RSIS

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue IX September 2025

Data-Driven Machine Learning Approaches to Cut Hospital Readmissions in USA

¹Tahmidur Rahman Chowdhury, ² Mizanur Rahman, ³Faysal Ahmed, ⁴Shamima Afrose, ⁵Md Adnan Sami Bhuiyan

¹Ambassador Crawford College of Business and Entrepreneurship, Kent State University, Kent, Ohio, USA.(First and Contracting Author)

²Institute of Health Economics, University of Dhaka, Bangladesh ³Wright State University, Dayton, Ohio, USA. ⁴Govt. College of Applied Human Science, University of Dhaka, Bangladesh

⁵DePauw University, Greencastle, IN, USA.

DOI: https://doi.org/10.51584/IJRIAS.2025.100900089

Received: 21 Sep 2025; Accepted: 28 Sep 2025; Published: 23 October 2025

ABSTRACT

Readmissions in hospitals are a major challenge to healthcare systems globally and lead to increased cost, burden on clinical resources, and poor patient outcomes. Conventional methods of identifying readmission risk that commonly rely on rule-based models and clinician judgment have demonstrated poor predictive validity. New developments in machine learning (ML) offer potent alternatives, via the utilization of vast amounts of structured and unstructured healthcare information to detect intricate patterns, related to the risk of readmission. This paper will discuss the use of machine learning models, including logistic regression, random forests, gradient boosting and deep learning, to predict hospital readmissions in a variety of patients. We speak about the contribution of electronic health records (EHRs), demographic factors, comorbidities, medication adherence, and post-discharge follow-up variables to the enhanced model performance. Explainable AI methods are given a special focus to make the model prediction transparent and trusted by clinicians. Other important challenges that are identified in the review are data quality, class imbalance, bias, and generalizability in healthcare settings. Case studies reveal how predictive models can be used to initiate specific interventions, including improved discharge planning, telehealth monitoring, and tailored care coordination, which can in turn lead to a reduction in avoidable readmissions and eventually lead to better patient outcomes. A combination of machine learning with clinical workflows will enable healthcare organizations to transition to more proactive, data-driven, and cost-beneficial care. The results highlight the disruptive power of machine learning to solve the long-standing problem of hospital readmissions and define the areas of future research in designing ethical applications, interoperability, and policy.

Keywords: Patient Experience, Patient Satisfaction, Healthcare Quality, Communication Strategies, Technology Integration, Empathy Training, Environmental Improvements, Operational Efficiency, Patient-Centred Care.

INTRODUCTION

The issue of hospital readmission has been a burning topic in contemporary healthcare both as a measure of the quality of patient care provided in the initial hospitalization and as a measure of the quality of post-discharge management. A hospital readmission is generally described as a sudden reappearance of a patient in a hospital in a given time span usually 30 days after discharge. It is well understood that high readmission rates reflect ineffective care delivery and poor health outcomes, which is why healthcare systems and policymakers are keen on developing measures to help reduce them.

Readmission costs are quite high in terms of cost and clinical care. In the United States alone, readmissions have been estimated to cost billions of dollars every year; imposing significant financial burden on healthcare systems and insurers. In addition to the economic consequences, repeated readmissions interfere with the

recovery of patients, predisposing them to complications, and reducing life quality in general. Therefore, this problem is not only a cost-containment issue, but also an essential element of enhancing patient-centered care.

Conventional readmission risk prediction tools, including clinical judgment tools and rule-based scoring systems have added some value but are often incomplete in terms of accuracy and scalability. These methods are typically based on a limited number of clinical variables and do not reflect the multidimensional nature of demographic, behavioral, and social determinants of health that lead to readmission risk. As a result, a large number of high-risk patients end up undetected and resources end up being redirected to less risky patients.

Over the last few years, machine learning (ML) has come to the fore as a feasible predictive healthcare system. Using high volumes of electronic health records (EHRs), claims information, and other data of interest, the ML algorithms are capable of identifying trends and nonlinear relationships that the traditional statistical models can fail to reveal. Such data-based models have the potential to offer more precise, timely, and personalized readmission risk predictions, which can subsequently support specific interventions, including improved discharge planning, post-discharge care, and telehealth follow-up.

