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ABSTRACT

Acid pollution in aquatic environments is a major global challenge caused by natural and anthropogenic sources.
The lowering of pH destabilizes biogeochemical cycles, mobilizes toxic metals, disrupts biodiversity, and
threatens human health. This review synthesizes recent literature (2015-2025) on the causes, ecological and
human impacts, mitigation technologies, and emerging solutions to acid pollution in aquatic systems. The
discussion highlights acid mine drainage (AMD), industrial effluents, agricultural runoft, and atmospheric
deposition as major contributors. Traditional treatments such as neutralization and constructed wetlands are
compared with novel approaches including bioremediation, adsorption, membrane distillation, and resource
recovery. Case studies and recent advances are evaluated to understand their sustainability, scalability, and
economic feasibility. Finally, emerging research trends such as artificial intelligence-driven monitoring, circular
economy approaches, and hybrid remediation strategies are outlined to inform future policy and research
priorities.

Keywords: acid pollution, acid mine drainage, aquatic ecosystems, remediation, resource recovery,
bioremediation, sustainability

INTRODUCTION

Aquatic ecosystems are increasingly under threat from acid pollution, defined as the input of acidic compounds
into surface or groundwater leading to a decline in pH below ecologically safe levels. Natural sources such as
volcanic activity and sulfide mineral weathering contribute to baseline acidification, but anthropogenic drivers-
including industrial discharges, agricultural practices, fossil fuel combustion, and acid mine drainage (AMD)-
have intensified the problem globally (Grennfelt et al., 2019).

The consequences of aquatic acidification extend from chemical alterations to biological disruption and socio-
economic loss. Acidification increases the solubility of toxic metals such as aluminum, cadmium, and lead,
reduces biodiversity, weakens ecosystem services, and imposes health risks when contaminated water is
consumed (EPA, 2025). Beyond local ecosystems, acid pollution interacts with global issues such as climate
change and sustainable resource management.

This review provides a comprehensive synthesis of current knowledge on acid pollution in aquatic systems. It
outlines the major sources, ecological and human health impacts, traditional and emerging remediation
strategies, and future research directions.

SOURCES OF ACID POLLUTION

2.1 Natural and Geogenic Inputs

Weathering of sulfide-bearing rocks (e.g., pyrite, FeS) produces sulfuric acid when exposed to oxygen and water
(Nordstrom, 2011). Volcanic eruptions release SO and H-S that oxidize in the atmosphere and deposit as acids
(Delmelle & Bernard, 2015). Carbon dioxide dissolution further contributes through the carbonic acid system,
particularly in poorly buffered freshwater bodies (Zeebe et al., 2020).
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2.2 Acid Mine Drainage (AMD)

AMD is among the most persistent sources of aquatic acidification. Mining exposes sulfide minerals, producing
acidic effluents rich in Fe**, SO+*", and toxic metals (Akcil & Koldas, 2006). Recent studies confirm that AMD
alters soil microbial communities, reduces organic matter, and contaminates groundwater (Zhang et al., 2025).

2.3 Industrial Emissions and Effluents

Metal finishing, tannery, and chemical industries release acidic effluents and heavy metals (Fosso-Kankeu et al.,
2016). Combustion of fossil fuels emits SO and NOy, leading to acid rain and subsequent aquatic acidification
(EPA, 2025).

2.4 Agriculture and Urban Runoff

Nitrate fertilizers and pesticides undergo nitrification, producing nitric acid that leaches into water (Guo et al.,
2010). Urban runoff transports acidic particulates, hydrocarbons, and heavy metals into aquatic systems (Hwang
et al., 2016).

2.5 CO:z-Driven Acidification

Increased CO: uptake by aquatic systems alters carbonate equilibria, reducing alkalinity and contributing to
acidification in both marine and freshwater environments (Gattuso & Hansson, 2011).

IMPACTS OF ACID POLLUTION

3.1 Physicochemical Alterations

Acidification decreases alkalinity and buffering capacity, mobilizes toxic metals, and alters speciation (Driscoll
et al., 2001). Mobilized aluminum at low pH is particularly harmful, causing gill damage in fish and reducing
nutrient availability.

