. [CrossRef] [PubMed]
17. Nasrin, R.; Hossain, A.; Zahan, I. Blood flow analysis inside a stenotic artery using Power-Law fluid
model. RDMS 2020, 13, 1–10. [CrossRef]