30. Costales, J. A., Shiromani, S., & Devaraj, M. (2023). The impact of blockchain technology to protect
image and video integrity from identity theft using deepfake analyzer. International Conference on
Innovative Data Communication Technologies and Application (ICIDCA 2023) - Proceedings.
31. Dagar, D., & Vishwakarma, D. K. (2022). A literature review and perspectives in deepfakes: Generation,
detection, and applications. International Journal of Multimedia Information Retrieval, 11(3).
32. Dami, L. (2019). Deepfake Salvador Dalí takes selfies with museum visitors. The Verge.
33. Das, A., & Sebastian, L. (2023). A comparative analysis and study of a fast parallel CNN based deepfake
video detection model with feature selection (FPC-DFM). Proceedings of the ACCTHPA 2023
- Conference on Advanced Computing and Communication Technologies for High Performance
Applications.
34. Delgado, S., Moran, F., Jose, J. C. S., & Burgos, D. (2021). Analysis of students’ behavior through user
clustering in online learning settings, based on self organizing maps neural networks. IEEE Access, 9,
35. Dharmaraj, D. (2022). Convolutional neural networks (CNN) — Architecture explained. Medium.
36. Dong, Z., Wei, J., Chen, X., & Zheng, P. (2020). Face detection in security monitoring based on artificial
intelligence video retrieval technology. IEEE Access, 8, 54166–54173.
37. Du, M., Pentyala, S., Li, Y., & Hu, X. (2020). Towards generalizable deepfake detection with locality-
aware autoencoder. Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (CIKM ’20).
38. Durall, R., Keuper, M., Pfreundt, F., & Keuper, J. (2019). Unmasking deepfakes with simple features.
39. El-Gayar, M. M., Abouhawwash, M., Askar, S. S., & Sweidan, S. (2024). A novel approach for detecting
deep fake videos using graph neural network. Journal of Big Data, 11(1), 1–17.
40. Elpeltagy, M., Ismail, A., Zaki, M. S., & Eldahshan, K. (2023). A novel smart deepfake video detection
system. International Journal of Advanced Computer Science and Applications, 14(1), 115–122.
41. Feinland, J., Barkovitch, J., Lee, D., Kaforey, A., & Ciftci, U. A. (2022). Poker bluff detection dataset
based on facial analysis. In F. Falchi, A. Messina, G. Amato, & N. Vadicamo (Eds.), Lecture notes in
computer science ( 13233, pp. 466–476).
42. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., & Holz, T. (2020). Leveraging frequency
analysis for deep fake image recognition. Proceedings of the 37th International Conference on Machine
Learning (ICML 2020).
43. Fukushima, K. (1987a). Neural network model for selective attention. Unpublished manuscript.
44. Fukushima, K. (1987b). Neural network model for selective attention in visual pattern recognition and
associative recall. Applied Optics, 26(23), 4985–4992.
45. Fukushima, K. (1989). Modeling visual systems for visual pattern recognition. Journal of the Japan
Society for Precision Engineering, 55(4), 638–644.
46. Giudice, O., Guarnera, L., & Battiato, S. (2021). Fighting deepfakes by detecting GAN DCT anomalies.
Journal of Imaging, 7(8), 128.
47. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative adversarial networks. In Advances in Neural Information Processing
48. Goswami, G., Bhardwaj, R., Singh, R., & Vatsa, M. (2014). MDLFace: Memorability augmented deep
learning for video face recognition. IJCB 2014 - 2014 IEEE/IAPR International Joint Conference on
49. Guarnera, L., Giudice, O., & Battiato, S. (2020). Deepfake detection by analyzing convolutional traces.
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2841–
50. Guera, D., & Delp, E. J. (2018). Deepfake video detection using recurrent neural networks. Proceedings
of AVSS 2018 - 2018 15th IEEE International Conference on Advanced Video and Signal-Based
Page 428