3.2 Effects on Biodiversity

Acidified lakes and rivers show declines in fish populations, shifts in plankton communities, and proliferation
of acidophilic algae and fungi (Kowalik & Ormerod, 2006). Egg mortality of salmonids increases sharply below
pH 5.4 (Lydersen et al., 2004).

3.3 Human Health Risks

Consumption of acidified water leads to metal exposure (arsenic, lead, mercury) associated with neurotoxicity
and carcinogenicity (WHO, 2017). Acid rain also contributes indirectly to respiratory illness by increasing
particulate pollution (Chen et al., 2021).

3.4 Socio-Economic Implications

Declining fisheries, agricultural losses, and increased water treatment costs represent major economic burdens.
Infrastructure corrosion from acid rain further compounds the cost (EPA, 2025).

MITIGATION AND PREVENTION STRATEGIES

Table 1. Overview of Acid Pollution Mitigation Strategies

Method Mechanism Advantages Limitations

Neutralization  (lime, | Raises pH, precipitates metals | Rapid, effective High cost, sludge generation
NaOH)
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Constructed wetlands Natural neutralization, | Low maintenance, | Land-intensive, slow
microbial sulphate reduction | ecological
benefits

Adsorbents  (biochar, | Surface binding, ion exchange | Targeted removal, | Selectivity issues, scaling

zeolites) regenerable challenges

Membrane technologies | Physical separation, | High efficiency, | Energy intensive, fouling
crystallization resource recovery

Bioremediation Sulphate-reducing  bacteria, | Sustainable, low | Sensitive to conditions, slow
algae chemical input Kinetics

4.1 Neutralization and Chemical Precipitation

Lime dosing is the cornerstone of acid mine drainage (AMD) remediation, offering rapid neutralization of acidity
and concurrent precipitation of dissolved metals such as Fe, Mn, Al, and others. In large-scale applications,
systems like the High-Density Sludge (HDS) process raise pH levels to ~9, at which point most toxic metals
become insoluble and are removed as precipitates. This process significantly improves water quality but is
accompanied by substantial costs related to the procurement, handling, and application of lime, as well as the
frequent need for sludge disposal and management of residuals. Notably, recent process optimizations (e.g., two-
stage neutralization or improved sludge recycling) can reduce lime dose by up to 85% and sludge yield by over
74%, yet high operational costs remain a barrier, especially for legacy mines or sites with high water flow
(Skousen et al., 2019).
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4.2 Passive Treatment

Passive treatment systems, such as constructed wetlands and anoxic limestone drains (ALD), harness natural
biogeochemical processes to increase water alkalinity, facilitate microbial sulphate reduction, and precipitate
metals. Constructed wetlands, both aerobic and anaerobic, use layers of organic matter and/or limestone to
promote reactions that neutralize acidity and reduce trace metals. ALDs and successive alkalinity producing
systems (SAPS) bury limestone beds to maintain anaerobic conditions, allowing for slower but sustainable acid
neutralization. The cost effectiveness and ecological benefits (e.g., habitat provision) of passive systems are
well-documented, though they are limited by land area requirements, slower response to peak acidity, and
variable long-term resilience under changing hydrology and temperature. (Johnson & Hallberg, 2005).
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4.3 Adsorption and Advanced Materials

Recent advancements leverage biochar, activated carbon, and engineered composites to achieve high (>90%)
removal efficiencies of dissolved metals under laboratory and pilot conditions. Biochar's high surface area,
alkaline buffering, and affinity for heavy metals have proven especially promising in contaminated mine tailings
and effluent scenarios. Studies now identify optimal feedstocks and pyrolysis conditions and recommend specific
biochar blends for maximum retention and minimal metal desorption-a critical step for scaling up and preventing
rebound contamination. (Dube et al., 2024).
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4.4 Membrane-Based Processes

