classifier models. BMC Bioinformatics, 24(1), 337.
2. Abubeker, A., et al. (2025). Advanced applications in chronic disease monitoring using IoT mobile sensing
device data, machine learning algorithms and frame theory: a systematic review. Frontiers in Public
Health, 13.
3. Aggarwal, C. C. (2015). Data Mining: The Textbook. New York: Springer Nature Switzerland AG. doi:
10.1016/0304-3835(81)90152-X.
4. Ahmad, P., Qamar, S. and Qasim Afser Rizvi, S. (2015). Techniques of Data Mining In Healthcare: A
Review. International Journal of Computer Applications, 120(15), pp. 38–50. doi: 10.5120/21307-4126.
5. Al-Mekhlafi, M., et al. (2023). A Mobile App That Addresses Interpretability Challenges in Machine
Learning–Based Diabetes Predictions. JMIR Medical Informatics, 11(1), e46714.
6. Ali, S., et al. (2023). An ensemble learning approach for diabetes prediction using boosting techniques.
Frontiers in Genetics, 14, 1252159.
7. Alzboon, S. M. (2025). Diabetes Prediction and Management Using Machine Learning Approaches. arXiv
preprint arXiv:2506.11501.
8. Ayoade, O. B., Shahrestani, S., & Ruan, C. (2025). Machine Learning and Deep Learning Approaches for
Predicting Diabetes Progression: A Comparative Analysis. Preprints.org.
9. Baitharu, T. R. and Pani, S. K. (2016). Analysis of Data Mining Techniques for Healthcare Decision
Support System Using Liver Disorder Dataset. Procedia Computer Science, 85(Cms), pp. 862–870. doi:
10.1016/j.procs.2016.05.276.
10. Banka, S., Madan, I. and Saranya, S. S. (2018). Smart Healthcare Monitoring using IoT. International
Journal of Advanced Research in Computer Science, 13(15), pp. 11984–11989.
11. Bhatia, P. (2019). Data mining and data warehousing: Principles and Practical Techniques. New York:
Cambridge University Press. doi: 10.1007/978-3-540-48399-1_10.
12. Bryman, A. and Bell, E. (2017). Business Research Methods. Third. Oxford Press.
13. Chamatkar, M. A. J. and Butey, P. K. (2014). Importance of Data Mining with Different Types of Data
Applications and Challenging Areas. International Journal of Computer Applications, 4(5), pp. 38–41.
14. Chen, Y., et al. (2024). Risk prediction of diabetes progression using big data mining with multifarious
physical examination indicators. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 17,
1249-1265.
15. CMU-Africa. (n.d.). AI Healthcare Research Laboratory. CMU-Africa. Available at:
https://www.africa.engineering.cmu.edu/research/ai-healthcare.html (Accessed: 09 July 2025).
16. Creswell John W, Creswell J, D. (2018). Research Design, Qualitative and Quantitative and Mixed
Methods Approaches.
17. Deshpande, S. and Thakare, V. M. (2016). DATA MINING SYSTEM AND APPLICATIONS: A
REVIEW. International Journal of Distributed and Parallel systems (IJDPS), (September 2010). doi:
10.5121/ijdps.2010.1103.
18. Frontiers. (2025). Advanced applications in chronic disease monitoring using IoT mobile sensing device
data, machine learning algorithms and frame theory: a systematic review. Frontiers in Public Health, 13.
19. Frontiers. (2025). Perspectives of people with diabetes on AI-integrated wearable devices: perceived
benefits, barriers, and opportunities for self-management. Frontiers in Medicine.
20. Han, J., Kamber, M. and Pei, J. (2012). Data Mining: Concepts and Techniques. Waltham: Morgan
Kaufmann Publishers. doi: 10.1016/C2009-0-61819-5.
21. Hooda, P. (2017). Smart Prediction Analysis of Health Issues using Data Mining. International Conference
on Recent Trends in Technology and its Impact on Economy of India, pp. 673–678.
22. Jadhavar, S. et al. (2019). A Survey of Health Care Support System for Consultation Using Data Mining
and Predictive Analytics. INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND
RESEARCH (IJEDR), 7(4), pp. 59–63.
23. Kantardzic, M. (2020). Data Mining: Concepts, Models, Methods, and Algorithms. 3rd edn. Hoboken,
New Jersey: IEE Press. doi: 10.1080/07408170490426107.
24. Kirubha, V. and Priya, S. M. (2016). Survey on Data Mining Algorithms in Disease Prediction.
International Journal of Computer Trends and Technology (IJCTT), 38(3), pp. 124–128.
25. Kothari, C. . (2015). Research Methodology, Methods and Techniques. Second. New Delhi: New Age
Publishers. Available at: http://repositorio.unan.edu.ni/2986/1/5624.pdf.
26. Larose, D. T. and Larose, C. D. (2015). Data Mining and Predictive Analytics. Edited by D. T. Larose.