

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

Study on NH₃ Gas Sensing Properties of PANI-WO₃ Nanocomposites

CholNam Li, NamChol Yu

Kim Chaek University of Technology

DOI: https://dx.doi.org/10.51584/IJRIAS.2025.100900099

Received: 16 August 2025; Accepted: 23 August 2025; Published: 25 October 2025

ABSTRACT

We dispersed WO₃ nanoparticles with average particle size of 20-30 nm into aniline monomers and prepared PANI-WO₃ nanocomposites by chemical oxidative polymerization. PANI-WO₃ nanocomposites were spin-coated on substrates with interdigital carbon electrodes to form PANI-WO₃ nanocomposites films and to study the NH₃ gas sensing properties at room temperature. The gas sensing properties of pure PANI and PANI-WO₃ with different blending ratios were compared and evaluated. The minimum detectable concentration of NH₃ gas of the sensor fabricated from PANI-20% WO₃ nanocomposites is 3 ppm, and the sensitivity of 100 ppm NH₃ gas is 31, which is five times higher than that of pure PANI. In addition, the response time and recovery time were faster than pure PANI, especially the recovery characteristics were significantly improved.

INTRODUCTION

Among these conducting polymers, Polyaniline(PANI) with unique electrical and optical properties is frequently used because of its easy processing capability, flexibility, high electrical conductivity and good environmental stability[1, 3].

PANI is prepared by oxidative polymerization of aniline monomers by chemical or electrochemical methods [1,3,5]. The electrical conductivities of PANI vary with doping and the concentration of NH₃ gas. Therefore, PANI has been widely used as a NH₃ gas sensing material. The gas sensor using PANI is operating at room temperature, has low power consumption, good environmental stability and long life [7]. On other hand, metal oxide semiconductor materials such as SnO₂, TiO₂, Fe₂O₃, ZnO, CeO₂, and WO₃ are widely used to detect toxic gases, which have the advantages of high sensitivity, fast response time and recovery time. However, sensors based on these materials have the disadvantage of high operating temperatures of 300-500°C and lack of selectivity. To overcome these drawbacks, hybrid nanocomposites of conductive polymers and metal oxides can be employed to enhance the gas sensing characteristics such as sensitivity, selectivity and stability[1]. Among the conductive polymers, PANI is used as a material for sensing toxic gases such as NH₃, NO_x, H₂, CO, CO₂, H₂S, etc. [2,4,5,7,8].

The gas sensing properties of the hybrid nanocomposites of PANI and metal oxides are much improved over pure PANI, which might be caused by some chemical interaction between PANI and metal oxides and be also attributed to the p-n heterojunction formed at the surface between p-type PANI and n-type metal oxides[5]. Especially PANI-WO₃ nanocomposites showed maximum response to NH₃ gas as compared other target gases because of the strong interaction between the PANI-WO₃ film and adsorbed NH₃ gas molecules, also the rate of reaction in between the surface of PANI-WO₃ film and NH₃ gas molecules is greater compared to other target gases, as result PANI-WO₃ film showing higher selectivity to NH₃ gas [1, 14].

In the present study, we report the NH₃ gas sensing characteristics of the sensor fabricated with the PANI-WO₃ nanocomposites film on the interdigital carbon electrodes.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

Experiments

Materials and measurement apparatus

WCl₆ (Aldrich Chem.Co.), ethanol (Aldrich Chem.Co.), polyethylene glycol (polyethylene glycol, 99%, Aldrich Chem.Co.), aniline monomer(Thomas Baker), ammonium persulfate (APS, Thomas Baker), HCl(Thomas Baker)

In order to evaluate the electrical resistance change of PANI-WO₃ nanocomposites films with the different NH₃ gas concentration, the thickness and electrical resistance of the films were measured after drying by spin-coating PANI-WO₃ nanocomposites on a plastic substrate (7×7 mm) with the interdigital carbon electrodes.

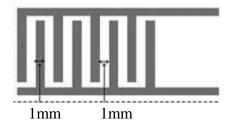


Fig. 1 The structure of the interdigital carbon electrodes

The thickness and electrical resistance of PANI-WO₃ nanocomposite films was measured by a thickness meter (SANKO SDM-mini) and a digital multimeter (Escort EDM 2347).

In the analyses of the samples TEM(FEI - TECNAI G2 20S - TWIN) and XRD(D8, ADVANCED), SEM(Zeiss model-SUPRA VP/500)were used.

