
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue IX September 2025
www.rsisinternational.org
broad background contribution reflected the semi-crystalline nature of PVA. SEM micrographs revealed
agglomerated but porous morphologies, with nanosized crystallites aggregated into larger secondary structures,
offering enhanced surface area beneficial for electrochemical and optoelectronic applications.
Overall, the study demonstrates that the PVA matrix effectively stabilizes CdS/ZnS nanoclusters, yielding
nanocomposites with favorable optical, structural, and morphological properties. These findings highlight the
potential of CdS/ZnS/PVA nanomaterials for future applications in optoelectronic devices and electrochemical
energy storage systems.
We acknowledge DST FIST for providing financial assistance to set up DST-FIST Instrumentation centre (DST
FIST- 2018 SR/FST/COLLEGE-417/2018) (TPN-2011) Government Arts College, Udumalpet, Tamil Nadu
1. Sharma, P.; Singh, A.; Kumar, V. Optical and electronic properties of semiconductor nanostructures for
optoelectronic applications. J. Mater. Sci. , 56, 10345–10362. https://doi.org/10.1007/s10853-021-
05900-5
2. Zhang, L.; Wang, X.; Li, H.; et al. Band alignment and charge transfer dynamics in CdS/ZnS heterostructures.
ACS Appl. Nano Mater. , 5, 5678–5687.
https://doi.org/10.1021/acsanm.2c00876
3. Wang, Y.; Zhao, T.; Chen, J.; et al. Recent advances in semiconductor nanostructures for optoelectronics. Adv.
Funct. Mater. , 33, 2209865.
https://doi.org/10.1002/adfm.202209865
4. Singh, R.; Mehta, N.; Arora, A. Surface passivation and stability of CdS/ZnS nanostructures. Mater. Chem.
Phys. , 249, 123104.
https://doi.org/10.1016/j.matchemphys.2020.123104
5. Li, J.; Xu, K.; Yang, H.; et al. Structural and optical properties of CdS and ZnS nanostructures. J. Alloys
Compd. , 857, 158281.
https://doi.org/10.1016/j.jallcom.2020.158281
6. Zhao, X.; Liu, Y.; Zhou, D.; et al. Photophysical properties of core–shell CdS/ZnS quantum dots. J. Phys.
Chem. C , 126, 20115–20125.
https://doi.org/10.1021/acs.jpcc.2c05789
7. Rajendran, S.; Manikandan, E.; Pandiaraj, S. Role of PVA as stabilizing matrix in nanocomposite systems.
Polym. Adv. Technol. , 32, 1421–1432.
https://doi.org/10.1002/pat.5156
8. Karthikeyan, C.; Balamurugan, S.; Ramesh, R. Optical studies on PVA-stabilized semiconductor
nanocomposites. J. Polym. Res. , 29, 245.
https://doi.org/10.1007/s10965-022-03017-9
9. Ramesh, S.; Devi, A.; Subramanian, P. Structural stability of CdS/ZnS nanoclusters in polymeric matrices.
Colloids Surf. A , 669, 131356.
https://doi.org/10.1016/j.colsurfa.2023.131356
10. Chen, H.; Gao, Y.; Liu, J.; et al. Luminescence properties of CdS/ZnS core–shell nanostructures. Appl. Surf.
Sci. , 563, 150270. https://doi.org/10.1016/j.apsusc.2021.150270
11. Ghosh, T.; Banerjee, R.; Das, S. Size-dependent optical properties of CdS-based nanostructures.
Nanotechnology , 33, 305704.
https://doi.org/10.1088/1361-6528/ac6f8e
12. Patel, A.; Sharma, M.; Gupta, D. Enhanced electrochemical properties of CdS/ZnS composites. J. Nanopart.
Res. , 25, 76.
https://doi.org/10.1007/s11051-023-05801-2
13. Liu, X.; Huang, Q.; Zhao, W.; et al. PVA-assisted synthesis of nanocomposites for electrochemical energy
storage. Electrochim. Acta , 354, 136707.
https://doi.org/10.1016/j.electacta.2020.136707
14. Devi, S.; Narayanan, V.; Kumar, B. PVA-based nanocomposites for high-performance supercapacitors. J.
Energy Storage , 75, 110567.
https://doi.org/10.1016/j.est.2023.110567