

Polymerization Mechanisms: A Comprehensive Review of Step-Growth and Chain-Growth Pathways

Atrayee Deb, Dr. Swarnali Nath Choudhury

ICFAI University Tripura

DOI: https://doi.org/10.51584/IJRIAS.2025.100900047

Received: 24 September 2025; Accepted: 30 September 2025; Published: 15 October 2025

ABSTRACT

Polymerization is a fundamental process in polymer science that underpins the synthesis of materials used across diverse industrial and technological sectors. This review provides a comprehensive examination of the two principal polymerization mechanisms—step-growth and chain-growth polymerization—highlighting their distinct reaction pathways, kinetics, and structural outcomes. In step-growth polymerization, monomeric units bearing complementary functional groups combine gradually, often producing small by-products, and requiring high monomer conversion to achieve high molecular weights. Conversely, chain-growth polymerization involves the rapid addition of monomers to an active centre, enabling the formation of high molecular weight polymers early in the reaction. The review explores subtypes such as radical, anionic, cationic, and coordination polymerizations, detailing their initiation, propagation, and termination steps. Special emphasis is placed on photo polymerization as a modern approach enabling spatial and temporal control in polymer synthesis, particularly in applications like 3D printing and micro fabrication. The comparative analysis also discusses the thermodynamic and kinetic considerations, reaction conditions, and practical applications of each method. Overall, this review aims to offer a consolidated understanding of polymerization mechanisms, serving as a valuable reference for students, researchers, and professionals involved in polymer chemistry and materials science.

Keywords: Polymerization, Step-Growth Polymerization, Chain-Growth Polymerization, Radical Polymerization, Anionic Polymerization, Cationic Polymerization

Introduction: Polymerization, is a process of joining together of monomer units or molecules in a chemical reaction to form long chains or three-dimensional networks called polymer [1, 2, 3].

In chemical compounds, polymerization occurs through a variety of reaction mechanisms depending upon various factors like nature of different functional groups present in the reactants¹ and their inherent steric effects [3]. In alkenes, polymerization occurs through relatively simple radical reactions; in contrast, reactions involving substitution at a carbonyl group require more complex synthesis to polymerize [3].

For example, in **alkenes polymerization**, each styrene monomeric units joins together to form polystyren [3]. In this reaction mechanism pi bond or double bond reforms into single bond and a new sigma bond generates between two styrene monomers [3].

Discussion: Some other alkenes polymerization is polyethylene and polyvinyl chloride (PVC) [3]. Polyethylene is formed by polymerization of several Ethylene monomers, joining together to form long chains of ethylene molecules [3]. Polyethylene forms variety of products of daily life like useful poly bags, disposable packets etc [3]. Polyvinyl chloride, similarly is formed by polymerization of monomeric units of vinyl

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS)

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

chloride, where each vinyl chloride joins together to form long chain of polyvinyl chloride [3]. PVC finds varied application in manufacturing processes of useful commercial products, such as pipes, insulation and packaging, footwear bags etc [1, 2, 3]. Example: Polyvinyl chloride, polyethylene, polystyrene, etc are referred to as "homopolymers", consisting of long chains of same type of monomeric units, repeated manner [1, 2, 3, 4]. In contrast, polymers consisting different types of monomeric units are called copolymers [5]. Bakelite, nylon6, nylon-66, are few examples of copolymers [5].

Some monomer units like, formaldehyde, polymerize at temperature $-80\,^{\circ}\text{C}$ to form trimmers, which can cyclize to form cyclic ring as well as undergoes further polymerization, forming tetramers [3]. These small polymers are called oligomers [3]. However, formaldehyde undergoes nucleophilic addition of hemiacetal intermediates, short-lived and relatively unstable, while these intermediates compounds react with other non-polar molecules to form more stable polymeric compounds [3, 4, 5]. Polymerization occurring at a faster rate is known as auto-acceleration, may cause fires and even explosions occasionally [4, 5,6].

Step-growth and chain-growth are the two major classifications of polymerization reaction mechanisms [1, 2, 4, 6]. In step growth polymerization, control of stoichiometry, is a decisive factor and can be applied to most of the monomers. While in chain growth polymerization, affords high molecular-weight polymers, and applies to certain limited monomers [2, 3, 4, 5, 6].

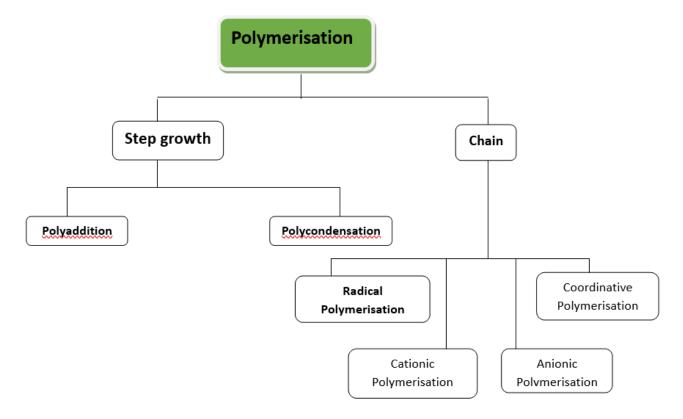


Fig: Schematic diagram classification of polymerization.