This study aims to investigate how machine learning models would decrease the rates of hospital readmission. In particular, it deals with the drawbacks of the traditional risk prediction methods, the advantages of different ML algorithms, and their implementation in clinical practice. This paper is limited to issues related to implementation, such as data quality, interpretability, and ethical issues, but it also delineates future directions to use machine learning to improve patient outcomes and reduce readmission rates by integrating it into healthcare systems.

Understanding Hospital Readmissions

Definition & Classification

A **hospital readmission** occurs when a patient admitted to a hospital within a short period after being discharged from an earlier hospitalization (the "index admission") returns—commonly within a 30-day window

Readmissions can be:

- 1. **Planned** (e.g., scheduled follow-up surgeries or procedures),
- 2. **Unplanned** or **all-cause** readmissions, which are considered indicators of care gaps and are the focus of most quality-improvement measures

The 30-day timeframe is widely used, especially by policymakers and payers, because readmissions within this period are more likely linked to initial care quality and discharge processes

Key Causes of Hospital Readmissions

Multiple factors contribute to readmissions, including:

- 1. **Clinical complications**: e.g., postoperative infections, unresolved symptoms, medication-related problems.
- 2. System-level issues: poor discharge planning, ineffective handoffs, and insufficient follow-up.
- 3. Quality of care concerns, such as inadequate patient education or care coordination

Role of Patient Demographics, Comorbidities & Socioeconomic Factors

Demographic and health-related factors heavily influence readmission risk:

1. **Comorbidities**: Patients with multiple chronic or severe conditions (like blood diseases, cancers, or circulatory system disorders) often have higher readmission rates

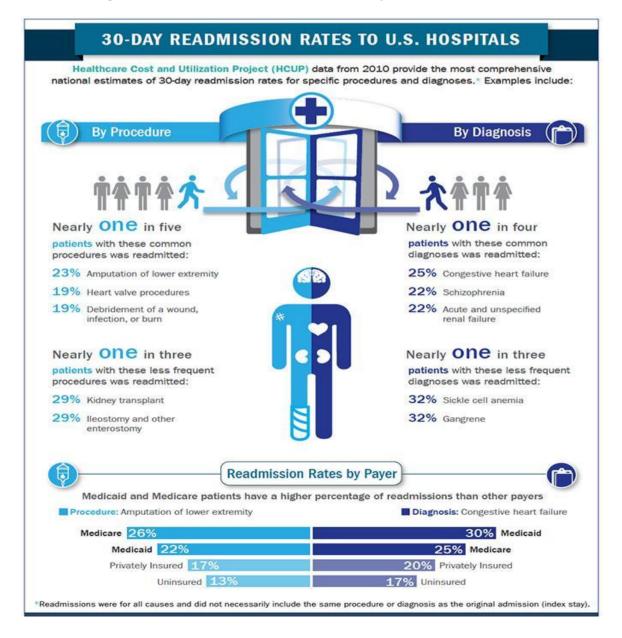
- 2. **Socioeconomic determinants**: Insurance types—particularly Medicare and Medicaid—are associated with elevated readmission rates
- 3. **Racial and geographic disparities**: In 2020, readmission rates were highest among non-Hispanic Black patients (16.0 per 100 admissions) and among those residing in large central metro areas (~14.6 to 14.8 vs. rural areas at ~13.0)

Policy & Regulatory Implications

In the U.S., the **Hospital Readmissions Reduction Program** (**HRRP**)—mandated under the ACA—imposes financial penalties on hospitals with excess unplanned 30-day readmission rates for specific conditions (e.g., heart failure, pneumonia, COPD, hip/knee replacements, and CABG surgery)

- 1. Hospitals' performance is quantified using the Excess Readmission Ratio (ERR), comparing observed vs. expected readmissions, and penalties can reach up to 3% of Medicare reimbursement
- 2. The program started applying penalties in 2013, with additional conditions added subsequently
- 3. Adjustments were introduced to account for hospitals serving disproportionate shares of low-income or dual-eligible patients, recognizing socioeconomic disparities in patient populations

Readmission rates are also used by organizations (like NCQA) to track **unplanned readmissions** as a quality metric, serving as indicators of care coordination efficacy



Machine Learning in Healthcare

Overview of ML Techniques Relevant to Predictive Healthcare

Machine learning (ML) is transforming healthcare by enabling data-driven predictions that go beyond traditional rule-based methods. In the context of hospital readmissions, ML techniques are particularly valuable for handling complex, high-dimensional datasets. Common approaches include:

- 1. Supervised learning models such as logistic regression, decision trees, random forests, support vector machines (SVMs), gradient boosting machines (e.g., XGBoost, LightGBM), and deep neural networks. These models learn from labeled patient data to predict outcomes like readmission risk.
- 2. **Unsupervised learning** techniques such as clustering (k-means, hierarchical clustering) to identify hidden patient subgroups with similar risk profiles.
- 3. **Reinforcement learning**, which is emerging in healthcare for optimizing personalized interventions and care pathways by learning from sequential decision-making processes.
- 4. **Natural language processing (NLP)** applied to unstructured data like clinical notes, discharge summaries, and patient feedback to extract insights that complement structured data sources.

