b IS Open Sets and Decomposition of Continuity Via Idealization  
V. Jeyanthi  
Dept. of Mathematics, Government Arts College for Women, Sivagangai - 630562, TamilNadu, India.  
Received: 04 December 2025; Accepted: 10 December 2025; Published: 19 December 2025  
ABSTRACT  
In this paper, we introduce the notion of b IS open sets and strong BIS sets to obtain decomposition of  
continuity via idealization. Additionally, we investigate properties of b IS open sets and strong BIS sets  
Key words and Phrases: semi -IS- open sets, pre-IS- open sets,  
IS open sets, b IS open sets and strong  
BIS sets  
AMS Subject Classification: 54A05, 54A10.  
INTRODUCTION  
Ideal in topological spaces have been considered since 1966 by Kuratowski[9]and Vaidyanathaswamy[16].After  
several decades,in 1990, Jankovic and Hammlet [7] investigated the topological ideals which is the  
generalization of general topology.Whereas in 2010,Khan and Noiri [8] introduced and studied the concept of  
semi local functions.In 2014,Shanthi and Rameshkumar [14] introduced semi -IS- open sets, pre-IS- open sets  
and  
IS open sets.In this paper we introduce the notions of b IS open sets and strong BIS sets to  
obtain decomposition of continuity. Let X,  
be a topological space and I is an ideal of subset of X. An ideal I  
AI  
B A  
implies  
on a topological space X,  
is a collection of nonempty subsets of X which satisfies (i)  
and  
B I  
AI  
B I  
A B I  
implies  
and(ii)  
and  
.Given a topological space X,with an ideal I on X and if  
.
:  
X
  
X
X
is the set of all subsets of X, a set operator  
,called the local function of A with respect  
to  
and I , is defined as follows:for A X, AI,  
{xX /U AIforeveryU   
x
}
where  
called  
x
U  
/ xU
(Kuratowski 1966). A Kuratowski closure operator cl  
.
for a topology  
  
I,  
,
   
the  
topology, finer than is defined by cl  
A
AAI,  
(Vaidyanathaswamy,1945).When there is no  
chance for confusion ,we will simply write Afor AI,  
and  
or  
  
I
for  
  
I,  
.If I is an ideal on X,then  
X,  
, Iis called an ideal space.  
G A/G  
, AIis a basis for  
(Jankovic and Hamlett,1992). If  
A X, cl(A) and int(A)will respectively denote the closure and the interior of A in X,  
and int   
A
will  
denote the interior of A in 
X,  
  
.
Definition1.1. LetX,be a topological space .A subset A of X is said to be semiopen[10] if there exists an  
open set U in X such that U A clU.The complement of a semi open set is said to be semi-closed.The  
collection of semi open(resp.semiclosed)sets in X is denoted by SO(X)(resp.SC(X)).The semi closure of A in (  
X ,  
)is denoted by the intersection of of all semiclosed sets containing A and is denoted by scl(A).  
A X  
Definition1. 2. For  
,
A
I,  
,where  
xX /U AIforeveryU SO(X)is called the semi-local function  
[8] of A with respect to I and  
SO(X, x)  
U SO(X) : xU
  
A  
instead of  
A
I,  
We simply write  
.
s  
I
U E :U SO(X)andE I  
.It is given in [1] that  
Page 1006  
is a topology on X ,generated by the sub basis  
or  
s  
I
U X : cls X UX U
.The closure operator cls  
A
A Aand  
denote  
ints  
A
equivalently  
the interior of the set A
X,  
s  
, I
  
.
It is known that  
  
I
s  
I
.
Lemma1.3[8]. Let X,, Ibe an ideal topological space and  
A, B X  
.
Then for the semi-local function the following properties hold:  
A B,then  
.
(i)If  
A B  
(ii) If  
,thenU A  
U A  
U  
.
Definition1.4.  
A subset A of a topological space X is said to be  
(i)  
open [12] if A int( cl(int( A)))  
.
(ii)  
pre-open [11] if A int( cl(A))  
.
(iii)  
(iv)  
(v)  
semi-open [10] if A cl(int( A)).  
t-set [13] if int(A)=int(cl(A)).  
b-open set [3] if A int cl  
A
clint  
A .  
  
