evaluated are technological efficiency and related emissions. Residential and light-industrial demand profiles
were studied. Regional emission factors were regarded as constant for simplicity. Defined system boundaries
promote clarity and reproducibility (Budinis et al., 2018). Clear delimitation gives reliable assumptions for
comparison evaluation. The technique gives a controlled framework for consistent optimization outputs.
REFERENCES
1. Abdullah, M. A., Yatim, A. H. M., Tan, C., & Saidur, R. (2012). A review of maximum power point
tracking algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, 16(5), 3220–
3227. https://doi.org/10.1016/j.rser.2012.02.044
2. Ahmad, S. H. A., Saidur, R., Mahbubul, I. M., & AlSulaiman, F. A. (2017). Optical properties of various
nanofluids used in solar collectors: A review. Renewable and Sustainable Energy Reviews, 73, 1014–
1034. https://doi.org/10.1016/j.rser.2016.11.034
3. Ahman, M., Nilsson, L. J., & Johansson, B. (2017). Global climate policy and deep decarbonization
ofenergyintensive industries. Climate Policy, 17(5), 634–649.
https://doi.org/10.1080/14693062.2016.1167009
4. Alguburi, S., Munther, H., Al-Dulaimi, O., Fakhruldeen, H. F., Sapaev, I. B., Al Seedi, K. F. K., ... &
Nakimera,
5. G. (2025). Green hydrogen role in sustainable energy transformations: A review. Results in Engineering,
26, 105109. https://doi.org/10.1016/j.rineng.2025.105109
6. Ang, T. Z., Salem, M., Kamarol, M., Das, H. S., Alhuyi Nazari, M., & Prabaharan, N. (2022). A
comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy
Strategy Reviews, 43, 100939. https://doi.org/10.1016/j.esr.2022.100939
7. Banos, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. A. (2011).
Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable
Energy Reviews, 15(4), 1753–1766. https://doi.org/10.1016/j.rser.2010.12.008
8. Bekakra, Y., & Attous, D. B. (2014). Optimal tuning of PI controller using PSO optimization for indirect
power control for DFIG-based wind turbine with MPPT. International Journal of Systems Assurance
Engineering and Management, 5(2), 219–229. https://doi.org/10.1007/s13198-013-0190-7
9. Bhowmik, C., Bhowmik, S., Ray, A., & Pandey, K. M. (2017). Optimal green energy planning for
sustainable development: A review. Renewable and Sustainable Energy Reviews, 71, 796–813.
10. https://doi.org/10.1016/j.rser.2016.12.099
11. Budinis, S., & Krevor, S. (2018). Carbon capture and storage: The way forward. Nature Energy, 3, 242–
250. https://doi.org/10.1038/s41560-018-0089-9
12. Budinis, S., Krevor, S., Dowell, N. M., Brandon, N., & Hawkes, A. (2018). An assessment of CCS costs,
barriers and potential. Energy Strategy Reviews, 22, 61–81. https://doi.org/10.1016/j.esr.2018.08.003
13. Dincer, I., & Rosen, M. A. (2005). Thermodynamic aspects of renewables and sustainable development.
Renewable and Sustainable Energy Reviews, 9(2), 169–189. https://doi.org/10.1016/j.rser.2004.02.009
14. Farooq, M., Raza, A., & Qureshi, I. (2025). Smart storage coordination for low-carbon energy transitions.
Energy Reports, 17, 1121–1132.
15. Golusin, M., Popov, S., & Dodic, S. (2013). Sustainable energy management. Academic Press.
16. Gonzalez, A., McKeogh, E., & O Gallachoir, B. (2004). The role of hydrogen in high wind energy
penetration electricity systems: The Irish case. Renewable Energy, 29(4), 471–485.
17. https://doi.org/10.1016/j.renene.2003.09.005
18. Huang, Y., Zhao, X., & Lin, J. (2024). Intelligent hybrid systems with adaptive scheduling. Sustainable
Energy Technologies and Assessments, 59, 103421.
19. Karaboga, D., Akay, B., & Yildiz, O. (2023). Artificial Bee Colony improvements for sustainable energy
control. Applied Soft Computing, 145, 110564.
20. Kim, J., Lee, S., & Park, Y. (2023). AI-driven load forecasting for hybrid renewable systems. Energy AI,
12, 100245. https://doi.org/10.1016/j.egyai.2023.100245
21. Knobloch, F., Hanssen, S. V., Lam, A., Pollitt, H., Salas, P., Chewpreecha, U., ... & Mercure, J. F. (2020).
Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature
Sustainability, 3(6), 437–447. https://doi.org/10.1038/s41893-020-0488-7