

Review of Green Technologies for Environmental Protection: Innovations and Impact

Sanjay Singh Baroniya, Mamta Bhoj Baroniya

Department of Botany, Swa. Tukojirao Pawar Shaskiya Vigyan Mahavidyalaya, Dewas (M.P.), India

Department of Botany, Govt. College Udaynagar, (M.P.), India

DOI: https://doi.org/10.51584/IJRIAS.2025.100900049

Received: 26 September 2025; Accepted: 02 October 2025; Published: 15 October 2025

ABSTRACT

This review paper aims to explore the diverse applications and impacts of green technology on environmental protection. Green technologies, encompassing renewable energy, waste management, water conservation, and sustainable agriculture, signify crucial advancements in minimizing ecological footprints and mitigating climate change impacts. The key findings highlight significant progress in solar and wind energy efficiency, innovative waste recycling methods, and sustainable water management practices. However, challenges such as high initial costs, technological limitations, and uneven global adoption remain prevalent. The paper underscores the importance of these technologies not only for environmental benefits but also for economic and social gains. It suggests that future research should focus on enhancing affordability, scalability, and integrative policy frameworks to accelerate the transition towards a sustainable future. Developing novel technologies and improving existing ones could further bolster our efforts in ensuring environmental sustainability and resilience.

Key Words: Green technology, Renewable Energy, Waste Management, Water Management, Sustainable Agriculture.

INTRODUCTION

The industrial growth of recent centuries has undeniably improved human living conditions while putting enormous strain on the environment (Weis, T. 2013). Destructive effects such as climate change, deforestation, and pollution have increased the need for sustainable practices (Nobre et al., 2016).

Objective: In these circumstances, green technology appears as critical to tackling environmental concerns. This review study investigates the vital role that green technology plays in alleviating negative ecological consequences by concentrating on lowering carbon emissions, conserving essential resources, and encouraging sustainable practices.

Scope: The study examines a number of important green technologies that contribute to environmental sustainability. Two of the most significant are renewable energy technologies, namely solar and wind power, which use the sun's energy to generate electricity without using fossil fuels and wind turbines to generate energy (Turkenburg, W. C., & Faaij, A. 2000; KumarET. AL., 2016). These technologies work together to reduce dependency on coal and other non-renewable energy sources, which in turn reduces greenhouse gas emissions.

Another crucial area of focus is waste management innovations, which include the development of biodegradable materials and advanced recycling techniques that reduce landfill waste and environmental contamination by turning waste into reusable resources (Sahajwalla, V. 2018). Water management strategies are also essential as water scarcity becomes a major global issue; technologies like rainwater harvesting and desalination provide solutions for ensuring a sustainable water supply by capturing rainwater for use and converting seawater to freshwater, respectively (Alawad et al., 2023). These technologies are becoming more and more important as the demand for clean water increases in many parts of the world.

According to Gomiero et al. (2011), this review also explores sustainable agricultural practices that aim to lessen environmental impacts, such as precision farming and organic inputs. Precision farming uses data and technology to optimize field-level management regarding crop farming, while organic inputs use fewer chemicals, which helps maintain ecological balance. Taken together, these technologies provide a multifaceted

approach to creating a more sustainable society, with each technology making a unique contribution to lowering

approach to creating a more sustainable society, with each technology making a unique contribution to lowering the ecological footprint of humans while maintaining or improving productivity and quality of life.

The primary thrust of this study is that in order to successfully address the urgent environmental problems of our day, green technology development and use are essential. This paper aims to shed light on these technologies' potential to support a sustainable and just global future by thoroughly examining their present conditions, obstacles, and future directions. To reduce the adverse environmental effects of human activity and advance a sustainable development trajectory, investments in green technology must be accompanied by supporting policy mechanisms (Behera, D. K. 2023; Islam, H. 2025). By embracing these innovations, societies can transition towards sustainability, ensuring environmental, economic, and social benefits for future generations.

Overview of Green Technologies

The term "green technology," often referred to as "environmental" or "clean" technology, refers to inventions that try to lessen or even reverse the negative environmental impacts of human activities. These technologies are intended to lower carbon emissions, encourage sustainability, and be energy efficient. They include procedures, goods, or techniques that lessen pollution, preserve the environment, or make better use of natural resources (Kolstad, C. D., & Krautkraemer, J. A. 1993).