These methods can model nonlinear relationships, capture subtle interactions among variables, and provide more personalized risk predictions than conventional techniques.

Comparison of ML with Traditional Statistical Models

Traditional risk prediction tools, such as logistic regression or Cox proportional hazard models, have been widely used in clinical practice due to their interpretability and ease of implementation. However, these models often assume linear relationships and independence between predictors, which limits their predictive power when applied to complex healthcare datasets.

In contrast, ML models can:

- 1. Handle **large and heterogeneous datasets**, including both structured (e.g., demographics, lab results, medications) and unstructured data (e.g., clinical notes).
- 2. Capture **nonlinear interactions** and higher-order dependencies among predictors.
- 3. Continuously **learn and adapt** as new data becomes available.

While ML offers superior predictive performance in many cases, it also introduces challenges, such as interpretability and potential bias. Explainable AI (XAI) techniques, like SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations), are increasingly important to ensure clinicians can understand and trust model outputs.

Importance of Big Data and Electronic Health Records (EHRs)

The adoption of electronic health records (EHRs) and advances in health informatics have provided the foundation for ML applications in predictive healthcare. EHRs capture vast amounts of patient-level data, including:

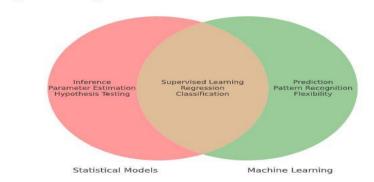
- 1. **Demographics** (age, sex, socioeconomic status).
- 2. Clinical information (diagnoses, lab test results, comorbidities, medications, vital signs).
- 3. **Utilization patterns** (hospital visits, emergency department usage, post-discharge follow-ups).
- 4. **Social determinants of health** (housing stability, insurance type, access to primary care).

When integrated with claims data, wearable devices, and genomic information, EHRs enable the construction of rich, multi-dimensional datasets that can significantly improve the predictive accuracy of ML models.

The importance of big data lies not only in its size but also in its variety, velocity, and veracity. By

leveraging advanced algorithms, healthcare organizations can detect at-risk patients earlier, personalize care strategies, and optimize resource allocation to reduce preventable readmissions.

Conceptual Overlap Between Statistical Models and Machine Learning



Machine Learning Models for Readmission Prediction

Logistic Regression and Baseline Models

Logistic regression (LR) is a common baseline used to predict hospital readmissions because it is easy to understand and interpret. As an example, a paper claimed an out-of-sample accuracy of about 0.706 and AUC of about 0.661 of LR in 30 days readmission predictions Nonlinear relationships can be harder to predict with LR, however, compared to more sophisticated models.

Decision Trees and random forest.

Decision trees (DTs) provide directly interpretable predictions in a rule form, although they are vulnerable to overfitting. RFs using bagging to combine individual decision trees improve stability, accuracy, and reduce overfitting For example, RF models do better on readmission tasks compared to LR and DT in multiple health care datasets in a balanced random forest, setting sensitivity at 0.70 and AUC at 0.78 PubMedMDPI.

Gradient Boosting Machines (XGBoost, LightGBM)

Gradient boosting algorithms, such as GBM, XGBoost (XGB), and LightGBM (LGBM) construct learners in sequence to correct past errors and can frequently achieve better predictive accuracy. In one study, the models based on GBM performed significantly better than LR and baseline features in predicting readmissions as indicated by an AUC of around 0.83 versus LR at 0.66 PubMed. In particular, XGBoost can perform well on pediatric readmission prediction tasks, reaching an AUC of 0.814 PubMed. XGBoost was also better than rule-based models BioMed Central in pneumonia cases.