The NH₃ sensing properties of PANI-WO₃ nanocomposites were evaluated by sensitivity S.

$$S = R_g/R_a$$

where R_a and R_g are the electrical resistances of the sensor in air and NH_3 gas, respectively.

The response time and recovery time are calculated as the times to reach 90% of the total resistance change in air or NH₃ gas.

Preparation of WO₃ nanoparticles

0.1g of WCl₆ and 20 mg of polyethylene glycol were dissolved in 2ml of ethanol and stirred for 3 h. The precursors were dried thoroughly at 40-50°C and sintered at 500°C for 1 h to obtain nanocrystalline WO₃ powders.

Preparation of PANI-WO₃ nanocomposites

PANI was prepared by chemical oxidative polymerization from aniline monomers.

To prepare the PANI-WO₃ nanocomposites, the aniline monomer and WO₃ nanopowder were mixed in a constant ratio and added to 1 mL HCl and stirred for 15 min. In another beaker, a certain amount of ammonium persulfate(APS) was dissolved in HCl. The two solutions were mixed together at 0-5°C and the reaction mixtures were stirred until the color of the mixture turns deep green. After stirring, the sample was left for 24 h, and the PANI-WO₃ precipitate was filtered and washed with distilled water and acetone. The final product was dried at 80°C. The PANI-WO₃ nanocomposites was mixed with a certain amount of 10% PVA to prepare a paste that could be coated on the substrate.

The polymerization of anilineis an exothermic reaction, which is maintained at a constant temperature at the early stage, and the reaction mixture exhibits a light brown color as a oligomerization intermediate.

When the polymerization reaction starts, the temperature increases, the color of the mixture changes to dark blue and becomes slurry. Also, the surface of the reaction vessel was brown metallic by PANI coating. After a certain time, the color of the reaction solution changes to dark green, and the surface of the reaction vessel is colored green.

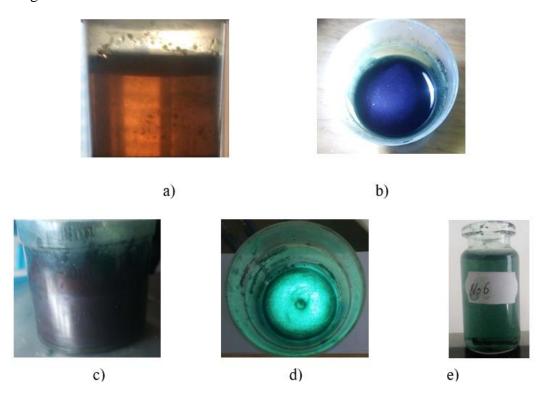


Fig.2 Preparation of PANI

RESULTS AND DISCUSSION

Grain size and crystal structure of WO₃ nanoparticles

The morphology and microstructure of WO₃ nanoparticles were measured by transmission electron microscope (TEM, FEI-TECNAI G2 20S-TWIN) (Fig. 3)

As shown in Fig.3, the structure of WO₃ nanoparticles is mostly spherical with uniform grain size and the average particle size of WO₃ nanoparticles is 20-30 nm.

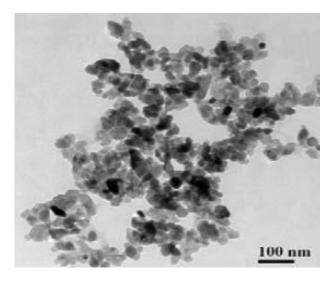


Fig. 3 TEM image of WO₃ nanoparticles

The crystal structure of WO₃ nanoparticles was determined by XRD measurement (XRD, D8, ADVANCED).

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

Diffraction peaks were observed at $2\theta = 23.05$, 23.54, 24.30, 28.83, 34.07, 55.97, 61.66 and 63.2, which correspond to (002), (020), (200), (202), (420), (421), (413) planes respectively, of monoclinic WO₃ with a lattice constant of a = 7.319 Å, b = 7.55 Å, c = 7.71 Å.

NH₃ gas sensing properties of PANI-WO₃ nanocomposites

The uniform film was formed by spin-coating PANI-WO₃-PVA on the substrate with interdigital carbon electrodes (Fig. 4). As shown in the SEM(Zeiss model-SUPRA VP/500) image of PANI-WO₃-PVA film, the surface of the film consists of fibers with porous structure and the diameter of the fibers is uniform. WO₃ nanoparticles are surrounded by a network of PANI-PVA fibers.