The Evolution and Historical Development of Green Technologies: Green technology has its roots in the larger environmental movement that became more popular in the latter half of the 20th century. The following significant advancements and turning points may be found in the history of green technology:

Early knowledge (1960s-1970s): The contemporary environmental movement began throughout the 1960s and 1970s as knowledge of environmental challenges rose. Landmark books like Rachel Carson's "Silent Spring" in 1962 emphasized the ill impacts of pollution and the necessity for sustainable methods. A change in awareness toward the environment was marked by the inaugural Earth Day in 1970 (Dowie, M. 1995).

Development of Renewable Energy in the 1970s and 1980s: Interest in alternative energy sources grew as a result of the oil crisis of the 1970s. As viable substitutes for fossil fuels, solar and wind power paved the way for further developments in renewable energy technologies.

Technological Developments and Environmental Regulations (1980s-1990s): In the 1980s and 1990s, environmental regulations became more stringent due to concerns about ozone depletion and climate change, and cleaner technologies were developed. Innovations in energy efficiency and waste management gained momentum, and the introduction of catalytic converters in automobiles and the 1987 Montreal Protocol were crucial in lowering vehicle emissions and regulating substances that were detrimental to the ozone layer, respectively (Clairotte, M. 2014). 21st Century Expansion and Innovation: The early 21st century has witnessed rapid advancements in green technology, driven by the pressing need to combat climate change.

The integration and reliability of renewable energy sources have been further improved by innovations in smart grid technology and energy storage. Technologies like photovoltaic solar panels, advanced wind turbines, and electric vehicles have become more efficient and cost-effective. Integration and Policy Support (2000s-Present): Green technology has emerged as a key component of sustainable development policies and initiatives globally in recent years, with international agreements such as the 2015 Paris Agreement highlighting the significance of the shift to low-carbon technologies. Governments and the private sector are investing more in research and development to increase the deployment of green technologies (UNFCCC, 2015).

Green technologies' historical development shows a persistent dedication to using innovation to address environmental issues. The creation and use of green technologies are anticipated to remain essential in accomplishing global sustainability objectives as worries about resource depletion and climate change grow.

Key Green Technologies in Environmental Protection

Renewable Energy Technologies

Solar Power: Recent years have witnessed significant advancements in solar power technology, chiefly in the

efficiency and affordability of photovoltaic (PV) solar panels. With advances in materials and design, solar panel efficiency—defined as the percentage of sunlight converted into usable electricity—has increased significantly, and the switch from conventional silicon-based PV cells to advanced materials like perovskite has the potential to further improve efficiency and lower costs (Machín, A., & Márquez, F. 2024).

Additionally, the development of bifacial solar panels, which can capture sunlight from both sides, has contributed to higher energy output (Guerrero-Lemus et al., 2016). Efforts in decreasing the material prices and optimizing cell architecture have also led in more affordable and flexible solar systems for both residential and commercial usage.

Wind Energy: Wind energy technology has also made remarkable strides, particularly in turbine design and energy storage solutions. Increasing rotor size and improving blade aerodynamics have been the main goals of turbine design evolution in order to more effectively capture wind energy. Offshore wind farms, which provide access to stronger and more consistent winds, have led to innovations like floating turbine platforms, allowing deployment in deeper waters (Edwards et al., 2023). Furthermore, the intermittency of wind energy has been addressed by advances in energy storage solutions, such as battery storage systems and hydrogen production from excess wind power (Ayodele, T. R., & Ogunjuyigbe, A. S. O. 2015).

Hydropower and Ocean Energy: Although hydropower is still one of the most established forms of renewable energy, recent technological advancements have focused on minimizing its ecological impacts. Innovative approaches, such as run-of-the-river hydropower and small-scale hydro systems, aim to reduce environmental disruption by removing the need for large reservoirs and dams (Kuriqi, ET. AL., 2021). Ocean energy, which includes tidal and wave power, is an emerging field with significant potential.

New opportunities for sustainably using marine resources have been made possible by advancements in tidal turbine technology, which can capture electricity from ocean currents with little harm to the environment (Thennakoon et al., 2023). Nonetheless, research and deployment tactics in these areas are still guided by ecological concerns including the disruption of marine life and the effects on the shore.