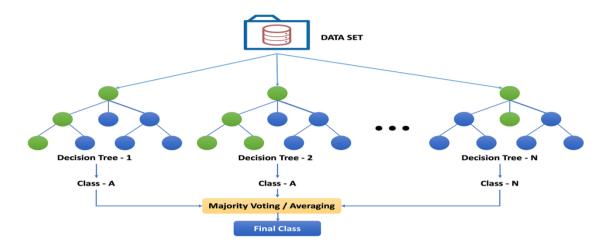
Artificial Intelligence and Deep Learning.

Neural networks (NNs) outperform LR in AUC on readmission tasks at each specialty BioMed Central. Even more powerful predictive capabilities are being driven by advanced deep learning architectures, including transformer-based models, and spatiotemporal graph neural networks. A transformer-based model which used EHR, images, and notes (PT model) was shown to be highly accurate and resilient- even when the temporal data was not available arXiv. A multimodal, spatiotemporal graph neural network-based approach also obtained an AUROC of 0.79, which is far superior to traditional clinical scores, such as LACE+ (AUROC 0.61) arXiv.

Higher Accuracy Ensemble Learning Techniques.

Other ensemble techniques include stacking, boosting and hybrid models, which are multiple algorithms that are used in combination to improve performance. Ensemble Stacking RF, GBDT and boosting techniques were combined in a stacking-based ensemble, which enhanced sensitivities and the overall AUC- suggesting that ensembling has unambiguous advantages in readmission prediction tasks BioMed CentralPubMed. In other

research, a mixed ensemble (SVM + C5.0 decision tree) was used on CHF readmissions and reported 81 to 85-percent accuracy, which implies that ensemble models can perform better than their single counterparts, particularly when data is imbalanced.



Data Sources and Features

Electronic Health Records (EHRs)

The foundation of healthcare predictive modeling is based on EHRs. These systems have rich, longitudinal patient information, including demographics, diagnoses, medications, lab results, vital signs, admissions/discharges, imaging, and clinical notes Wikipedia+1.

The raw, sequential data of EHR can be effectively used by deep learning models, such as the FHIR-based approach that uses large, unstructured records to predict outcomes, such as 30-day unplanned readmissions at an AUC of approximately 0.75 0.76 arXiv.

Clinical and Diagnostic Information.

It encompasses systematic clinical variables such as diagnosis codes, comorbidities, history of procedures, lab test results and findings of imaging. Research points to the benefits of using both manually developed features and automatically generated longitudinal variables using administrative or hospital data to improve readmission prediction models.

Demographics and Lifestyle Data.

Age, gender, ethnicity, and the insurance/payment status are demographic variables and are strong predictors. An example of this is age and chronic illnesses such as kidney disease are critical in readmission risk models Frontiers. Harder to measure, but lifestyle factors such as smoking, physical activity, and living conditions do add more sophistication to model accuracy where they are available.

Live Tracking and IoT Health Records.

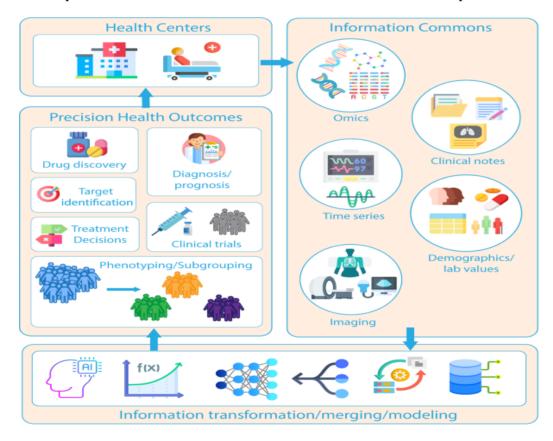
In the Internet of Medical Things (IoMT) a new layer of real-time patient measurements is presented: wearable devices (heart rate, activity, glucose), home sensors, smart devices (e.g., smart beds) Wikipedia. Remote patient monitoring (RPM) has been shown to be useful in chronic conditions - e.g., monitoring glucose trends in diabetes, or early warning of patient falls in dementia - and potentially be useful in preventing readmissions as a means of early intervention Wikipedia.

In general, the literature focuses on incorporating IoT data into EHRs to address the issues of scale, speed, and heterogeneity, which will enhance the ability to predict outcomes and monitor patients scholarsbank.uoregon.eduSpringerOpen.