(vi)  
strong B-set [4] if  
,where U is open, V is t-set and int(cl(A)) =cl(int(A)).  
A U V  
Definition1.5.  
A subset A of an ideal topological space X,  
, Iis said to be  
(i)  
open [6] if A int  
clint  
A

  
I   
.
(ii)  
(iii)  
pre  
open [5] if A int  
cl  
A
I   
.
semi  
open [6] if A clint  
A
  
I   
.
(iv)  
(v)  
b I open [ 2] if A int
cl  
A
clint  
A
  
t-I-set [6]if int
cl  
A
int  
A .  
(vi)  
(vii)  
BI set [6] if  
,
and V is a t-I-set.  
A U V U  
Strong BI set [2] if  
,
and V is a t-I-set andint
cl  
V
cl(int  
V
).  
A U V U   
Definition1.6.  
X,, I  
A subset A of an ideal space  
is said to be  
(i)  
IS open [14] if A int  
cls int  
A

  
.
Page 1007  
s  
(ii)  
pre IS open [14] if  
A int cl  
A
 
  
.
(iii)  
semi IS open [14] if A cls int  
A
  
.
(iv)  
(v)  
t IS set [14] int  
BIS set [14] if  
cls  
A
int  
A
.
,where  
and V is an t IS set.  
A U V  
U   
The family of all  
IS open (resp. Semi IS open, Pre IS open) sets an ideal topological space  
X,  
, Iis denoted by  
ISO(X )(resp.SISO(X ), PISO(X )).  
Lemma1.8[15].Let X,  
, Ibe an ideal topological space and A X  
.
X,  
, I  
U cls  
A
cls  
U A  
If U is open in  
,then  
.
2.b IS open set  
Definition2.1A subset A of an ideal space X,  
, Iis said to be a b IS open set  
if A int  
cls  
A
cls int  
A .  
  
Proposition 2.1Le A be a b IS open set such that int( A)  
,then A is pre IS open.  
Proof :Let A be a b IS open set. Then we have A int  
cls  
A
cls int  
A .  
  
If int( A)  
,then cls int  
A
  
.Therefore, A int  
cls  
A
cls int  
A
becomes  
A int  
cls  
A
.
Proposition 2.2 For a sub set of an ideal space X,, I  
the following hold.  
b IS   
(i)Every open set is  
open.  
(ii)Every semi IS open set is b IS open.  
(iii)Every pre IS open set is b IS open.  
(iv)Every b IS open set is b-open.  
Proof: (i),(ii),(iii) Obvious.  
(iv)Let A be b IS open. Then we have  
s  
A int
cls  
A
clint  
A
int  
As A  
int  
A
 int  
A
int scl  
A
Asclint  
A
int  
A
int cl  
A
clint  
A
int  
A
int cl  
A
clint  
A
  
.
This shows that A is b-open.  
Remark2.1. Converse of the Proposition 2.2 need not be true as seen from the following examples.  
Page 1008  
Example 2.1Let  
,
     
  
  
 and  
    .Then  
X a,b,c,d  
, a , b , a,b , a,d , a,b,d , X  
I   
, b , c , b,c  
(i)  
is b IS open but it is not semi IS open.  
A a,b,c  
(ii) A   
a,b,cis b IS open but it is not open.  
Example2.2.Let X  
a,b,c  
,
,
a
,
a,c, Xand I  
,
c
  
.
(i)  
A  
b,cis b IS open but it is not preIS open.  
Example 2.3. Let X   
a,b,c,d  
,
,
b
,
a,d  
,
a,b,d, Xand I  
,
b
  
.
Then A   
a,c,dis not b open but it is b IS open.  
3.Strong BIS set  
Definition3.1. A subset A of an ideal space X,  
, Iis called strong BIS set if A U V, where  
and  
U   
V is a t IS set and int  
cls  
V
cls int  
V
  
.
Proposition 3.1 Let X,  
, Ibe an ideal space and A X If A is a strong BIS set, then A is a BIS set.  
.
Proof: Obvious  
Remark 3.1. Converse of the Proposition 3.1 need not be true as seen from the following example.  
Example 3.1Let X   
a,b,c  
,
,
a
,
a,c, Xand I  
.
If  
A   
b
,then int  
cls  
and cls int  
A
and int  
A
.Hence A is a t IS set.Clearly A is a BIS set. But  
int  
cls  
A
A
  
b
.Hence int  
cls  
V
cls int  
V
  
.
So A is not a strong BIS set.  
Theorem3.1 Let X,  
, Ibe an ideal space and A X  
.Then the following conditions are equivalent:  
(i)  
A is open;  
A is b IS open and a strong BIS set.  
(ii)  
Proof: (i) (ii) By Proposition 2.2,every open set is b IS open.On the other hand every open set is strong  
BIS set, because X is t IS set and int  
cls  
X
cls int  
X
  
.
(ii) (i) Let A be b IS open and a strong BIS set. Then  
A int  
cls  
cls  
V
A
cls int  
V
A
  
  
.
int  
cls  
U V  
cls int  
U V  where U is open and V is a t IS set and int  
cls int  
Hence A (int  
cls  
U
int  
cls  
V
)
cls int  
U
cls int  
V

