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ABSTRACT

Efficient victim detection and reliable navigation remain major challenges in robotic search and rescue
operations within disaster affected regions. This research describes the design and implementation of an Al -
driven autonomous robot car capable of making real-time decisions in complex and hazardous environments.
The proposed system employs a sensor fusion approach that combines visual human detection using YOLOV5,
thermal-based classification through a convolutional neural network, and audio-based human voice detection.
These Al modules are supported by additional sensors including ultrasonic sensors, INMP441 microphone,
MPUG050 inertial unit, and gas sensors (MQ2 and MQ135), all coordinated using a Raspberry Pi 3B+, ESP32,
and ESP32-CAM modules. Precise localization and remote communication are achieved using a NEO-6M GPS
receiver and a SIM800L GSM module. A web-based monitoring platform is developed to display real-time
sensor readings, survivor locations, and environmental hazard warnings at a base station. The system is validated
using a physical prototype designed for low-cost, rapid deployment, and ease of use. Experimental observations
indicate that the robot can autonomously navigate, identify potential survivors, and transmit critical information,
highlighting its suitability for disaster-response applications.
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INTRODUCTION

Current search and rescue methodologies are constrained by human physical limitations, safety protocols, and
delays inherent in site assessment. Natural disasters such as earthquakes and building collapses frequently result
in survivors being trapped in hazardous and inaccessible environments. Traditional search and rescue operations
in these scenarios are often time-consuming, resource-intensive, and pose significant risks to first responders
who must navigate unstable debris, toxic atmospheres, and unpredictable structural conditions. The urgency of
post-disaster rescue efforts is heightened by the exponential decrease in survivors’ chances of survival over time,
necessitating innovative solutions that accelerate search operations while reducing human risk[1]. Although
robotic systems have been investigated to aid rescuers, many existing platforms are costly, require specialized
training, or depend on infrastructural support unavailable in resource-limited, disaster-prone developing
regions[2]. Furthermore, conventional robotic solutions often rely on remote control or pre-programmed
behaviors, which restricts their adaptability and real-time decision-making capabilities. Most are limited using
single-sensor modalities, such as visual cameras, which fail to provide sufficient situational awareness in
complex environments characterized by poor visibility and hazardous conditions[3]. This paper presents the
development of an Al-driven autonomous robotic car designed for real-time decision-making in disaster zones.
By integrating multiple sensor modalities, including visual cameras, thermal imaging, audio detection, gas
sensing, and GPS positioning with advanced Al models such as YOLOV5, convolutional neural networks, and
audio classifiers, the system achieves comprehensive environmental perception and adaptive navigation. The
design prioritizes low-cost and modularity, making it accessible for deployment in developing countries with
dense and complex urban structures. Through this approach, the proposed system aims to enhance the efficiency
and safety of post-disaster search and rescue missions [4].
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METHODOLOGY

The proposed Al-driven autonomous robot car was developed on a modular embedded platform combining
Raspberry Pi 3B+, ESP32, and ESP32-CAM modules for computation and sensor management. The robot
integrates multiple sensing modalities. Visual detection is performed using YOLOV5 for human identification
from disaster imagery. Thermal detection is performed using a CNN (convolutional neural network) based
classifier for differentiating human heat signatures. Audio detection is done by employing a trained classifier on
INMP441 microphone inputs to recognize human voices[5]. The design integrates Raspberry Pi, Arduino Uno,
ESP32, GPS module, motor drivers, MQ-2 and MQ-135 gas sensors, ultrasonic sensors, PIR sensor, and
supporting components for real-time hazard detection and control as shown in Figure 1.