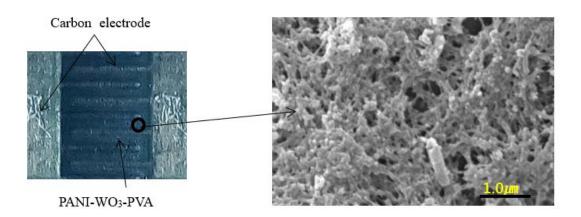


Fig. 4 The structure and SEM image of sample

- NH₃ gas sensing characteristics

The NH₃ gas sensing characteristics according to the mixture ratio of PANI-WO₃ nanocomposites at room temperature are shown in Fig. 5.

The sensitivity of PANI-WO₃ nanocomposites in 100 ppm NH₃ increased with increasing WO₃ percentage, decreased above 20 wt%, and showed maximum value of 31 at 20 wt%. The NH₃ sensing mechanism in PANI-WO₃ nanocomposites material can be explained mainly by the depletion layer between PANI and WO₃.

Generally, after exposure to NH₃ gas, emeraldine salt form of PANI was reduced to emeraldine base resulting into decrease in density in PANI which causes increase in resistance.

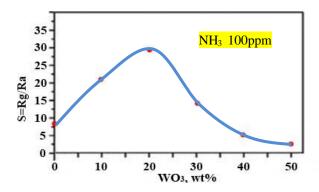


Fig. 5 NH₃ gas sensing characteristics according to the mixture ratio of PANI-WO₃ nanocomposites at room temperature

In PANI-WO₃ nanocomposites, n-type WO₃ nanoparticles form depletion layers with p-type PANI. When the sensor was exposed to NH₃ gas, the width of depletion layer increases resulting into increase in resistance. Thus, in NH₃ gas the electrical resistance of PANI-WO₃ nanocomposites changes more than that of pure PANI. When the WO₃ percentage exceeds a certain value, the resistance decreases and the sensitivity decreases.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

This might be explained by two factors.

First, the excess addition of WO₃ made PANI insufficient to completely cover the surface of WO₃ and certain amount of NH₃ was absorbed on the surface of WO₃ which would not improve the sensitive properties to NH₃.

Second, the large amount of electrons generated by excess WO₃ made the depletion layer thicker at the heterointerface between PANI and WO₃, which leads to a higher resistance and a lower resistance change, leading to a lower sensitivity.

Therefore, the excess addition of WO₃ was unfavorable to improve the sensitivity to NH₃ gas. The sensing properties of PANI-20 wt% WO₃ nanocomposites to NH₃ gas concentration at room temperature are shown in Fig. 6.

As shown in Fig. 7, the resistance of PANI-20 wt% WO₃ nanocomposites varies greatly with increasing NH₃ gas concentration and enhances by 31 times at 100 ppm.

The response and recovery times of PANI-20 wt% WO₃ nanocomposites at room temperature are shown in Fig. 7. As shown in Fig. 7, the response time is around 40 s, the recovery time is around 60-70 s, and the recovery time is about three times faster than that of pure PANI.

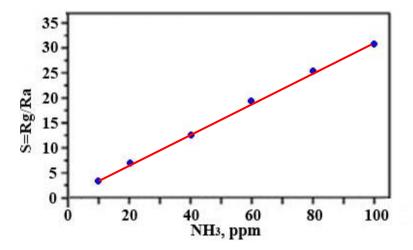


Fig. 6 sensing properties of PANI-20 wt% WO₃ nanocomposites to NH₃ gas concentration at room temperature

The resistance of pure PANI increased in the presence of NH₃ gas, recovered very slowly in air, and took a long time to reach the original resistance value.

PANI-WO₃ nanocomposites have faster recovery times than pure PANI and reach their original resistivity values.

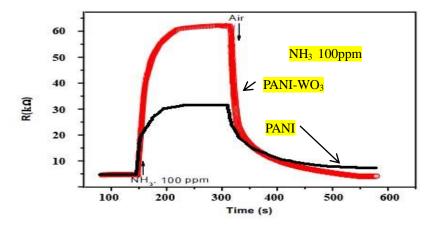


Fig. 7 Response characteristics of PANI-WO₃

CONCLUSIONS

The NH₃ gas sensing properties of sensors fabricated from a mixture of WO₃ nanoparticles prepared by sol-gel method and PANI prepared by chemical oxidative polymerization were investigated.