In step-growth polymerization, monomeric units, joins together stepwise manner forming a long polymer molecule [6, 7]. The average molar mass of polymer however increases slowly., as the addition of monomer takes place at every step. Thus, the long chains forms in the reaction. [6, 7].

Step-growth polymers are formed in steps by reacting between the monomers constituting different functional groups, with heteroatoms such as nitrogen or oxygen atom [6, 7]. Step-growth polymers are also classified as condensation polymers, as small molecule such as water is lost during the condensation of two monomeric units [5, 6, 7]. Some example like formation of polyester chains occurs via step growth polymerization by reaction of alcohol and carboxylic acid groups to form ester linkages with loss of water molecule [5, 6, 7]. Few exceptions; like polyurethanes are formed by step-growth polymerization where isocyanate and alcohol bifunctional monomersjoin together without loss of water or other volatile molecules. Such polymers are referred to as addition polymers [6, 7, 11].

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

The molecular weight of Step-growth polymers increases at a very slow rate at lower conversions and reach moderately high molecular weights at very high conversion (i.e., >95%). Solid state polymerization is in polyamides (e.g., nylons) [8].

In chain-growth polymerization, the addition of a monomer to a growing chain with an active center like free radical, cation or anion takes place [5, 6, 7]. At first the chain growth is initiated by formation of an active center, followed by propagation of chain through repeated addition of a sequence of monomers, resulting in long chains formation during the reaction [6, 7].

Chain-growth polymerization also known as addition polymerization is formed through linking together of unsaturated monomers, especially containing carbon-carbon double bonds [6, 7, 8]. The pi-bond slowly disappears and the formation of a new sigma bond takes place, thereby joining two monomeric units together [8]. Some of the commonly manufactured polymers through Chain-growth polymerization are polyethylene, polypropylene, polyvinyl chloride (PVC), and acrylate [6, 7, 8]. In chain growth polymers, the alkenes RCH=CH₂ are converted to high molecular weight alkanes (-RCHCH₂-)_{n where} R = H, CH₃, Cl, CO₂CH₃ [6, 7, 8].

Cationic addition polymerization and anionic addition polymerization are another two types of chain growth polymerisation [6, 7, 8]. Ziegler–Natta polymerization allows considerable control of polymer branching [6, 7, 8].

Scheme - Polymerization of ethylene

The initiation, propagation, and termination stages of chain polymerization are controlled by various factors like temperature control, or heat management [5, 6, 7, 8]. Chain polymerization reactions are usually highly exothermic. For example, polyethylene is formed by release of 93.6 kJ of energy per mole of monomer [8]. Some highly evolved technology Methods like emulsion polymerization, solution polymerization, suspension polymerization, and precipitation polymerization are involved in chain growth polymerization [9]. The polymer dispersity and molecular weight may however be improved; these methods would require additional processing in order to isolate the product from a solvent.[9].

Some polymerization reactions are initiated by photons [9]. These polymerization reactions are called photo polymerization reaction [9]. They are mostly chain-growth polymerization reactions initiated by the absorption of visible or ultraviolet light [9]. Some Photo polymerization reactions are also step-growth polymerization [10]. The direct absorption of light by the reactant monomer, or by a photosensitizer which absorbs the light and then transfers energy to the monomer may occur [9, 10]. There is difference in the initiation step of thermal polymerization of the same monomer [6]. Subsequently, chain propagation, termination, and chain-transfer step however remains unchanged [6]. In step-growth photopolymerization, absorption of light triggers an addition (or condensation) reaction between two monomeric units [10, 11]. A propagation cycle is not initiated because each growth step requires the assistance of light [11].

Photopolymerization finds varied application in photographic or printing process [9, 10, 11]. In this process, polymerization occurs only in regions which have been exposed to light or photons [10, 11]. Unreacted monomer can be removed from unexposed regions, leaving a relief polymeric image [6, 9, 10, 11]. Several forms of 3D printing—including layer-by-layer stereolithography and two-photon absorption 3D photopolymerization — use photopolymerization [9, 10, 11, 12].

Multiphoton polymerization using single pulses have also been demonstrated for fabrication of complex structures using a digital micromirror device.[13].