The global shift to sustainable energy systems depends heavily on developments in renewable energy technology taken together. These technologies provide encouraging avenues to lessen dependency on fossil fuels and lessen the effects of climate change by improving efficiency, boosting dependability, and minimizing ecological problems.

Waste Management Technologies

Innovations in Recycling and Upcycling: The efficacy and efficiency of waste management procedures have been greatly enhanced by recent developments in recycling and upcycling technology. The advent of sophisticated sorting technologies, such robots and artificial intelligence (AI), is one of the major breakthroughs that improves the precision of detecting and separating recyclable materials. For instance, plastics may now be sorted by color or polymer type using machine learning algorithms, increasing the cleanliness of recycled outputs and lowering contamination in recycling streams (Dokl et al., 2024). Chemical recycling, which separates polymers into their monomers for reuse, is also becoming more popular because it makes it possible to recycle materials that are challenging to process using conventional mechanical techniques (Liu et al., 2024). Technologies like 3D printing and creative design approaches are also supporting upcycling, which is the creative recycling of waste materials into higher-value goods. These technologies provide new methods to recycle and change materials that would otherwise be thrown away.

Biodegradable Materials: Waste reduction and sustainable materials are changing as a result of recent advancements in the development of biodegradable materials. New developments in bioplastics, which come from sustainable biomass sources like seaweed, sugarcane, or corn starch, present a viable substitute for traditional plastics made from petroleum. According to Meereboer et al. (2020), these bioplastics, which include polylactic acid (PLA) and polyhydroxyalkanoates (PHAs), are made to naturally break down under particular environmental circumstances, lowering landfill trash and pollution. Additionally, the development of biodegradable composites with improved mechanical qualities has been made possible by advances in nanotechnology, increasing the range of applications for these materials (Mukherjee et al., 2023). Additionally,

research is being done to create biodegradable materials for a variety of uses outside of packaging, like electronics and textiles, which will increase the influence of these environmentally friendly substitutes in a number of different industries. Building a sustainable circular economy depends heavily on the ongoing advancement of waste management technology, such as the use of effective recycling and the creation of biodegradable materials. These technologies support international initiatives for resource conservation and waste reduction by lowering dependency on non-renewable resources and limiting environmental effect.

Water Management

Desalination and Filtration: Recent advances in desalination and filtration technologies are critical to assuring freshwater supply, particularly in dry and water-scarce areas. Desalination advances include the creation of energy-efficient reverse osmosis membranes as well as hybrid systems that combine desalination with renewable energy sources like solar or wind power (Ghazi et al., 2022). These advances lower the energy and operating costs of desalination processes, making them more sustainable and accessible. Furthermore, nanofiltration and advanced membrane materials have enhanced the effectiveness of removing pollutants from water sources, therefore improving the quality and safety of drinkable water (Mohammad et al., 2008).

Rainwater Harvesting: Rainwater harvesting systems have been more effective and widely used in both urban and rural settings as technology has advanced. Smart rainwater management systems employ sensors and IoT technology to improve capture and storage depending on weather forecasts and water demand (Owen, 2018). These systems may be linked into existing infrastructure, enabling for the optimal use and conservation of rainwater resources in home, agricultural, and industrial settings.

Sustainable Agriculture

Precision Farming: The use of AI and IoT technology into precision farming offers a big step forward in lowering resource consumption and increasing agricultural production. These tools provide real-time monitoring and data analysis, allowing farmers to make more educated decisions about irrigation, fertilization, and pest management. Artificial intelligence algorithms can anticipate ideal planting timings and detect agricultural illnesses early, while IoT sensors check soil moisture levels and weather conditions, allowing for precision resource management and saving waste. (Yağ, İ., & Altan, A. 2022; Majumdar et. al., 2021).

Organic Inputs and Practices: Organic agricultural technologies aim to improve soil health while minimizing dependency on chemical inputs. Biological pest control technologies, such as microbial pesticides, as well as natural soil amendments that increase nutrient content and soil structure, are examples of innovations. Furthermore, advancements in bio-fertilizers and green manure have led to sustainable agriculture methods that protect biodiversity and improve ecosystem services. (Chakrabortty et. al.,, 2024).

Impacts of Green Technologies

Environmental: By switching to renewable energy sources, enhancing waste management, and conserving water and soil resources, green technologies lessen the ecological footprint of human activity and support biodiversity conservation. They also drastically reduce emissions, waste, and resource consumption, which is crucial in the fight against climate change and environmental degradation.

