5. Hung, T. H., So, T., Sreng, S., Thammavong, B., Boounithiphonh, C., Boshier, D. H., & MacKay, J. J.
(2020). Reference transcriptomes and comparative analyses of six species in the threatened rosewood
genus Dalbergia. Scientific Reports, 10, 17749. https://doi.org/10.1038/s41598-020-74814-2
6. Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., dePamphilis, C. W., Yi, T. S., & Li, D. Z. (2020). GetOrganelle:
A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21,
241. https://doi.org/10.1186/s13059-020-02154-5
7. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780.
8. https://doi.org/10.1093/molbev/mst010
9. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., & Drummond, A. (2012).
Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis
of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
10. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary
Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.
https://doi.org/10.1093/molbev/msy096
11. Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C., Stoye, J., & Giegerich, R. (2001). REPuter:
The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 29(22), 4633–
4642. https://doi.org/10.1093/nar/29.22.4633
12. Li, C., Liu, Y., Lin, F., Zheng, Y., & Huang, P. (2022). Characterization of the complete chloroplast
genome sequences of six Dalbergia species and its comparative analysis in the subfamily Papilionoideae
(Fabaceae). PeerJ, 10, e13570. https://doi.org/10.7717/peerj.13570
13. Lohse, M., Drechsel, O., Kahlau, S., & Bock, R. (2013). OrganellarGenomeDRAW—A suite of tools for
generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets.
Nucleic Acids Research, 41(W1), W575–W581. https://doi.org/10.1093/nar/gkt289
14. Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective
stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution,
32(1), 268–274. https://doi.org/10.1093/molbev/msu300
15. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., & Huelsenbeck, J. P.
(2012).
16. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space.
Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
17. Sahu, S. K., Liu, M., Li, R., Chen, Y., Wang, G., Fang, D., Sahu, D. N., Wei, J., Wang, S., Liu, H., & He,
C.
18. (2023). Chromosome-scale genome of Indian rosewood (Dalbergia sissoo). Frontiers in Plant Science, 14,
1218515. https://doi.org/10.3389/fpls.2023.1218515
19. Shi, M., Zhang, Y., Huang, H., Gu, S., Wang, X., Li, S., Zhao, Z., & Tu, T. (2024). Chromosome-scale
genome assembly of the mangrove climber species Dalbergia candenatensis. Scientific Data, 11, 1187.
https://doi.org/10.1038/s41597-024-04032-2
20. Song, Y., Zhang, Y., Xu, J., Li, W., & Li, M. (2019). Characterization of the complete chloroplast genome
sequence of Dalbergia species and its phylogenetic implications. Scientific Reports, 9, 20401.
https://doi.org/10.1038/s41598-019-56727-x
21. Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large
phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
22. Thiel, T., Michalek, W., Varshney, R. K., & Graner, A. (2003). Exploiting EST databases for the
development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).
Theoretical and Applied Genetics, 106(3), 411–422. https://doi.org/10.1007/s00122-002-1031-0
23. Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, R., & Greiner, S. (2017).
GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research, 45(W1), W6–
W11. https://doi.org/10.1093/nar/gkx391
24. Wyman, S. K., Jansen, R. K., & Boore, J. L. (2004). Automatic annotation of organellar genomes with
DOGMA. Bioinformatics, 20(17), 3252–3255. https://doi.org/10.1093/bioinformatics/bth352
25. Yang, C., Chu, J., Warren, R. L., & Birol, I. (2021). Applications of chloroplast genomics in plant biology
and biotechnology. Frontiers in Plant Science, 12, 760254. https://doi.org/10.3389/fpls.2021.760254