Conclusion: Polymerization plays a pivotal role in modern material science, providing the foundation for synthesizing a wide range of polymers with diverse properties and functions. Through this review, the fundamental distinctions between step-growth and chain-growth polymerization have been explored, including their underlying mechanisms, reaction kinetics, and typical monomer types. Step-growth polymerization, often

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS)

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

involving condensation reactions, progresses through successive interactions between bifunctional or multifunctional monomers, requiring high conversion to attain significant molecular weight. In contrast, chaingrowth polymerization, initiated by reactive species such as free radicals or ions, allows rapid chain extension and the early formation of high molecular weight polymers.

The discussion also extended to specialized approaches such as photopolymerization, which has opened new avenues in precision manufacturing and responsive material design. By understanding the advantages and limitations inherent in each polymerization pathway, chemists and material scientists can make informed decisions when selecting appropriate methods for specific applications.

In conclusion, a solid grasp of polymerization mechanisms remains essential not only for academic understanding but also for advancing industrial processes and developing innovative materials tailored to emerging needs. Ongoing research in controlled polymerization and environmentally conscious synthesis strategies is expected to further expand the potential of polymer science in the years to come.

REFERENCES

- 1. "Polymerization". The IUPAC Compendium of Chemical Terminology. 2014. <u>doi:</u> 10.1351/goldbook.P04740.
- 2. Young, Robert J. (1981). Introduction to polymers. London: Chapman and Hall. <u>ISBN 0-412-22170-5</u>. OCLC 8086791.
- 3. Clayden, Jonathan; Greeves, Nick; Warren, Stuart (2001). Organic chemistry. Oxford: Oxford University Press. pp. 1450–1466. <u>ISBN 0-19-850347-4</u>. <u>OCLC 43338068</u>.
- 4. Manas, Chanda (2023). Introduction to Polymer Science and Chemistry: A Problem-Solving Approach (2nd ed.). CRC Press (published 2013). ISBN 978-1-4665-5385-9.
- 5. Cowie, J. M. G. (2008). Polymers: chemistry and physics of modern materials. V. Arrighi (3rd ed.). Boca Raton: CRC Press. p. 4. <u>ISBN</u> 978-0-8493-9813-1. <u>OCLC</u> 82473191.
- 6. Allcock, H. R.; Lampe, Frederick Walter; Mark, James E. (2003). Contemporary polymer chemistry. Frederick Walter Lampe, James E. Mark (3rd ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall. pp. 29–30. <u>ISBN</u> 0-13-065056-0. <u>OCLC</u> 51096012.
- 7. Fried, Joel R. (2003). Polymer science and technology (2nd ed.). Upper Saddle River, NJ: Prentice Hall Professional Technical Reference. p. 23. <u>ISBN 0-13-018168-4</u>. <u>OCLC 51769096</u>.
- 8. Jeremic, Dusan (2014). "Polyethylene". <u>Ullmann's Encyclopedia of Industrial Chemistry</u>. Weinheim: Wiley-VCH. pp. 1–42. <u>doi:10.1002/14356007.a21_487.pub3</u>. <u>ISBN 9783527306732</u>.
- 9. McKenzie, Thomas G.; Fu, Qiang; Wong, Edgar H. H.; Dunstan, Dave E.; Qiao, Greg G. (23 June 2015). "Visible Light Mediated Controlled Radical Polymerization in the Absence of Exogenous Radical Sources or Catalysts" (PDF). Macromolecules. 48 (12): 3864–3872. Bibcode:2015MaMol..48.3864M. doi:10.1021/acs.macromol.5b00965. ISSN 0024-9297.
- 10. Kaya, Kerem (January 2023). <u>"A green and fast method for PEDOT: Photoinduced step-growth polymerization of EDOT"</u>. Reactive and Functional Polymers. **182**: 105464. <u>Bibcode:2023RFPol.18205464K</u>. <u>doi:10.1016/j.reactfunctpolym.2022.105464</u>.
- 11. Soto, Marc; Sebastián, Rosa María; Marquet, Jordi (2014). "Photochemical Activation of Extremely Weak Nucleophiles: Highly Fluorinated Urethanes and Polyurethanes from Polyfluoro Alcohols". J. Org. Chem. **79** (11): 5019–5027. doi:10.1021/jo5005789. PMID 24820955.
- 12. Wang, Xifan; Schmidt, Franziska; Hanaor, Dorian; Kamm, Paul H.; Li, Shuang; Gurlo, Aleksander (May 2019). "Additive manufacturing of ceramics from preceramic polymers". Additive Manufacturing. 27: 80–90. arXiv:1905.02060. doi:10.1016/j.addma.2019.02.012. S2CID 104470679.
- 13. Mills, Benjamin; Grant-Jacob, James A; Feinaeugle, Matthias; Eason, Robert W (17 June 2013). "Single-pulse multiphoton polymerization of complex structures using a digital multimirror device" (PDF). Optics Express. 21 (12): 14853–8. Bibcode: 2013OExpr.2114853M. doi:10.1364/oe.21.014853. ISSN 1094-4087. PMID 23787672.