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ABSTRACT 

In this work, we present the use of mixture cure models (MCM) to analyze time-to-employment data of 

graduates of the statistics department, Kano University of Science and Technology, Nigeria. This is against 

Cox proportional hazards (CPH) and accelerated failure time (AFT) models that are traditionally used to model 

such types of data. MCM was used because the Kaplan-Meier (KM) employment curve has suggested the 

possibility of cure with an estimated unemployment fraction of 33.8%. Here, two MCM were constructed 

based on CPH and AFT assumptions for the latency part of the model. Weibull was used as the baseline 

distribution in the AFT Cure model. The Cure models were used to estimate the unemployment fraction, 

survival function of the employment subgroup, as well as the effects of covariates on time-to-employment and 

probability of unemployment. Estimates of unemployment fractions by CPH Cure model are closer to the 

empirical estimate by KM compared to that of Weibull AFT Cure model. In comparing cure and non-cure 

CPH, some of the covariates (Gender and Age) that were not significant in the non-cure model were found to 

be significant in the cure model. Likewise Grade, which was found to be significant in the non-cure model, 

was not significant in the cure model. None of the covariates was found to influence unemployment probability 

significantly. It is concluded that, since today’s time-to-employment data of graduates mostly consists of 

groups that would remain unemployed forever (cure fraction), then the use of cure models is superior to their 

non-cure counterparts in revealing the true effect and significance of a covariate on time-to-employment. In 

addition, cure models assess the influence of covariates on unemployment probability. Findings may benefit 

the government and other stakeholders in employment planning policies. 

Keywords: Cure fraction, mixture cure model, CPH, AFT, employment 

INTRODUCTION 

The study of graduate employability after graduation has for long being shifted from merely use of techniques 

like descriptive statistics, linear or logistic regressions to a more appropriate technique of survival analysis 

(Barros, Guironnet and Peypoch, 2010; Lim, 2008; Manuel, 2007; Rosna et al.,2015). Here, time-to-

employment is modelled statistically as a response variable that depends on some graduates’ characteristics, as 

such emphasis is much on identifying those characteristics that influence the transition to employment. Some 

of the factors that influence time-to-employment includes gender, age at graduation, grade/class of 

certificate/CGPA, course of study and Marital status among others (Ayaneh, Dessie and Ayele, 2020; Ezeani, 

2018; Soon, Lee, Lim, Idris and Eng, 2019). 

If modelling survival data involves estimating the effects of covariates, Cox Proportional Hazard (CPH) (Cox, 

1972) and Accelerated Failure Time (AFT) survival regression models were mostly used. AFT models are 

parametric models and are more appropriate when the time-to-event of interest can be appropriately described 

by a parametric distribution otherwise CPH model is the best choice. CPH model is very popular because it 

does not assume any distribution for the time-to-event of interest and yet is robust in its estimate, only that its 

appropriateness largely depends on satisfying the so-called proportional hazard assumption.  
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The transition period from graduation to first employment is increasing by the day and more concern is the 

frequent changes in the transition pattern compared to smooth transition in the past (Ayaneh et.al, 2020). As 

time goes by from graduation before employment, graduates do deflate in their human capital or skills they 

acquire in universities. This in turn reduces their chances of getting job. Now that unemployment rate is 

increasing (FGN, 2017; Lim, Rich and Harris, 2008). as the number of available positions for graduates in both 

public and private sectors is by far less compared to the graduates produced every year, it is logical to assume 

that some graduates will remain unemployed the very year they graduated. And since as time goes by, their 

chances of being employed reduces due to the increase population of unemployed graduates because new 

graduates are being produced, it is reasonable to say that many graduates will forever remain unemployed 

which represents cure fraction and refers in this work as unemployment fraction.  

When cure fraction is present in a time-to-event data, the usual models such as AFT and CPH will not be 

appropriate in describing the data, this is because they are based on the assumption that every graduate will 

eventually be employed (susceptible), hence the need for a more appropriate survival model.  

Cure survival models are used to estimate cure fraction as well as the survival function of the susceptible 

(unsure) sub-population (Cancho et al., 2019a; Othus, Barlogie, LeBlanc and Crowley, 2012; Scudilio et al., 

Sreedevi and Sankaran, 2021). The earlier works on cure fraction models were credited to Boag (1949) and 

Berkson and Gage (1952), where they developed what is called Mixture Cure Model (MCM). Based on their 

model, the population of time-to-event is assumed to be a mixture of cure and uncure subjects. Other cure 

models include Non-Mixture Cure Models (Yakovlev, Asselain, Bardou, Hoang and Tsodikov, 1993) and 

Defective models (Balka, Desmond and McNicholas, 2019). To our knowledge, no research utilizes cure 

models in fitting time-to-employment data. 

The objectives of the paper are to estimate unemployment fraction, survival functions of the 

uncure/employment sub-group as well as effects of covariates on both unemployment probability and survival 

function of the employment sub-group from the time-to-employment data. 

