
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS)
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue IX September 2025
www.rsisinternational.org
REFERENCES
1. Bujotzek, M. R., et al. (2025). Real-world federated learning in radiology: Hurdles to deployment and
paths forward. Journal of the American Medical Informatics Association, 32(1), 193–204. Oxford
Academic
2. Dayan, I., et al. (2021). Federated learning for predicting clinical outcomes in patients with COVID-19.
Nature Medicine, 27, 1735–1743. NaturePubMed
3. Rieke, N., et al. (2020). The future of digital health with federated learning. npj Digital Medicine, 3,
119. Nature
4. Teo, Z. L., et al. (2024). Federated machine learning in healthcare: A systematic review. Digital Health
(PMC). PMC
5. Zhang, F., et al. (2024). Recent methodological advances in federated learning for healthcare. Patterns,
5(7), 100996. ScienceDirectCell
6. Ben Shoham, O., et al. (2024). Federated learning of medical concept embeddings using EHRs.
JAMIA Open, 7(4), ooae110. Oxford Academic
7. Eden, R., et al. (2025). Governance of federated learning in healthcare: A scoping review. npj Digital
Medicine, 8, 57. NaturePMC
8. Liu, W.-K., et al. (2023). A survey on differential privacy for medical data analysis. Healthcare
Analytics, 3, 100226. PMC
9. Pan, K., et al. (2024). Differential privacy in deep learning: A literature survey. Neurocomputing, 591,
127718. ScienceDirect
10. Dyda, A., et al. (2021). Differential privacy for public health data. Public Health Research & Practice,
31(4). PMC
11. Hawes, M. B. (2020). Seven lessons from the 2020 U.S. Census on differential privacy. Harvard Data
Science Review, 2(3). Harvard Data Science Review
12. Abowd, J. M., et al. (2022). The 2020 Census TopDown Algorithm: Differential privacy in official
statistics. Harvard Data Science Review, 4(1). Harvard Data Science Review
13. Mueller, J. T., et al. (2022). The 2020 U.S. Census differential privacy method and rural data quality.
Population Research and Policy Review, 41(6), 2445–2473. PMC
14. Williamson, S. M., et al. (2024). Balancing privacy and progress: AI privacy challenges in healthcare.
Applied Sciences, 14(2), 675. MDPI
15. Kaabachi, B., et al. (2025). Privacy and utility metrics in medical synthetic data: A scoping review. npj
Digital Medicine, 8, 30. Nature
16. Alhammad, N., et al. (2024). Patients’ perspectives on confidentiality, privacy, and security of mHealth
data: Systematic review. Journal of Medical Internet Research, 26, e50715. JMIR Publications+1
17. Zandesh, Z., et al. (2024). Privacy, security, and legal issues in the health cloud: A systematic review.
JMIR Formative Research, 8, e38372. JMIR Formative Research
18. Lee, T.-F., et al. (2023). HIPAA- and GDPR-compliant certificateless authenticated key agreement for
medical data. Electronics, 12(5), 1108. MDPI
19. Shin, H., et al. (2024). Application of privacy-protection technology to healthcare data. Healthcare
Informatics Research, 30(2), 132–144. PMC
20. Khan, M. M., et al. (2024). Towards secure and trusted AI in healthcare: A systematic review.
Computer Networks, 240, 110014. ScienceDirect
21. Pool, J., et al. (2024). Failures in protecting personal data: A systematic analysis. Information &
Management, 61(3), 103918. ScienceDirect
22. Shojaei, P., et al. (2024). Security and privacy of technologies in health information systems: A
systematic review. Computers, 13(2), 41. MDPI
23. du Preez, A., et al. (2024). Fraud detection in healthcare claims using machine learning: A systematic
review. Artificial Intelligence in Medicine, 154, 102781. ScienceDirect
24. Nabrawi, E., et al. (2023). Fraud detection in healthcare insurance claims using machine learning.
Risks, 11(9), 160. MDPI
25. Lu, J., et al. (2023). Health insurance fraud detection with attributed heterogeneous information
networks. BMC Medical Informatics and Decision Making, 23, 152. BioMed Central