Figure 1: The created circuit diagram of the autonomous car using cirkitdesigner software

The environmental sensing is performed with MQ2 (flammable gases) and MQ135 (air quality) for hazard
detection. Localization and navigation are carried out usinga GPS NEO-6M connected to the ESP32, Ultrasonic
sensors for obstacle avoidance and an IMU MPUG050 for stability. The Arduino Uno was dedicated exclusively
to the SIM80OL GSM module, that enabling reliable wireless communication with the user. Sensor data were
transmitted to the Raspberry Pi, where Al inference and sensor fusion were performed. Reinforcement learning
algorithms guided autonomous navigation in simulated disaster terrains. A web-based dashboard was developed
with a Flask backend and a responsive frontend using HTML, CSS and JavaScript supported by an SQL.ite
database for real-time monitoring, enabling survivor localization, hazard alerts, and vehicle tracking.

The experimental workflow was executed sequentially to ensure robust system development. Hardware
integration and calibration were first performed for all modules, including ultrasonic sensors for obstacle
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detection, MPUG6050 IMU for stability, INMP441 microphone for audio, MQ2 and MQ135 gas sensors, and
GPS NEO-6M and GSM SIMB800L for localization and communication. Al models were then trained on disaster -
relevant datasets: YOLOV5 for visual human detection, a CNN for thermal image classification, and an audio
classifier for survivor voice recognition. Outputs from these models and sensors were integrated via a fusion and
reinforcement learning framework on the Raspberry Pi 3B+, enabling adaptive navigation and autonomous
decision-making. The prototype was tested in controlled indoor environments simulating obstacles, debris, and
varying gas concentrations. Finally, a Flask-based web dashboard with HTML/CSS/JavaScript frontend and
SQLite database provided real-time monitoring through WebSocket communication, delivering continuous
visualization of detections, hazards, and survivor locations. The stepwise experimental workflow for system
development is illustrated in Figure 2, which outlines the processes from hardware calibration through Al

training, sensor fusion, and final prototype validation.
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Figure 2: The experimental process of testing of the constructed system
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Preliminary trials validated subsystem performance before integration. Ultrasonic sensors reliably detected
obstacles up to 3 meters away, while the MPU6050 confirmed stable orientation tracking. Gas sensors (MQ2
and MQ135) responded accurately to low concentrations of LPG and CO2 under laboratory conditions. The CNN
classifier consistently distinguished human thermal signatures, and the audio classifier detected human voices
with acceptable accuracy under controlled noise. These results guided the configuration of sensor fusion
thresholds and decision-making rules for the prototype from the Figure 3.

Using a dataset of 1,467 training images and 571 validation images, the thermal CNN achieved the performance
metrics reported in Table 1, demonstrating robust generalization on unseen thermal data.

Figure 3: The up and side views of the experimental setup for the system

The CNN was optimized using the Binary Cross Entropy (BCE) loss function, defined in Equation (1), to train
the thermal image classifier with y; representing the ground truth label (human or non-human) and ¥,
representing the projected probability. Accurately separating human heat signatures from background regions is
encouraged by this loss function which penalizes incorrect classifications.

Equation 1

1 N
Lee = —x ) [yilog(®) + (1= yy) log(1 = )]
i=1

Where:
N = The number of samples
yi € {0,1} = The ground truth label
¥, = The predicted probability from the CNN

At the current stage, navigation is achieved through ultrasonic-based obstacle avoidance and reinforcement
learning—guided decision rules. Advanced SLAM-based mapping is not implemented in this prototype and is
identified as a key direction for future enhancement.

RESULTS AND DISCUSSION

The autonomous robot prototype was successfully implemented and tested in controlled environments
simulating disaster-like conditions. The ultrasonic sensors consistently detected obstacles up to 3 m with an
average accuracy of 94%. The MPU6050 IMU further stabilized navigation by compensating for sudden tilts.
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Figure 4: Training and validation performance of the YOLOV5 model. The plots show training/validation losses
(box, objectness, classification) and evaluation metrics (precision, recall, mMAP@0.5, mMAP@0.5:0.95) over 50
epochs. The decreasing losses and increasing metrics indicate good model convergence and generalization