  
A U
int  
cls  
V
cls int  
V

  
A U int  
cls  
V
A U int  
V
int  
U
int  
V
int  
U Vint  
A .  
Page 1009  
So A is open.  
Remark3.2. The notion of A is b IS openness is different from that of strong BIS sets.  
(i)  
In Example2.1  
cls  
A
cls int  
A
 int  
A
b
.So A is a  
A b,c  
 is not b IS open .But int  
strong BIS set.  
(ii)  
In Example2.1 A   
a,b,c
is b IS open .But int  
cls  
A
X,cls int  
A
  
a,b,d,int  
A
a,b  
.
So A is not a strong BIS set.  
Decomposition of continuity  
Definition 4.1.A function f :X,  
(Y,  
is said to be b continuous[3] if for every V  
, f  
1 V is b open  
set of 
X,  
.
BIS   
I   
Definition 4.2. A function f :X,  
,I  
(Y,  
is said to be  
continuous[14](resp. semi  
continuous  
I   
B   
IS  
I   
I   
[6], pre  
continuous[5])if for every V   
, f  
1 V is a  
set(resp. semi  
open set, pre  
open  
set)of
X,  
, I
  
.
IS   
Definition 4.3. A function f :X,  
,I  
(Y,  
is said to be  
continuous[14](resp. semi IS   
continuous [14], pre IS continuous[14])if for every V   
, f  
1 V is an  
open set(resp. semi IS   
IS   
open set, preIS open set)of X,, I  
.
Definition 4.4. A function f :X,  
,I  
(Y,  
is said to be b IS continuous,(resp.  
strong BIS   
continuous) if for every V   
, f  
1 V is a b IS set(resp. a strong BIS set)of X,  
, I  
.
Proposition 4.1 Let X,  
, Ibe an ideal space. If a function f :X,  
, I  
Y,  
is  
semi IS continuous(res. pre IS continuous),then f is b IS continuous.  
Proof: This is an immediate consequence of Proposition 2.2 (ii) and (iii).  
Proposition 4.2 Let X,  
, Ibe an ideal space. If a function f :X,  
,I  
(Y,  
b IS continuous ,then f is b continuous.  
Proof: This is an immediate consequence of Proposition 2.2 (iv).  
Proposition 4.3 Let
X,, I
be an ideal space. If a function f :
X,  
,I
  
(Y,  
strong BIS continuous, then f is BIS continuous.  
Proof: This is an immediate consequence of Proposition 3.1 (i).  
Theorem 4.1. Let X,, Ibe an ideal space. For a function f :X,,I  
(Y,the following conditions are  
equivalent:  
(i)f is continuous;  
Page 1010  
(ii) f is b IS continuous and strong BIS continuous.  
Proof: This is an immediate consequence of Theorem3.1.  
REFERENCES  
1. M.E.Abd El Monsef,E.F.Lashien and A.A.Nasef,Some topological operators via ideals,Kyungpook  
Math.J.,32,No 2(1992)273-284.  
2. [2]A.Caksu  
Guler  
and  
G.Aslim,b-I-open  
sets  
and  
decomposition  
of  
continuity  
via  
idealization,Proceedings of Institute of Mathematics and Mecanics,National Academy of Sciences of  
Azerbaijan,Vol.22,pp.27-32,2005.  
3. Dimitrije Andrijevi.C,On b-open sets,MATHEMAT,48(1996),59-64.  
4. J.Dontchev,Strong B-sets and another decomposition of continuity,Acta.Mathh.Hungar.,75(1997),259-  
265.  
5. J.Dontchev,Idealization  
of  
Ganster  
Reilly  
decomposition  
6. E.Hatir and T.Noiri,On decompositions of continuity via idealization,Acta.Math.Hunger.96(2002)341-  
349.  
7. D.Jankovic and T.R.Hamlett,New topologies from old via  
310.  
ideals,Amer.Math.Monthly,97(1990),295-  
8. M.Khan and T.Noiri,Semi-local functions in ideal topological spaces,J.Adv.Res.Pure Math.2(2010),36-  
42  
9. K.Kuratowski,Topology,Vol.I,Academicpress,New York,1966.  
10. N.Levine,Semi-open sets and semi continuity in topological spaces, Amer.Math.Monthly,70(1963),36-  
41.  
11. A.S.Mashhour,M.E.Abd.El-Monsef and S.N.El-deeb,On pre-continuous and weak pre-continuous  
mappings,Pro.Math.Phys.Soc..Egypt,53(1982),47-53.  
12. O.Njasted,On some nearly open sets,Pacific J.Math.15(1965),961-970  
13. P.Samuels ,A topology formed from a given topology and ideal,Journal of the London Mathematical  
Society,Vol.10,No.4,pp.409-416,1975.  
14. R.Shanthi and M.Rameshkumar, A decomposition of continuity in ideal topological spaces by using  
semi-local functions, Asian J.Math.Appl.(2014),1-11  
15. R.Shanthi  
and  
M.Rameshkumar,On  
Is   
open  
sets  
and  
Is   
continuous  
functions,J.Math.Comput.Sci.5(2015).No.5,615-625.  
16. R.Vaidyanathaswamy,SetTopology,Chelsea Publishing Company,1960  
Page 1011