To achieve the objectives, parametric, non-parametric and semi-parametric techniques were proposed. The rest 

of the paper is organized as follows; section 2 provides details on the statistical procedures and models used in 

the study. Results of the analysis and discussions are presented in section 3, while section 4 gives conclusion.  

METHODOLOGY 

This section provides the methodology used to conduct the analysis. Brief description on the data used and 

important functions in survival data analysis will be given. Kaplan-Meier Estimator (Kaplan and Meier, 1952) 

would be employed to graph the employment curve and see visually the possibility of cure subjects in the data. 

Further analysis would follow based on the KM results. 

Data  

The data consists of information on graduates of statistics department (2007 – 2018), Kano University of 

Science and Technology, Kano, Nigeria. A total of 518 students graduated within the period. Data on 311 

graduates were obtained and 273 were subsequently used because of completeness. Information obtained are 

from two sources; information on the number of graduates for each year, their names, registration number, 

gender and class of certificates were obtained from the University Academic Division Office. Information on 

age at graduation, whether employed or not and the date of employment if any are obtained from the individual 

graduates. Those not employed at the time of collecting data are referred to as censored observations. This data 

is referred in this work as Graduate Employment Status (GES). The information from the graduates was 

obtained from June – December 2021. The response variable (time-to-employment) is measured in months. In 

this study, three covariates are considered; Class of certificate/Grade, Age and Gender. Age is defined as the 

age of the graduate at the time of finishing mandatory National Youth Service Corps (NYSC) measured in 

years. NYSC is a one-year service to the nation that is mandatory for every graduate of not more than 30 years 

of age at the time of graduation. Gender is a dummy variable for female and male, while class of certificate 

refers to the grade of degree student graduated with, which has 4 categories; First class (FC), Second class 
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upper (SCU) division, Second class lower (SCL) division and Third-class (TC) degrees. Initially students can 

graduate with a Pass degree which is the least category but was later scrapped. As such the only 3 graduates 

with pass degrees were merged with those with TC degrees. Information was collected from the graduates 

using several methods with the help of trained assistants. We first obtained contacts of some graduates from 

their department of graduation and using those graduates to obtain other contacts. What’s up group of various 

classes and Alumni were utilized and follow up on individual graduates when the need arises was also 

employed.  

Survival Data Analysis 

Let 𝑇 be a non-negative random variable (𝑇 ≥  0) describing the length of time between graduation and 

getting employment. Therefore, 𝑓(𝑡), 𝑡 ≥  0 is the probability density of T, while  𝑆(𝑡) =  𝑃(𝑇 >  𝑡) =

∫ 𝑓(𝑥)𝑑𝑥 = 1 − 𝐹(𝑡)
∞

𝑡
 is the survival function, which is the probability of a graduate to remain unemployed 

beyond time t, 𝐹(𝑡) is the cumulative distribution function. 

The hazard function defined for 𝑡 >  0, ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=  lim

𝛿𝑡⟶0

P(t ≤ T < 𝑡 + 𝛿𝑡|T ≥ t)

δt
 . The hazard function 

here represents the probability that an unemployed graduate at time 𝑡 experiences the event (employment) in 

the next period 𝛿𝑡 (Tibshirani, 1982).  Here, hazard function is the conditional probability of getting 

employment in the next period given that a graduate is unemployed now. Therefore, it is graduate chance of 

getting employment at a given point in time as such gives an easiest way to describe important functions in 

survival analysis such as the Proportional Hazard Model. 

The cumulative hazard function given by 𝐻(𝑡) = ∫ ℎ(𝑥)𝑑𝑥
𝐭

0
 is related to the survival function as follows, 

𝑆(𝑡) =  𝑒𝑥𝑝(−𝐻(𝑡))  𝑜𝑟  𝐻(𝑡) = −𝑙𝑜𝑔𝑆(𝑡). Survival models are built based on survival or hazard function 

and the two functions describe the survival experience of a population in a different way.  

 Kaplan – Meier 

Kaplan and Meier (1952) introduced a non-parametric procedure of estimating baseline survival function even 

in the presence of censored observations. It is a step function curve, with each step representing the occurrence 

of the event of interest. Kaplan – Meier (KM) Estimator also known as Product Limit Estimator at time t is 

given by 

𝑆0̂(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑛

𝑖:𝑡𝑖≤𝑡                                      (1) 

Where 𝑑𝑖 represents the number of employed graduates and 𝑛𝑖, the number of graduates at risk of getting 

employment at time 𝑡𝑖. 𝑆0(𝜆) is taken to be the unemployment fraction of the population of study where λ is 

the largest observed event (Maller and Zhao, 1996). The presence of cure subjects is portrayed in the KM 

curve by a long stable plateau at the extreme right tail of the curve.  

 

                                         Fig 1. Kaplan – Meier for the entire data 

The Kaplan Meier in fig 1 has shown the possibility of a cure fraction as such cure models are the appropriate 

models to use in analyzing the data. In this paper, Mixture Cure Model will be employed. 
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Log – Rank Test 

Log – rank is a test used alongside KM to find out if survival is significantly different in a categorical variable. 