The training process of YOLOVS5 isillustrated in Figure 4, where the losses decrease smoothly, and performance
metrics converge to stable high values, demonstrating effective learning. Figure 5 illustrates that the model
achieved high accuracy in distinguishing speech from non-speech.
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Figure 5: Confusion matrix of the speech vs. non-speech classification. The model correctly classified 51 non-
speech and 48 speech samples, with only 3 speech samples misclassified.
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The MQ2 and MQ135 sensors responded effectively to varying concentrations of LPG and CO:, providing
hazard alerts when thresholds exceeded safe ranges. This demonstrated the system’s ability to identify toxic or
flammable environments. The web-based dashboard successfully provided real-time updates using WebSocket
communication, enabling continuous display of survivor localization, sensor readings, and hazard alerts without
page reload. Response latency averaged less than 1 second between the robot and base station, supporting
practical field deployment [6]. As illustrated in Figure 6, the training and validation losses decrease steadily
while precision, recall, and mAP improve over the course of 50 epochs.
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Figure 6: Training and validation metrics of the CNN-based object detector on the thermal dataset, showing loss
convergence and improvements in precision, recall, and mAP over 50 epochs.

The performance of the thermal CNN model evaluated on the thermal dataset is summarized in table 1. The
model achieved an accuracy of approximately 93-94% with balanced precision and recall, indicating reliable
human detection in thermal imagery. The CNN was optimized using the binary cross entropy loss function
Equation 1, with minimizes the classification error between predicted and ground truth labels. The convergence
behavior of this loss function is evident in the performance results summarized in Table 1, where the model
achieves high precision and recall on the thermal dataset.

Table 1: CNN performance on thermal dataset

Metric Value
Accuracy ~0.93-0.94
Precision ~0.91
Recall ~0.92
F1-score ~0.915
Training Loss ~0.07-0.08
Validation Loss ~0.09-0.10
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Figure 7: Four images of the web dashboard

Figure 7 shows the Al Robot Disaster Response Dashboard, which provides real-time tracking of the robot's
location, live camera feed, Al model results, and sensor data. It allows for monitoring the robot's progress and
performance during disaster response operations.

LIMITATIONS

Despite the promising results, the proposed system has several limitations. The integration of multiple sensors
and Al modules increases system complexity and may affect long-term reliability in harsh disaster environments.
Additionally, the computational and power constraints of the Raspberry Pi 3B+ and ESP32 limit the
simultaneous execution of multiple deep learning models. Performance may also degrade under extreme
conditions such as dense smoke, high ambient noise, or severe occlusions. Furthermore, the navigation strategy
is currently limited to obstacle avoidance and does not incorporate full SLAM-based mapping, which may
restrict scalability in large disaster sites.

CONCLUSION

The prototype effectively demonstrated autonomous navigation and victim detection capabilities in controlled,
simulated disaster environments. Ultrasonic sensors provided accurate and reliable obstacle avoidance, ensuring
smooth navigation around debris and barriers. The YOLOV5 visual detection model achieved robust human
detection, confirming its suitability for disaster victim identification. The CNN for thermal image classification
reliably distinguished human heat signatures from the background, augmenting detection robustness under low-
visibility conditions. Meanwhile, the audio classifier trained on human voice samples successfully identified
potential survivors through acoustic cues, complementing the visual and thermal detection modalities [6]. Gas
sensors (MQ2 and MQ135) effectively detected hazardous concentrations, enabling timely hazard alerts. The
integration of these sensor inputs through a sensor fusion and reinforcement learning framework on the
Raspberry Pi 3B+ facilitated real-time decision-making and adaptive navigation. Furthermore, real-time
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monitoring via the web-based dashboard empowered rescue operators with continuous updates on survivor
localization and environmental hazards, enhancing situational awareness. The experimental evaluation using the
physical prototype demonstrates an average visual detection accuracy of 89%, thermal classification accuracy
of 90% and audio detection accuracy of 71% with an obstacle avoidance success rate of 93% and reliable
dashboard data transmission in 95% of test scenarios. These results prove that the proposed system is a
promising, affordable and rapidly deployable solution for disaster response applications. Collectively, these
results validate the feasibility of a cost-effective, Al-driven robotic platform for disaster response applications,
demonstrating consistent, multi-modal survivor detection and autonomous navigation [7].
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