Economic: There are several financial advantages to investing in green technology, such as lower expenses due to less waste and energy use. In order to promote resilience and economic growth, the green economy also encourages the creation of jobs in new industries like sustainable agriculture and renewable energy.

Social: By promoting cleaner surroundings, boosting public health, and increasing quality of life, green technologies improve social well-being. In addition to giving communities the resources they require for sustainable development, access to clean electricity, water, and food security fosters social justice and stability.

Challenges and Limitations

Barriers to Adoption:

High Initial Costs: The high initial costs of green technologies, such as solar panels and energy-efficient

systems, can be prohibitive for individuals and small businesses without access to financial incentives or subsidies. While there have been many advancements in green technologies, some still have performance issues or need more research and (Yeatts et al., 2017).

Technological Limitations: development to improve reliability and efficiency. For example, energy storage technologies, which are essential for balancing the intermittent nature of renewable energy sources, still require significant improvements in capacity and cost-effectiveness. This is one of the main obstacles to the widespread adoption of green technologies (Ayodele, T. R., & Ogunjuyigbe, A. S. O. 2015).

Policy Challenges: The implementation of green technology may be impeded by inconsistent or inadequate policy frameworks. Businesses and customers might not have the drive or resources to switch to sustainable alternatives in the absence of encouraging laws, incentives, or infrastructure development (Lorek, S., & Spangenberg, J. H. 2014).

Regional Disparities: Significant geographical differences in the adoption of green technology exist, and these differences are frequently impacted by regulatory contexts, technical infrastructure, and economic capacities. Developing nations may find it difficult to obtain technology and funding, which forces them to rely on more antiquated and unsustainable methods. Furthermore, regional elements like the availability of natural resources (such sunshine and wind) might influence the best places and methods for implementing particular technologies. (Jacobson, M. Z., & Delucchi, M. A. 2011).

Future Directions and Research Opportunities

Identify Gaps in Current Research: More investigation is required on the smooth and economical integration of green technology into current infrastructure. Furthermore, more thorough research is needed to comprehend the long-term environmental effects of new technology.

Future Research Directions

Enhanced Storage Solutions: To better control the unpredictability of renewable energy sources, further research into creating sophisticated, affordable energy storage technology is essential. (Islam et. al., 2013).

Scalable Waste Management Innovations: In order to effectively handle growing trash quantities, research should concentrate on scalable applications for waste management technology, particularly in urban environments.

Equitable Policy Design: To guarantee that all parts of the world profit from sustainable developments, research on laws that promote fair access to green technology is crucial.

Potential for New Technologies or Improvements: Potentially important contributions to lowering atmospheric carbon might come from new technologies like carbon capture and storage (CCS) or developments in bioenergy with carbon capture and storage (BECCS). Continuous advancements in current technology, including more effective solar photovoltaic cells and next-generation wind turbines, can increase their uptake and efficacy even further (Mishra et. al., 2020; Bhuiyan et. al., 2021).

CONCLUSION

Green technologies have a lot of promise for solving the dual problems of environmental sustainability and energy security. They cover a broad spectrum of inventions aimed at waste minimization, energy efficiency, and sustainable resource management. Notwithstanding its potential, obstacles including exorbitant upfront expenses, ineffective technology, and regulatory limitations still exist.

India is actively implementing cutting-edge solutions to address its serious environmental challenges, positioning itself as a key player in the global green technology revolution. Regarding energy and climate change, the nation leads the globe in large-scale renewable energy and is home to enormous solar parks like Rajasthan's Bhadla Solar Park, which is among the biggest in the world. In addition, innovative pilot projects are gaining traction, like the Indian Oil Corporation's green hydrogen plants, which directly support the country's

Green Hydrogen Mission by producing carbon-free fuel for refineries. This is in line with worldwide patterns noted in Bloomberg NEF reports, which highlight India as one of the leading markets for energy transition investments due to aggressive government initiatives and declining solar prices.

