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ABSTRACT 

Space microbiology studies how microorganisms adapt and survive in extreme space conditions such as 

microgravity, radiation, and vacuum. As space missions extend to the Moon, Mars, and beyond, understanding 

microbial behaviour is crucial for astronaut health, spacecraft systems, and the search for extraterrestrial life. 

This review focuses on microbial adaptation to microgravity, biofilm formation, radiation resistance, and 

microbial populations aboard spacecraft. Microgravity alters microbial growth and promotes biofilm formation, 

enhancing stress resistance. Radiation-resistant microbes like Deinococcus radiodurans offer potential 

applications in radiation shielding. Microbial presence on spacecraft presents challenges, such as increased 

virulence and biofilm-induced damage, but also opportunities for life support systems, including waste recycling 

and oxygen production. Effective microbial management is vital for sustaining long-term space missions. This 

review underscores the importance of space microbiology in ensuring safe, sustainable space exploration and 

advancing the search for life beyond Earth. 
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INTRODUCTION 

Space microbiology is the study of how microorganisms respond to the extreme conditions of space, such as 

microgravity, radiation, and the vacuum. As we explore longer-duration space missions, such as those to Mars, 

the Moon, or beyond, understanding how life survives and adapts to space is crucial for astronaut health and the 

sustainability of human space exploration. Microorganisms are among the most resilient forms of life, capable 

of thriving in some of Earth’s harshest environments, such as hydrothermal vents and polar ice caps 

(Venkateswaran et al., 2016). This resilience is key to understanding microbial behavior and survival in space, 

with implications for astronaut health, spacecraft life support systems, and even the potential for life on other 

planets (Rothschild & Mancinelli, 2001). Space presents several unique challenges to life. Microgravity, 

radiation, and the vacuum of space significantly affect microbial behavior, which differs from life on Earth. On 

Earth, gravity influences essential biological processes like nutrient transport, cellular growth, and division.  

Adaptations of Microorganisms to Microgravity: Biofilms and Morphological Changes 

Microgravity disrupts these processes, leading to slower or accelerated growth in various microbial species 

(Zabel et al., 2009). For example, some microbes may replicate more rapidly in microgravity due to changes in 

fluid dynamics and nutrient diffusion, while others adapt by forming biofilms. These biofilms offer protection, 

enabling microorganisms to maintain stability in the absence of gravitational forces (Fujimura et al., 2015). 

Biofilms are microbial communities encased in extracellular polymeric substances (EPS), which help microbes 

maintain their structure and resistance to environmental stressors. In space, biofilms appear to be more resilient 

than those formed on Earth, highlighting the adaptability of microorganisms to hostile conditions (Krasny et al., 

2017). Additionally, space-adapted microbes can alter their morphology by shifting from spherical to elongated  
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shapes, enhancing their nutrient absorption and attachment to surfaces (Yamaguchi et al., 2018). 

Radiation Resistance in Microorganisms: Implications for Space Missions and Astrobiology 

One of the primary stressors in space is radiation. Ionizing radiation from cosmic rays and solar particles can 

damage cellular structures, including DNA, proteins, and cell membranes, leading to oxidative stress (Cucinotta 

et al., 2013). However, certain microorganisms have evolved extraordinary resistance to radiation. Deinococcus 

radiodurans, for example, can endure radiation doses up to 1,500 times higher than those lethal to humans. This 

remarkable resistance is attributed to its DNA repair mechanisms and antioxidant production (Battista, 1997; 

Zahradka et al., 2006). These mechanisms are being explored for potential applications in radiation shielding 

technologies, critical for astronaut safety during space missions (Nichols et al., 2009). The study of radiation-

resistant microbes also holds implications for astrobiology. If microorganisms can survive extreme radiation 

levels in space, they may also be capable of thriving on other planets or moons with harsh conditions, such as 

Mars or Europa (Cockell et al., 2000). This supports the hypothesis that life may exist beyond Earth in 

environments that were once thought to be too extreme. 