TEM, SEM and XRD analysis of PANI-WO₃ nanocomposites showed that the prepared WO₃ particles had the average size of 20-30 nm and the crystalline phase, and also showed that the PANI-WO₃ nanocomposites film had a porous structure.

The minimum detectable concentration of NH₃ gas of the sensor fabricated from PANI-20% WO₃ nanocomposites is 3 ppm, and the sensitivity of 100 ppm NH₃ gas is 31, which is five times higher than that of pure PANI.

In addition, the response time and recovery time were faster than pure PANI, especially the recovery characteristics were significantly improved.

The fabricated PANI-WO₃ nanocomposites can be used as good sensing material for NH₃ gas at room temperature, and can be widely used for the fabrication of NH₃ sensors with advantages of low cost, environmental safety and low power consumption.

REFERENCES

- 1. S.B. Kulkarni, Y.H. Navale, 《Enhanced ammonia sensing characteristics of tungsten oxide decorated polyaniline hybrid nanocomposites》, Organic Electronics (2017), doi: 10.1016/j.orgel.2017.02.030.
- 2. Chunhua Liu, Huiling Tai, 《A high-performance flexible gas sensor based on self-assembled PANI-CeO₂ nanocomposite thin film for trace-level NH₃ detection at room temperature》, Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2017.12.022
- 3. Roslinda Mustapa, (Fabrication of Polyaniline Based Chemical Sensor for Ammonia Gas Detection), Journal of Physical Science, Vol. 29(Supp. 1), 9–16, 2018
- 4. Mausumi Das, D. Sarkar, 《One-pot synthesis of zinc oxide polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor》, Ceramics International (2017), http://dx.doi.org/10.1016/j.ceramint.2017.05.159
- 5. Siqi Li, Pengfei Lin, 《The room temperature gas sensor based on Polyaniline@flower-like WO₃ nanocomposites and flexible PET substrate for NH₃ detection》, Sensors and Actuators B 259 (2018) 505–513
- 6. Qingxin Nie, Zengyuan Pang, 《Facile fabrication of flexible SiO₂/PANI nanofibers for ammonia gas sensing at room temperature》, Colloids and Surfaces A 537 (2018) 532–539
- 7. Shouli Bai, Yanli Tian, 《Polyaniline@SnO₂ heterojunction loading on flexible PET thin film for detection of NH₃ at room temperature》, Sensors and Actuators B 226 (2016) 540–547
- 8. Ashwini B. Rohom, 《Electropolymerization of polyaniline thin films》, High Performance Polymers, 2014, Vol. 26(6) 641–646
- 9. Rohit Kumar Pippara, «Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites», Micro and Nano Engineering 12 (2021) 100086
- 10. Boyang Chea, Dan Zhoub, 《A Highly Bendable Transparent Electrode for Organic Electrochromic Devices》, Organic Electronics (2019), doi: https://doi.org/10.1016/j.orgel.2018.12.015.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

- 11. Yilkal Dessie, Sisay Tadesse , 《Optimization of polyvinyl alcohol binder on PANI coated pencil graphite electrode in doubled chamber microbial fuel cell for glucose biosensor》, Sensing and Bio-Sensing Research 36 (2022) 100484
- 12. C.V. Tuan, 《Electrochemical synthesis of polyaniline nanowires on Pt interdigitated microelectrode for room temperature NH₃ gas sensor application》, Current Applied Physics 12 (2012) 1011-1016
- 13. Tulika Khanikar, Vinod Kumar Singh, 《PANI-PVA composite film coated optical fiber probe as a stable and highly sensitive pH sensor》, Optical Materials 88 (2019) 244–251
- 14. Satish Meshram, Sagar Balgude, 《Fabrication of WO₃/PANI nanocomposites for ammonia gas sensing application》, Symposium on Physics and Technology of Sensors, 8-10th March, 2015
- 15. S. G. Pawar, S. L. Patil, 《New Method for Fabrication of CSA Doped PANi-Thin-Film Ammonia Sensor》, IEEE SENSORS JOURNAL, VOL. 11, NO. 11, NOVEMBER 2011, 2980—2985
- 16. Asif Ali Khan, Mohd. Khalid, 《Synthesis of Nano-Sized ZnO and Polyaniline-Zinc Oxide Composite: Characterization, Stability in Terms of DC Electrical Conductivity Retention and Application in Ammonia Vapor Detection》, Journal of Applied Polymer Science, Vol. 117, 1601–1607 (2010)