results provide a realistic basis for building scalable and fault-tolerant frameworks. Such hybrid estimation is
aligned with demands of noisy intermediate-scale quantum (NISQ) devices (Suess et al., 2022).
The study also outlines important future directions. Live validation on IBM Q and ion-trap hardware is essential
(Flammia et al., 2012; Aaronson, 2019). Testing larger qubit arrays, including 4–10 qubit systems, will extend
applicability. Integration of document templates within qRAM will enable real-time lookups. Stronger machine
learning models can classify noisy experimental outputs effectively (Gao et al., 2023). Inclusion of entangled
states such as Bell and GHZ will provide stronger benchmarks (Anisimov et al., 2010). Exploring continuous
monitoring and weak measurements may refine adaptive capabilities.
Overall, this work highlights a practical and innovative pathway in quantum state estimation. It demonstrates
theoretical novelty, strong simulation support, and a clear roadmap for experimental testing. Future research
should combine machine learning, hardware integration, and scalable architectures. This will advance error-
resilient and high-fidelity quantum computing frameworks in the coming decade.
REFERENCES
1. Aaronson, S. (2019). Shadow tomography of quantum states. SIAM Journal on Computing, 49(5),
STOC18-368.
2. Angelakis, D. G. (2017). Quantum simulations with photons and polaritons. Springer.
https://doi.org/10.1007/978-3-319-53475-8
3. Anisimov, P. M., Raterman, G. M., Chiruvelli, A., Plick, W. N., Huver, S. D., Lee, H., & Dowling, J. P.
(2010). Quantum metrology with two-mode squeezed vacuum: Parity detection beats the Heisenberg
limit. Physical Review Letters, 104(10), 103602. https://doi.org/10.1103/PhysRevLett.104.103602
4. Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J.,
& Weinfurter, H. (1995). Elementary gates for quantum computation. Physical Review A, 52(5), 3457–
3467. https://doi.org/10.1103/PhysRevA.52.3457
5. Bishop, R. F., Li, P. H. Y., Darradi, R., & Richter, J. (2008). Frustrated Heisenberg antiferromagnet on
the honeycomb lattice: Spin-gap behaviour and quantum phase transitions. Journal of Physics: Condensed
Matter, 20(25), 255251. https://doi.org/10.1088/0953-8984/20/25/255251
6. Blume-Kohout, R. (2010). Optimal, reliable estimation of quantum states. New Journal of Physics, 12(4),
043034.
7. Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Unknown quantum states: The quantum de Finetti
representation. Journal of Mathematical Physics, 43(9), 4537–4559.
8. Chien, C.-Y., Tanaka, A., Yamamoto, T., & Tsujimoto, Y. (2021). Fast learning feedback in quantum
neural networks with stabilizer states. Quantum Machine Learning Letters, 2(4), 113–124.
https://doi.org/10.1007/s42484-021-00038-6
9. Cramer, M., Plenio, M. B., Flammia, S. T., Somma, R., Gross, D., Bartlett, S. D., ... & Liu, Y. K. (2010).
Efficient quantum state tomography. Nature Communications, 1, 149.
https://doi.org/10.1038/ncomms1147
10. Ferrie, C., & Blume-Kohout, R. (2014). Estimating the bias of quantum state tomography. Physical
Review Letters, 113(20), 200501.
11. Figueroa-Romero, L., Kumar, A., & Gupta, R. (2023). Enhanced quantum tomography using hybrid
Bayesian algorithms. Quantum Reports, 5(1), 31–45.
12. Flammia, S. T., Gross, D., Liu, Y. K., & Eisert, J. (2012). Quantum tomography via compressed sensing:
Error bounds, sample complexity, and efficient estimators. New Journal of Physics, 14(9), 095022.
https://doi.org/10.1088/1367-2630/14/9/095022
13. Gao, Z., Li, F., Xu, Y., & Yuan, H. (2023). Pattern-based adaptive quantum estimation for noisy
intermediate-scale devices. Quantum Reports, 5(1), 57–70. https://doi.org/10.3390/quantum5010006
14. Garcia, A., Tan, M. L., Wong, D., & Kim, M. S. (2023). Adaptive Bayesian learning for quantum state
tomography. npj Quantum Information, 9, 56. https://doi.org/10.1038/s41534-023-00706-9
15. Granade, C., Ferrie, C., & Cory, D. G. (2017). Accelerated Bayesian tomography. New Journal of Physics,
19(11), 113017. https://doi.org/10.1088/1367-2630/aa8a3f
16. Gross, D., Liu, Y. K., Flammia, S. T., Becker, S., & Eisert, J. (2010). Quantum state tomography via
compressed sensing. Physical Review Letters, 105(15), 150401.