Microbial Populations on Spacecraft: Challenges and Implications for Health and Equipment 

Spacecraft, especially those on long-duration missions, act as closed ecosystems where microbial populations 

evolve in isolation from Earth-based influences. Microbes aboard spacecraft colonize various surfaces such as 

walls, air filters, and crew members' skin and clothing. Environmental factors like temperature, humidity, and 

air circulation influence microbial behavior and community composition, while human activities, including 

astronauts' hygiene routines, diet, and skin microbiota, also shape the microbial landscape (Venkateswaran et al., 

2015). The presence of microorganisms aboard spacecraft presents both challenges and opportunities. Certain 

microbes, such as Escherichia coli and Staphylococcus aureus, have been shown to behave differently in 

microgravity, exhibiting increased virulence and antibiotic resistance (Liu et al., 2017). The formation of 

biofilms by these microbes poses a significant challenge, as biofilms are more resistant to cleaning and can lead 

to microbial-induced corrosion on spacecraft equipment (Cavalieri et al., 2018).  

Microbial Control and Benefits for Life Support Systems on Spacecraft 

The need for effective microbial control strategies to ensure astronaut health and spacecraft functionality is 

evident. However, microbial communities can also benefit life support systems. In closed-loop environments, 

microbes recycle waste, purify water, and generate oxygen—essential processes for long-duration space 

missions (Bailo et al., 2017). Photosynthetic microbes, such as cyanobacteria, could help convert carbon dioxide 

into oxygen, providing a sustainable source of breathable air for astronauts (Rummel et al., 2014). Additionally, 

microorganisms that are used in Earth-based systems for wastewater treatment and bioremediation could be 

adapted for resource recycling and sustainability in space (Lund et al., 2019). Given the potential risks and 

benefits, managing microbial populations aboard spacecraft is vital for maintaining astronaut health and mission 

success. While microbial presence on spacecraft is inevitable, understanding how space conditions—such as 

microgravity, radiation, and limited resources—affect microbial growth and behavior is key to developing 

effective monitoring and control strategies. 

Managing Microbial Contamination and Harnessing Microbial Processes for Sustainable Space 

Exploration 

Spacecraft materials and environmental factors influence microbial growth. Over time, microbial communities 

aboard spacecraft evolve, forming biofilms that alter genetic expression and behavior. These biofilms can impact 

air and water quality, posing health risks such as infections or allergic reactions, and may degrade life support 

systems. Therefore, rigorous hygiene protocols, antimicrobial coatings, and advanced sterilization methods are 

essential for preventing microbial contamination and maintaining the integrity of spacecraft systems (Davila et 

al., 2019). Microbes’ ability to thrive in space also opens up new possibilities for sustainable human exploration. 

By harnessing microbial processes, such as waste recycling and oxygen production, we can reduce the need for 

resupply missions and support closed-loop life support systems. Space microbiology not only helps ensure 

astronaut safety but also contributes to developing biotechnologies that may allow humans to live and work in  
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space for extended periods. 

CONCLUSION 

Space microbiology plays a pivotal role in advancing human space exploration by shedding light on how 

microorganisms adapt and survive in the extreme conditions of space. As we embark on longer missions to the 

Moon, Mars, and beyond, understanding microbial behavior in microgravity, radiation, and the vacuum of space 

is essential for ensuring astronaut health, the integrity of spacecraft systems, and the success of long-term 

missions. Microbes, with their unique ability to form biofilms and withstand radiation, present both challenges 

and opportunities for space missions. While microbial contamination poses risks, these organisms also offer 

significant benefits, particularly in closed-loop life support systems, waste recycling, and oxygen production. 

The study of space microbiology will continue to be a critical area of research, especially in exploring microbial 

resilience and its applications in future space exploration and the search for extraterrestrial life. Ultimately, space 

microbiology is integral to the sustainable and safe expansion of human presence in space. 
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