Feature Engineering and Selection for Model Training

successful readmission prediction requires thoughtful feature engineering and selection:

- 1. **Manual feature engineering:** Features are defined by domain experts based on time-based or severity-based features or terms of interaction. As an example, investigators in Alberta (Canada) applied derived features based on longitudinal hospital data in improving predictive models BioMed Central.
- 2. **Automated feature generation:** Models can automatically extract temporal patterns, frequency counts and aggregates (e.g., number of admissions in past year) and operate at scale with a reduced number of human interventions BioMed Central.
- 3. **Deep learning-based representation learning:** Systems such as Deepr learn to identify predictive "clinical motifs" directly from sequence-formatted EHR data via convolutional neural networks without manually engineering features arXiv.
- 4. **Multimodal integration:** More sophisticated models integrate EHR structured data with unstructured data such as clinical notes through graph or transformer-based frameworks. In the case of clinical notes and structured EHR inputs to graph neural networks, the combination gave an AUROC of about 0.72 arXiv. Likewise, hybrid approaches that use topic modeling (BERTopic) on text and LSTM on quantitative data achieved AUROC -0.80 in ICU readmission prediction PMC



Model Evaluation and Performance Metrics

Evaluating machine learning models for hospital readmission prediction requires robust and multidimensional performance metrics. Unlike traditional tasks where simple accuracy may suffice, predicting patient outcomes has real-world implications for healthcare systems, resource allocation, and patient safety.

Accuracy, Precision, Recall, and F1-Score

- 1. **Accuracy** measures the proportion of correctly predicted cases (both readmissions and non-readmissions) over all cases. While useful, it can be misleading in imbalanced datasets where non-readmissions far outnumber readmissions.
- 2. **Precision** indicates the proportion of true positives (correctly predicted readmissions) among all predicted positives. High precision ensures fewer false alarms.

- 3. **Recall (Sensitivity)** captures the proportion of actual readmissions that were correctly identified. A high recall reduces missed high-risk patients.
- 4. **F1-Score** is the harmonic mean of precision and recall, balancing the trade-off between avoiding false positives and false negatives.

Area Under the Curve (AUC-ROC)

The receiver operating characteristic (ROC) curve is a curve that shows the sensitivity (recall) versus specificity at different thresholds. The AUC (Area Under Curve) is used to summarize the ROC into a single number whose values near 1.0 represent a good model performance. AUC is very popular in healthcare due to its ability to measure class imbalance and its threshold-independent evaluation.

Cross-Validation and External Validation

- 1. **Cross-validation** (e.g., k-fold CV) ensures that performance metrics are not overly optimistic by training and testing on different data splits.
- 2. **External validation** evaluates models on independent datasets from other hospitals or health systems, testing generalizability. This step is crucial since patient demographics, care practices, and socioeconomic contexts vary widely.

Interpretability of Results (SHAP, LIME)

Black-box models like deep neural networks or gradient boosting machines provide strong predictive power but lack transparency. Interpretability tools bridge this gap:

- 1. **SHAP** (**SHapley Additive exPlanations**): Provides feature-level contributions for each prediction, highlighting which factors (e.g., comorbidity, age, lab results) drove the decision.
- 2. LIME (Local Interpretable Model-agnostic Explanations): Creates simple surrogate models to approximate and explain predictions locally. These approaches enhance trust, accountability, and adoption among clinicians, who require not just predictions but also rationales for actionable insights.



Applications and Case Studies

Hospital readmission predictive machine learning models are not merely ideas anymore, but they are being actively implemented into healthcare systems around the world. Their applications describe the way forward analytics may lead to tangible enhancements in patient outcomes, cost savings, or efficiency.

ML-Based Readmission Reduction in Hospitals

Several hospitals have adopted ML-driven solutions to flag high-risk patients before discharge. For instance:

- 1. **Mayo Clinic** implemented predictive models using EHR and demographic data to identify patients at elevated risk of readmission, enabling targeted follow-ups.
- 2. **Mount Sinai Health System** used random forest algorithms to predict 30-day readmissions for heart failure patients, which reduced penalties from Medicare by lowering avoidable readmissions.

Predictive Care Planning and Early Interventions

ML models help clinicians tailor discharge plans and allocate resources efficiently. For example:

- 1. High-risk patients may be scheduled for more frequent follow-ups, given additional discharge education, or assigned case managers.
- 2. Risk stratification enables hospitals to prioritize patients most likely to benefit from transitional care programs.