The use of advanced membrane technologies, such as membrane distillation crystallization (MDCr) and reverse
osmosis (RO), represents a new frontier in AMD treatment. These technologies physically separate contaminants
and enable simultaneous water purification and mineral resource recovery. MDCr, for instance, achieves >97%
salt rejection and allows for gypsum (CaSO4:2H20) crystal harvesting, offering a dual benefit of clean water
and economic mineral recovery-though scaling, membrane fouling, and energy demand remain engineering
challenges (Nthunya et al., 2025).
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Table 2. Performance and Cost Comparison of Acid Mine Drainage Remediation Technologies

Technology Metal Removal Sludge Energy Cost Treatment Cost
Efficiency (%) Generation Reduction

Lime Dosing 98% (Fe, Mn, Al) High Moderate -
Constructed 80-95% Low Low Up to 40%
Wetlands
Biochar Adsorption | 80-100% (lab) Minimal Low 20-35%
Membrane 99% (salts) Minimal High 10-25%
Distillation
Bioremediation 98-100% (As, Cu, Fe, Ni, | Minimal Moderate -
(SRB) Zn)
Hybrid DAF System | >99% Minimal Low 10-20%

4.5 Bioremediation

Eco-friendly bioremediation leverages sulphate-reducing bacteria (SRB), algae, and microbial consortia to treat
AMD by precipitating metals as sulphides (e.g., FeS, ZnS) and assimilating toxic elements. Industrial-scale
processes such as BioSulphide® and Thiopaq® have demonstrated 98—100% metal and sulphate removal
efficiency under optimized conditions, supporting marketable metal sulphide production and clean water release.
The major challenge lies in maintaining robust microbial populations, optimizing electron donor supply (e.g.,
ethanol, acetic acid), and scaling up from laboratory to continuous, field-scale reactors (Adetunji et al., 2025).
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EMERGING TRENDS

5.1 Resource Recovery

Resource recovery transforms AMD from a waste stream into a potential source for valuable metals, including
Fe, Al, and rare earth elements (REEs). Supported liquid membranes, modified adsorbents, and selective
precipitation are now used to extract REEs with high purity, influenced by feedstock pH, competitive cation
concentrations, and membrane interface dynamics. Life cycle assessments show significant cost and emissions
reductions (e.g., 17.9% lower cost, 60.1% less CO-) versus conventional neutralization (Li et al., 2025).
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5.2 Artificial Intelligence

Integration of Al and machine learning into AMD management systems enables predictive modelling of AMD
generation, assessment of contamination risk via hyperspectral mapping, automated monitoring, and adaptive
optimization of remediation plants. Unmanned aerial systems, satellite imagery, and real-time sensors are
increasingly used for high-resolution mapping, anomaly detection, and rapid field intervention (Mogashane et
al., 2025).
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5.3 Hybrid Approaches

Hybrid remediation strategies comprise sequential or integrated combinations of neutralization, adsorption,
bioreactors, and membrane separation technologies for enhanced treatment efficiency and cost-effectiveness.
Case studies document that hybrid systems, such as combining GEM’s hybrid DAF with walnut filters and HDS,
provide drier sludge, improved removal rates, and reduced energy and footprint demands. These systems balance
responsiveness, sustainability, and operational complexity- enabling tailored solutions for sites with fluctuating
AMD chemistry and flow rates (Skousen et al., 2019).

SYSTEM INTEGRATION: NEUTRLIZATION, ADORPTION, & MEMBIANE FILTRATION

WASTESWATER
- CONCENTRATE
REJECT

ADSORPTION UNIT A ADSORPTION UNIT B

BACKWASH

MEMBRANE FILTRATION
UNIT

e - 3
o - C;
ACID BASE
DOSING DOSING
DISPOSAL

PERMEETE
(TREATED WATER)

Created in BioRender.com bio

5.4 Life Cycle Assessments

Recent LCA studies show that, although passive systems may require more time and land, they generally
outperform active systems in sustainability metrics such as energy use, greenhouse gas footprint, and residual
waste generation. This evidence is driving a shift toward nature-based solutions and circular models for AMD

remediation, supporting long-term resilience and ecosystem restoration. (Du et al., 2024).
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Table 3. Comparison of Emerging Acid Mine Drainage (AMD) Remediation Strategies

