14. Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 30(1),
99–120. https://doi.org/10.1007/s11023-020-09517-8
15. Halaweh, M. (2023). ChatGPT in education: Strategies for responsible implementation. Contemporary
Educational Technology, 15(2), Article 421. https://doi.org/10.30935/cedtech/13036
16. Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial Intelligence (AI)
applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 58–
70. https://doi.org/10.1016/j.ijin.2022.08.005
17. Igbaria, M., Parasuraman, S., & Baroudi, J. (1996). A motivational model of microcomputer usage.
Journal of Management Information Systems, 13(1), 127–143.
https://doi.org/10.1080/07421222.1996.11518115
18. Johnson, B. (2023, January 5). NYC schools ban ChatGPT over academic dishonesty fears. The New
York Times.
19. Kadaruddin, K. (2023). Empowering education through generative AI: Innovative instructional strategies
for tomorrow’s learners. International Journal of Business, Law, and Education, 4(2), 618–625.
https://doi.org/10.56442/ijble.v4i2.215
20. Kalantzis, M., & Cope, S. (2012). Learning by design: A cultural history of learning and technology.
Cambridge University Press.
21. Lai, M., Hwang, G., & Chen, C. (2020). The effect of learning analytics and AI-enhanced learning
environments on student engagement: A systematic review. Computers & Education, 157, 103911.
22. Lee, J. (2023). Image generator AI in higher education: Emerging opportunities and challenges. Journal
of Emerging Technologies in Education, 11(2), 55–67.
23. Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the
future of education: Ragnarök or reformation? A paradoxical perspective from management educators.
International Journal of Management in Education, 21(2), 100790.
https://doi.org/10.1016/j.ijme.2023.100790
24. Liu, G. L., Darvin, R., & Ma, C. (2024). Exploring AI-mediated informal digital learning of English (AI-
IDLE): A mixed-method investigation of Chinese EFL learners’ AI adoption and experiences. Computer
Assisted Language Learning, 1–29.
25. Nagender, Y., & Patil, K. H. (2017). WhatsApp auto responder using natural language processing and
AI. International Journal of Computer Engineering & Technology, 8(5), 15–22.
26. Norman, E. W., & Fraenkel, J. R. (2000). How to design and evaluate research in education. McGraw-
Hill.
27. Okoye, M., & Mante, D. (2024). The nexus between artificial intelligence and STEM education:
Research on AI applications in higher education. Educational Technology Research and Development,
68(4), 1851–1861.
28. Opoku, M. O., & Enu-Kwesi, F. (2019). Relevance of the technology acceptance model (TAM) in
information management research: A review of selected empirical evidence. Research Journal of
Business and Management, 6(1), 55–62. https://doi.org/10.17261/Pressacademia.2019.1028
29. Oravec, J. (2023). Artificial intelligence implications for academic cheating: Expanding the dimensions
of responsible human-AI collaboration with ChatGPT and Bard. Journal of Interactive Learning
Research, 34(2), 213–237.
30. O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens
democracy. Crown Publishing Group.
31. Piaget, J. (1973). The child and reality: Problems of genetic psychology. Basic Books.
32. Rodrigues, M., Silva, R., Franco, M. A. P. B., & Oliveira, C. (2024). Artificial intelligence: Threat or
asset to academic integrity? A bibliometric analysis. Kybernetes. https://doi.org/10.1108/k-09-2023-
1666
33. Sanusi, I. T., Ayanwale, M. A., & Chiu, T. K. F. (2024). Investigating the moderating effects of social
good and confidence on teachers’ intention to prepare school students for artificial intelligence education.
Education and Information Technologies. https://doi.org/10.1007/s10639-023-12250-1
34. Sok, P., & Heng, C. (2023). ChatGPT and academic writing: Student perceptions in Cambodian
universities. Asian Journal of Education, 14(3), 245–259.
35. Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development
and test. Decision Sciences, 27(3), 451–481. https://doi.org/10.1111/j.1540-5915.1996.tb01822.x