•  We  can  further  study  the  physical  characteristics,  such  as  skin  friction  coefficient,  and  also  analyze  the 
problem using radiation and magnetohydrodynamic effects to understand the causes of stenosis, which may aid 
in the treatment of arterial stenosis.  
REFERENCES 
1.  Hayat, T.; Nadeem, S. Heat transfer enhancement with Ag-CuO/water hybrid nanofluid. Results Phys. 
2017, 7, 2317–2324. [CrossRef]  
2.  Nadeem,  S.;  Ijaz,  S.  Single  wall  carbon  nanotube  (SWCNT)  examination  on  blood  flow  through  a 
multiple stenosed artery with variable nanofluid viscosity. AIP Adv. 2015, 5, 107217. [CrossRef]  
3.  Ghadikolaei, S.; Gholinia, M. Terrific effect of H2 on 3D free convection MHD flow of C2H6O2H2O 
hybrid base fluid to dissolve Cu nanoparticles in a porous space considering the thermal radiation and 
nanoparticle shapes effects. Int. J. Hydrog. Energy 2019, 44, 17072–17083. [CrossRef]  
4.  Ghadikolaei, S.; Gholinia, M.; Hoseini, M.; Ganji, D. Natural convection MHD flow due to  MoS2-Ag 
nanoparticles  suspended  in  C2H6O2H2O  hybrid  base  fluid  with  thermal  radiation.  J.  Taiwan  Inst. 
Chem. Eng. 2019, 97, 12–23. [CrossRef]  
5.  Ijaz,  S.;  Sadiq,  M.A.  Inspiration  of  Induced  Magnetic  Field  on  a  Blood  Flow  of  Prandtl  Nanofluid 
Model with Stenosis. Curr. Nanosci. 2014, 10, 753–765. [CrossRef]  
6.  Elnaqeeb, T.; Shah, N.A.; Mekheimer, K. Hemodynamic Characteristics of Gold Nanoparticle Blood 
Flow Through a Tapered Stenosed Vessel with Variable Nanofluid Viscosity. BioNanoScience 2019, 9, 
245–255. [CrossRef] 
7.  Nadeem,  S.;  Ijaz,  S.;  Akbar,  N.S.  Nanoparticle  analysis  for  blood  flow  of  Prandtl  fluid  model  with 
stenosis. Int. Nano Lett. 2013, 3, 35. [CrossRef]  
8.  Ahmed, A.; Nadeem, S. Biomathematical study of time-dependent flow of a Carreau nanofluid through 
inclined catheterized  arteries with overlapping  stenosis.  J.  Cent.  South  Univ.  2017,  24,  2725–2744. 
[CrossRef]  
9.  Ijaz, S.; Nadeem, S. Examination of nanoparticles as a drug carrier on blood flow through catheterized 
composite stenosed artery with permeable walls. Comput. Methods Programs Biomed. 2016, 1339, 83–
94. [CrossRef] [PubMed]  
10. Akhtar, S.; McCash, L.B.; Nadeem, S.; Saleem, S.; Issakhov, A. Mechanics of non-Newtonian blood 
flow  in  an  artery  having  multiple  stenosis  and  electroosmotic  effects.  Sci.  Prog.  2021,  104,  1–15. 
[CrossRef] [PubMed]  
11. Liu, J.; Wang, G.; Zhang, L.; Shi, Y.; Zhang, H.; Yao, S.-C. Numerical simulation of single bubble 
boiling behavior. Propuls. Power Res. 2017, 6, 117–125. [CrossRef]  
12. Hussain,  A.;  Hassan,  A.;  Al  Mdallal,  Q.;  Ahmad,  H.;  Rehman,  A.;  Altanji,  M.;  Arshad,  M.  Heat 
transportation enrichment and elliptic cylindrical solution of time-dependent flow. Case Stud. Therm. 
Eng. 2021, 27, 101248. [CrossRef]  
13. Choudhari, P.; Panse, M. Finite Element Modeling and Simulation of Arteries in the Human Arm to 
Study the Aortic Pulse Wave Propagation. Procedia Comput. Sci. 2016, 93, 721–727. [CrossRef]  
14. Durantes, R.; Moon, J.; Pacheco, R.; Pacheco-Vega, A.  Numerical Modeling of Single-Phase Fluid-
Flow in Wavy Micro-Channels. In White Papers and Application Notes; California State University-
Los  Angeles:  Los  Angeles,  CA,  USA,  2020.  Available  online: 
https://www.comsol.com/paper/numerical-modeling-of-single-phase-fluid-flow-in-wavy-micro-
channels-9371(accessedon 28 November 2021).  
15. Ghadikolaei, S.; Gholinia,  M. 3D mixed convection MHD flow of GO-MoS2 hybrid nanoparticles in 
H2O-(CH2OH)2 hybrid base fluid under the effect of H2 bond. Int. Commun. Heat Mass Transf. 2020, 
110, 104371. [CrossRef]  
16. Tripathi,  J.;  Vasu,  B.;  Bég,  O.A.;  Gorla,  R.S.R.  Unsteady  hybrid  nanoparticle-mediated  magneto-
hemodynamics  and  heat  transfer  through  an  overlapped  stenotic  artery:  Biomedical  drug  delivery 
simulation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1175–1196. [CrossRef] [PubMed] 
17. Nasrin, R.; Hossain, A.; Zahan, I. Blood flow analysis inside a stenotic artery using Power-Law fluid 
model. RDMS 2020, 13, 1–10. [CrossRef]