Strategy/Technology Sustainability Scalability | Resource | Strengths Challenges
Score (Lab  and | Recovery
Field) Potential
Al-Driven Process | High High Indirect Predictive Requires
Optimization (enables control, technological
efficiency) | enhances infrastructure

monitoring

Biochar/Biosorbent- High Moderately | Moderately | Renewable, Selectivity,

Based Systems High High low residual | regeneration,
waste, metal | supply
recovery

Membrane  Distillation | Moderate Moderate High Simultaneous | Energy  cost,

Crystallization clean  water | membrane
and mineral | fouling
recovery

Integrated/Hybrid High High High Synergy System design

Systems between complexity,
processes; maintenance
greater
adaptability

Life Cycle Assessment- | High High Indirect Supports Data

Aided Planning sustainable requirement,
selection and | evolving
policy methodologies

Rare Earth/Metal | Moderately High | Moderate Very High | Direct Competing

Extraction via Selective recovery  of | ions,

Precipitation valuable separation
elements efficiency

Advanced  Bioreactors | High Moderate High Low energy, | Biofouling,

(e.g., SRB, Algae) co-generates | robust scale-up
elemental required
sulphur

CONCLUSION

Acid pollution in aquatic systems continues to represent a critical, multidimensional global challenge,
implicating environmental integrity, public health, and economic stability across diverse regions. Its impacts are
manifest in altered biogeochemistry, decline of biodiversity, depletion of fisheries resources, contaminated water
supplies, and complex public health burdens. The persistence and expansion of acid pollution are propelled by
legacy mining, fossil fuel combustion, agricultural intensification, and emerging contaminants, all of which
demand adaptive, system-level solutions.

Conventional remediation approaches, including chemical neutralization, engineered active treatments, and
passive attenuation-deliver immediate results but often fall short of addressing long-term system resilience,
waste minimization, and sustainability. Recognizing these limitations, contemporary practice
emphasizes integrated solutions that leverage bioremediation, resource recovery, and hybrid (multi-step)
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systems for holistic, cost-effective management. Bioremediation utilizes microbial communities and biosorbents
to sequester contaminants naturally, while resource recovery transforms pollutants into valuable materials,
promoting circularity and reducing secondary waste. Hybrid systems combine physical, chemical, and biological
methods, enhancing efficacy-especially for complex, mixed-contaminant scenarios.

The advent of new tools and frameworks-particularly artificial intelligence (Al), life cycle assessment (LCA),
real-time digital monitoring, and advanced modelling-heralds a paradigm shift in environmental management.
Al-based analytics enable predictive monitoring, rapid response, and optimization of remediation strategies,
while LCA fosters the selection of sustainable, low-impact technologies suited to specific ecosystem contexts.
These digital tools bridge the gap between field observation, policy guidance, and implementation, supporting
multi-stakeholder collaboration and transparent decision-making.

Future research and practical implementation must focus on several critical areas:

e Scaling up pilot studies: Transitioning promising laboratory and pilot-scale biotechnologies-biochar,
microbial consortia, advanced membranes-to real-world, large-scale systems.

e Reducing remediation costs: Developing low-cost, locally sourced adsorbents, energy-efficient
processes, and policy mechanisms that incentivize sustainable adoption.

o Embedding within circular economy frameworks: Designing interventions that valorise waste, prioritize
resource recovery, and align with circular bioeconomy principles, thereby promoting ecosystem
restoration with economic co-benefits.

e Enhancing stakeholder integration: Facilitating knowledge transfer across scientific, regulatory, and
community contexts; empowering local actors in adaptive management.

e Addressing knowledge gaps: Improving long-term monitoring, benchmarking performance, and
integrating health impact assessments into remediation design.

In summary, the sustainable management of acid pollution in aquatic environments will depend
on interdisciplinary approaches, innovative technologies, scalable practices, and policy frameworks that
reinforce circular, resilient, and equitable outcomes. The confluence of scientific discovery, technological
advancement, and collaborative governance offers a pathway to mitigate acid pollution and secure water
resources for future generations
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