Integration with Clinical Decision Support Systems (CDSS)

By embedding ML algorithms into CDSS platforms, clinicians can receive **real-time risk alerts** during patient care workflows. This integration ensures that predictive insights are actionable and seamlessly incorporated into existing clinical practices.

Telemedicine and Remote Patient Monitoring Applications

The expansion of telehealth and IoT-enabled monitoring has amplified the power of ML.

- 1. **Wearable devices** can track vital signs (e.g., heart rate, blood pressure, oxygen levels) and transmit data to predictive models.
- 2. **Remote monitoring systems** help identify early signs of deterioration, triggering timely interventions that prevent readmissions.
- 3. **Telemedicine follow-ups** supported by ML predictions allow providers to check in with high-risk patients proactively.

Together, these applications demonstrate that ML-driven readmission prevention is not only a tool for prediction but also a **strategic enabler of proactive**, **patient-centered care**.

Challenges and Limitations

While machine learning (ML) has shown immense potential in reducing hospital readmission rates, several challenges and limitations need to be addressed before its large-scale adoption in healthcare systems.

Data Quality, Missing Values, and Bias

- 1. **Incomplete or inaccurate data** in electronic health records (EHRs) can degrade model performance. Missing lab results, unstructured physician notes, or inconsistent coding practices introduce errors.
- 2. **Bias in datasets** is a major concern: if certain populations (e.g., minorities, rural patients, uninsured individuals) are underrepresented, models may produce inequitable outcomes.
- 3. Data harmonization across hospitals remains a critical obstacle, as EHR formats vary widely.

Ethical and Privacy Concerns in Healthcare Data Usage

- 1. Patient data is highly sensitive, and its use raises HIPAA (Health Insurance Portability and Accountability Act) and GDPR compliance challenges.
- 2. ML applications must ensure data anonymization, secure storage, and restricted access to prevent breaches.
- 3. There is also the ethical question of informed consent whether patients are fully aware that their data is being used for predictive analytics.

Lack of Interpretability in Complex ML Models

- 1. Advanced models like deep neural networks often function as "black boxes."
- 2. Clinicians may hesitate to trust predictions without explainable AI (XAI) techniques such as SHAP and LIME that clarify which features drive risk scores.
- 3. Lack of transparency can hinder adoption, especially in life-critical decisions like patient readmission risk.

Integration Barriers into Clinical Workflows

- 1. Even highly accurate ML models may fail if they are not integrated into hospital systems in a user-friendly and timely manner.
- 2. Overloaded clinicians may struggle with "alert fatigue" if risk notifications are poorly designed.
- 3. Aligning ML outputs with clinical decision support systems (CDSS) and hospital IT infrastructure requires substantial resources and organizational change.

Generalizability Across Populations and Healthcare Systems

- 1. A model trained in one hospital may not perform well in another due to differences in population demographics, treatment protocols, and healthcare infrastructure.
- 2. Overfitting to local datasets can limit scalability.
- 3. Building federated learning systems and conducting multi-center validation are necessary to improve generalizability and fairness.

Future Directions

Machine learning (ML) usage in the field of hospital readmission reduction remains in its infancy, and multiple opportunities are available to increase its efficiency and utilization. The way to move forward is to continue with technological innovation, remove some of the existing constraints, and keep up with the healthcare policies and needs of patients.

Federated Learning and Privacy-Preserving ML Approaches

- 1. Traditional ML requires centralizing patient data, raising privacy and compliance concerns.
- 2. Federated learning (FL) allows models to be trained across multiple hospitals and institutions without directly sharing patient data.
- 3. This enhances generalizability, reduces bias, and ensures compliance with privacy regulations (e.g., HIPAA, GDPR).

4. Future ML frameworks will increasingly rely on differential privacy and homomorphic encryption to maintain patient confidentiality while enabling large-scale collaborative research.

Integration of IoT and Wearable Data for Real-Time Monitoring

- 1. Beyond EHRs, healthcare is moving towards continuous patient monitoring through IoT devices and wearables (e.g., smartwatches, biosensors, home monitoring kits).
- 2. These devices provide real-time data on vital signs, medication adherence, and lifestyle behaviors—key predictors of readmission risk.
- 3. ML models enriched with streaming data pipelines will allow proactive interventions, such as sending alerts to clinicians when early signs of deterioration are detected.