In an effort to address India's severe waste management problem, the circular economy movement is also gaining traction. AI-powered smart bins ("Bin It") are being used by startups such as Agency of Things to maximize collection and minimize landfill overflow. In order to manage complex plastic waste, businesses are leading the way in chemical recycling on a larger scale, much like global models. One noteworthy Indian endeavor is Graviky Labs' "Air Ink" project, which was started in India and turns carbon soot from generators and vehicle exhaust into safe, high-quality ink. In densely crowded urban areas like Delhi or Mumbai, new developments like "CityTrees"—vertical moss filters—could provide localized clean air solutions. This directly targets the air pollution that afflicts major cities.

In water management, Indian technology addresses both scarcity and pollution. The Ocean Cleanup's "Interceptor" project is being tested in the extremely polluted Vashishti River to reduce the flow of plastic into the ocean. The government supports "Per Drop More Crop" in agriculture, which consumes the majority of India's freshwater, using subsurface drip irrigation and solar-powered pumps to improve water use efficiency. These efforts reflect a worldwide emphasis on using digital and advanced treatment technologies to manage water resources, as highlighted by industry analyses. From large-scale national missions to grassroots startups, India's green technology ecosystem is a vibrant and critical testing ground for solutions that can protect the environment while driving economic development.

Reiterating the Potential and Impact: The green technologies under evaluation have a major influence on resource conservation, pollution reduction, and economic growth. Supportive policies and continued research and development will be essential as societies move toward sustainability. In addition to reducing environmental issues, investing in and implementing these technologies will pave the way for a sustainable, just, and prosperous future for all.

REFERENCES

- 1. Alawad, S. M., Mansour, R. B., Al-Sulaiman, F. A., & Rehman, S. (2023). Renewable energy systems for water desalination applications: A comprehensive review. Energy Conversion and Management, 286, 117035.
- 2. Ayodele, T. R., & Ogunjuyigbe, A. S. O. (2015). Mitigation of wind power intermittency: Storage technology approach. Renewable and Sustainable Energy Reviews, 44, 447-456.
- 3. Ayodele, T. R., & Ogunjuyigbe, A. S. O. (2015). Mitigation of wind power intermittency: Storage technology approach. Renewable and Sustainable Energy Reviews, 44, 447-456.
- 4. Behera, D. K. (2023). Promoting Sustainable Development Through Environmental Policy, Green Technologies, and Effective Waste Management: A Comprehensive Review. Journal of Multidisciplinary Science: MIKAILALSYS, 1(2), 179-198.
- 5. Bhuiyan, E. A., Hossain, M. Z., Muyeen, S. M., Fahim, S. R., Sarker, S. K., & Das, S. K. (2021). Towards next generation virtual power plant: Technology review and frameworks. Renewable and Sustainable Energy Reviews, 150, 111358.
- 6. Chakrabortty, S., Si, S., Mohapatra, J., & Karak, P. (2024). Bio-Fertilizer Synthesis from Marine Biomass: An Eco-Friendly Approach to Sustainable Agriculture. In Multidisciplinary Applications of Marine Resources: A Step towards Green and Sustainable Future (pp. 1-16). Singapore: Springer Nature Singapore.
- 7. Clairotte, M. (2014). Impact of fuels and exhaust aftertreatment systems on the unregulated emissions from mopeds, light and heavy-duty vehicles. Université de Montpellier, 2.
- 8. Dokl, M., Van Fan, Y., Vujanović, A., Pintarič, Z. N., Aviso, K. B., Tan, R. R., ... & Čuček, L. (2024). A waste separation system based on sensor technology and deep learning: A simple approach applied to a case study of plastic packaging waste. Journal of Cleaner Production, 450, 141762.
- 9. Dowie, M. (1995). Losing ground: American environmentalism at the close of the twentieth century. mit Press.