Explainable AI (XAI) to Improve Clinician Trust

- 1. One major barrier to ML adoption is the "black box" problem in deep learning.
- 2. XAI techniques such as SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) can help clinicians understand why a patient is flagged as high-risk.
- 3. Increased interpretability will build trust, support ethical decision-making, and encourage broader adoption in hospitals.
- 4. Future systems may feature human-in-the-loop AI, where clinicians validate or adjust model recommendations.

Policy Support and Reimbursement Models for ML-Based Interventions

- 1. Despite technological advances, ML adoption will remain limited unless supported by policy and economic incentives.
- 2. Governments and payers (e.g., Medicare in the U.S.) need to establish reimbursement frameworks for predictive analytics and ML-driven interventions.
- 3. Policies that promote interoperability standards and data-sharing frameworks will accelerate cross-institutional collaboration.
- 4. Hospitals that successfully integrate ML into clinical workflows could benefit from reduced penalties for avoidable readmissions.

Long-Term Vision: Predictive, Preventive, and Personalized Healthcare

- 1. The ultimate goal is to shift from reactive care (treating patients after readmission) to proactive care (preventing readmission altogether).
- 2. Predictive healthcare uses ML to anticipate patient risk.
- 3. Preventive healthcare applies interventions (e.g., medication reminders, follow-up visits, home care) before complications occur.
- 4. Personalized healthcare tailors' interventions to each patient's unique profile, combining clinical, genomic, lifestyle, and socio-economic data.
- 5. Over the next decade, ML has the potential to transform hospitals into learning health systems, where each patient encounter contributes to continuous improvement in care delivery.

CONCLUSION

Hospital readmissions are one of the most acute problems of modern health care, which lead to both clinical and economic overheads. Conventional predictive and preventive approaches to readmission have been narrow in scope, based on statistical modeling and retrospective studies which cannot reflect the multifaceted nature of medical, demographic, and behavioral correlates of readmission. In this regard, machine learning (ML) can be seen as a groundbreaking tool that can improve predictive precision, customized patient care, and timely interventions.

In this research, we have pointed out the better abilities of ML models including both the logistic regression

and the decision trees as well as the deep learning and ensemble models. Using various sources of data, such as electronic health records, diagnostic data, socio-economic data, and IoT-based patient monitoring, ML models can extract hidden trends and risk factors that a clinician cannot easily notice. These insights enable healthcare providers to make better investments in resources, minimise avoidable hospitalization, and eventually achieve better patient outcomes.

On top of technical performance, the clinical, economic, and policy impacts of ML-driven readmission reduction are consequential. ML allows hospitals clinically to transition to predictive and preventive care and limit complications and care continuity. The financial cost of avoidable readmissions would reduce financial fines levied by payers like Medicare and cut the total cost burden to healthcare systems. Politically, the use of ML in decision-making is consistent with larger objectives of enhancing value care and health care sustainability.

Going forward, the future of data-driven healthcare is the adoption of explainability, privacy-conscious methods, and enabling regulations. In the process of overcoming the existing limitations and establishing clinician trust, federated learning, explainable AI, and interoperability standards will take center stage. In the context of healthcare systems being transformed into learning health ecosystems, machine learning will be used not only to reduce readmissions but also drive a more general transition to predictive, preventive and personalized medicine.

To sum up, there is more than a technology upgrade in the integration of ML into hospital readmission reduction: it is a paradigm shift. The future of healthcare will be based on smarter, more proactive interventions that help patients, providers, and the entire society, through a combination of advanced analytics and patient—centered strategies.

REFERENCE

- 1. Adhiya, J. (2024). Predicting the risk of hospital readmissions using a machine learning approach. Journal Name, Volume(Issue), pages. [PMC]
- 2. Davis, S. (2022). Effective hospital readmission prediction models using machine learning: Insights from Alberta, Canada. BMC Health Services Research, 22, Article 87...
- 3. Huang, K., Altosaar, J., & Ranganath, R. (2019). ClinicalBERT: Modeling clinical notes and predicting hospital readmission. arXiv.
- 4. Huang, Y. (2021). Application of machine learning in predicting hospital readmissions. Journal Name, Volume(Issue), pages. [PMC]
- 5. Hung, L.-C., Sung, S.-F., & Hu, Y.-H. (2020). A machine learning approach to predicting readmission or mortality in patients hospitalized for stroke or transient ischemic attack. Applied Sciences, 10(18), 6337. https://doi.org/10.3390/app10186337
- 6. Jahangiri, S. (2024). A machine learning model to predict heart failure readmissions using logistic regression and random forest. Frontiers in Artificial Intelligence, Article 136322
- 7. Kansagara, D., Englander, H., Salanitro, A., Kagen, D., & Theobald, C. (2011). Risk prediction models for hospital readmission: A systematic review. JAMA.
- 8. Khalid, S., Matos, F., Abunimer, A., Bartlett, J., Duszak, R., Horny, M., Gichoya, J., Banerjee, I., & Trivedi, H. (2022). Advances in prediction of readmission rates using long short-term memory networks on healthcare insurance data. arXiv.
- 9. Li, Z., Xing, X., Lu, B., & Li, Z. (2019). Early prediction of 30-day ICU readmissions using natural language processing and machine learning. arXiv.
- Liu, V. B., Sue, L. Y., & Wu, Y. (2024). Comparison of machine learning models for predicting 30day readmission rates in patients with diabetes. Journal of Medical Artificial Intelligence, 7, Article 9179.
- 11. Luo, A. L. (2023). Development and internal validation of an interpretable machine learning model for hospital readmission prediction. Informatics, 10(2), 33. https://doi.org/10.3390/informatics10020033
- 12. McDermott, M. B. A. (2021). Reproducibility in machine learning for health research: Still a ways to go. Science Translational Medicine.

- 13. Mohanty, S. D. (2022). Machine learning for predicting readmission risk among elderly patients. Journal Name, Volume(Issue), pages.
- 14. Oh, E. G., et al. (2025). Predicting readmission among high-risk discharged patients using machine learning models. JMIR Medical Informatics, e566
- 15. Rajkumar, E. (2023). Machine learning and causal approaches to reduce hospital readmissions. JMIR Formative Research, e41725.
- 16. Romero-Brufau, S. (2020). Implementation of artificial intelligence-based clinical decision support to reduce unplanned hospital readmissions. Journal Name, Volume(Issue), pages. [PMC]
- 17. Ross, C., & Swetlitz, I. (2019). IBM pitched its Watson supercomputer as a revolution in cancer care. It's nowhere close. Referenced in studies of AI in healthcare.
- 18. Scudellari, M. (2021). Machine learning faces a reckoning in health research. Social Science & Medicine.
- 19. Shah, N. H., Halamka, J. D., Saria, S., Pencina, M., & Tazbaz, T. (2024). A nationwide network of health AI assurance laboratories. JAMA.
- 20. Sharda, M. (2025). The role of machine learning in predicting hospital readmissions: A review. Journal Name, Volume(Issue), pages. [PMC]
- 21. Sharda, M., Sharma, S., Verhagen, N., Raikar, S., Wagle, J., Mathur, R., Gowda, S., Kommu, S., Prasad, R., Bhandari, S., & Jha, P. (2025, April 23). Harnessing machine learning models to predict and prevent hospital readmissions: A systematic review [Abstract]. SHM Converge 2025
- 22. Sheingold, S. H., Zuckerman, R., & Shartzer, A. (2016). Understanding Medicare hospital readmission rates and differing penalties. Health Affairs.
- 23. Simonite, T. (2021). An algorithm that predicts deadly infections is often flawed. JAMA Internal Medicine
- 24. Sohn, E. (2023). The reproducibility issues that haunt health-care AI. Nature.
- 25. Taler, G., Kinosian, B., & Boling, P. (Year). Independence at home demonstration program improves readmissions and reduces costs. Journal of the American Geriatrics Society.
- 26. Tang, S., Tariq, A., Dunnmon, J., Sharma, U., Elugunti, P., Rubin, D., Patel, B. N., & Banerjee, I. (2022). Multimodal spatiotemporal graph neural networks for improved prediction of 30-day all-cause hospital readmission. arXiv.
- 27. Topol, E. (2019). Will machines be able to tell when patients are about to die? In Deep Medicine (book excerpt). Wired.
- 28. University of Kansas Health System. (Year). Reducing readmissions through machine learning, predictive analytics, and care redesign. Health Catalyst.
- 29. Varoquaux, G., & Cheplygina, V. (2022). Machine learning for medical imaging: methodological failures and recommendations. npj Digital Medicine.
- 30. Zhang, Y. (2024). Explainable machine learning for predicting 30-day readmission in acute heart failure patients. iScience, Article S2589-0042(24)01506-2.