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

- 10. Edwards, E. C., Holcombe, A., Brown, S., Ransley, E., Hann, M., & Greaves, D. (2023). Evolution of floating offshore wind platforms: A review of at-sea devices. Renewable and Sustainable Energy Reviews, 183, 113416.
- 11. Ghazi, Z. M., Rizvi, S. W. F., Shahid, W. M., Abdulhameed, A. M., Saleem, H., & Zaidi, S. J. (2022). An overview of water desalination systems integrated with renewable energy sources. Desalination, 542, 116063.
- 12. Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical reviews in plant sciences, 30(1-2), 95-124.
- 13. Guerrero-Lemus, R. V. T. K. A. K. L. S. R., Vega, R., Kim, T., Kimm, A., & Shephard, L. E. (2016). Bifacial solar photovoltaics—A technology review. Renewable and sustainable energy reviews, 60, 1533-1549.
- 14. Islam, H. (2025). Nexus of economic, social, and environmental factors on sustainable development goals: The moderating role of technological advancement and green innovation. Innovation and Green Development, 4(1), 100183.
- 15. Islam, M. M., Yu, T., Giannoccaro, G., Mi, Y., La Scala, M., Rajabi, M. N., & Wang, J. (2024). Improving reliability and stability of the power systems: A comprehensive review on the role of energy storage systems to enhance flexibility. IEEE Access.
- 16. Jacobson, M. Z., & Delucchi, M. A. (2011). Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy policy, 39(3), 1154-1169.
- 17. Kolstad, C. D., & Krautkraemer, J. A. (1993). Natural resource use and the environment. In Handbook of natural resource and energy economics (Vol. 3, pp. 1219-1265). Elsevier.
- 18. Kumar, Y., Ringenberg, J., Depuru, S. S., Devabhaktuni, V. K., Lee, J. W., Nikolaidis, E., ... & Afjeh, A. (2016). Wind energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 53, 209-224.
- 19. Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D., & Garrote, L. (2021). Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. Renewable and Sustainable Energy Reviews, 142, 110833.
- 20. Liu, Q., Martinez-Villarreal, S., Wang, S., Tien, N. N. T., Kammoun, M., De Roover, Q., ... & Richel, A. (2024). The role of plastic chemical recycling processes in a circular economy context. Chemical Engineering Journal, 155227.
- 21. Lorek, S., & Spangenberg, J. H. (2014). Sustainable consumption within a sustainable economy–beyond green growth and green economies. Journal of cleaner production, 63, 33-44.
- 22. Machín, A., & Márquez, F. (2024). Advancements in photovoltaic cell materials: Silicon, Organic, and Perovskite Solar cells. Materials, 17(5), 1165.
- 23. Majumdar, P., Mitra, S., & Bhattacharya, D. (2021). IoT for promoting agriculture 4.0: a review from the perspective of weather monitoring, yield prediction, security of WSN protocols, and hardware cost analysis. Journal of Biosystems Engineering, 46(4), 440-461.
- 24. Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), 5519-5558.
- 25. Mishra, A., Kumar, M., Medhi, K., & Thakur, I. S. (2020). Biomass energy with carbon capture and storage (BECCS). In Current developments in biotechnology and bioengineering (pp. 399-427). Elsevier.
- 26. Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226-254.
- 27. Mukherjee, C., Varghese, D., Krishna, J. S., Boominathan, T., Rakeshkumar, R., Dineshkumar, S., ... & Sivaramakrishna, A. (2023). Recent advances in biodegradable polymers—properties, applications and future prospects. European Polymer Journal, 192, 112068.
- 28. Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S., & Cardoso, M. (2016). Landuse and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences, 113(39), 10759-10768.
- 29. Owen, D. A. L. (2018). Smart water technologies and techniques: Data capture and analysis for sustainable water management. John Wiley & Sons.

- 30. Sahajwalla, V. (2018). Green processes: Transforming waste into valuable resources. Engineering, 4(3), 309-310.
- 31. Thennakoon, T. M. T. N., Hewage, H. T. M., Sandunika, D. M. I., Panagoda, L. P. S. S., Senarathna, W. G. C. M., Sulaksha, L., ... & Perera, M. D. V. (2023). Harnessing the power of ocean energy: A comprehensive review of power generation technologies and future perspectives. Journal of Research Technology and Engineering, 4, 73-102.
- 32. Turkenburg, W. C., & Faaij, A. (2000). Renewable energy technologies (pp. 219-72). UNDP/UNDESA/WEC: Energy and the Challenge of Sustainability. World Energy Assessment. New York: UNDP, 219-272.
- 33. Weis, T. (2013). The ecological hoofprint: The global burden of industrial livestock. Bloomsbury Publishing.
- 34. Yağ, İ., & Altan, A. (2022). Artificial intelligence-based robust hybrid algorithm design and implementation for real-time detection of plant diseases in agricultural environments. Biology, 11(12), 1732.
- 35. Yeatts, D. E., Auden, D., Cooksey, C., & Chen, C. F. (2017). A systematic review of strategies for overcoming the barriers to energy-efficient technologies in buildings. Energy research & social science, 32, 76-85.