For example, if gender significantly influence survival.  

Mixture Cure Model (MCM) 

Mixture cure model consists of two types of subjects, the cure and the uncured subjects. Here, the cure subjects 

are the number of graduates that will forever remain unemployed here refers as unemployment fraction while 

unsure refers to potential graduate employees. MCM described by survival function can be given by the 

following unconditional population survival function 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 𝑝𝑆𝑢(𝑡) + (1 − 𝑝)𝑆𝑠(𝑡)         (2) 

where 𝑆𝑠(𝑡) is the survival function of the potential employed graduates (susceptible) 

           𝑆𝑢(𝑡) is the survival function of the graduate’s unemployment fraction. 

           𝑃 is the probability of being unemployed 

           𝑇 is the Time – to – employment  

           𝑡 any specific time 

Given Y as an unemployment indicator (Y = 0, for unemployed graduate and Y = 1 employed graduate), 

𝑆𝑢(𝑡) = 𝑃(𝑇 > 𝑡/𝑌 = 0) = 1 , is a degenerate survival function (Peng and Yu, 2021), because it is certain 

that all cured subjects will survive beyond any time t. Therefore, 

𝑆(𝑡) = 𝑝 + (1 − 𝑝)𝑆𝑠(𝑡)                                     (3) 

This shows that, the MCM is a two-parts model, the part describing the probability of being unemployed called 

Incidence, and the part describing the distribution of the survival times of the potential employees called 

Latency. Therefore, MCM strategy involves harmonizing the two models representing the two parts. It is 

important to note that, the probability of being unemployed (Incidence part) and the survival function of the 

potential graduate employees (Latency part) can be influenced by similar or different covariates.  

The incidence part is always described by Bernoulli distribution, since the random variable Y is binary. Logit 

function will be used to link the effect of covariates (z) to the unemployment probability (𝑝). According to 

Farewell (1982), 𝑙𝑜𝑔𝑖𝑡[𝑝(𝑧)] = 𝑍′𝛾 where 𝑍′𝛾 are linear predictors and 𝛾 is the vector of the coefficients of z, 

therefore,  

𝑝(𝑧) = (
exp (𝑍′𝛾)

1+exp (𝑍′𝛾)
)                                            (4) 

In this paper, the latency part will be described using both CPH and Accelerated failure time assumptions. The 

resulting Mixture Cure Models would be called CPH MCM and AFT MCM. A distribution that is found to 

describe the time-to-employment data best would be the baseline distribution in the AFT MCM. 

Models of the latency part of the MCM/Survival Regression Models 

Here, two models will be considered; Accelerated Failure Time (AFT) Model and Cox Proportional Hazard 

Model (CPHM) 

Accelerated Failure Time (AFT) Model 

In AFT model, a covariate effect either accelerates or decelerates the time-to-failure by some constants. Here, a 

distribution is selected depending on how best it fits the time-to-event data. AFT allows measuring the direct 

effect of the covariates on the survival time. This makes interpretation of effect of covariate on the mean 

survival time easier (Gelfand, Mackinnon, DeRubeis and Baraldi, 2016). Table 1 gives the fit of five popular 

survival models to the employment data. Based on Log-Likelihood (LL) and AIC criterion, Weibull 

distribution fits the data best as such would be used in building the AFT MCM. 

https://rsisinternational.org/journals/ijriss/
https://rsisinternational.org/journals/ijriss/
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue XII December 2024 

www.rsisinternational.org 
Page 42 

 
 

 

 

An AFT model as a function of explanatory variables X’s can be given by the following equation 

ln(𝑇) = 𝜇 + 𝛽′𝑥 + 𝜎𝜖                                       (5) 

Where 𝜇 is the intercept, 𝛽′ = (𝛽1, ⋯ , 𝛽𝑝) a vector of regression coefficients, 𝜎 a scale parameter and 𝜖, an 

error term following a particular distribution. The choosing distribution of an error term give rise to a specific 

AFT regression model.  

Table 1 fit of some models using log-likelihood and AIC 

Model Log-likelihood AIC 

Exponential -747.63 1503.26 

Weibull -738.70 1477.40 

Lognormal -745.83 1501.66 

Logistic -764.77 1539.54 

Log-logistic -739.14 1488.28 

Weibull Accelerated Failure Time Mixture Cure Model (Weibull AFT MCM) 

Supposing 𝑋 is a vector of covariates that influence the survival time of the employed graduates (uncured sub-

population) and β is the vector of the coefficients in 𝑋, then based on Cox and Oakes (1984), the latency sub 

model (𝑆𝑠(𝑡/𝑥)) is given as the function of the survival function of a baseline distribution (𝑆𝑠0(𝑡)) and linear 

predictors (𝛽′𝑥), that is 

𝑆𝑠(𝑡/𝑥) =  𝑆𝑠0(𝑡𝑒−𝑥′𝛽)                                   (6) 

According to Peng and Yu (2021), 

 If 𝐿𝑜𝑔(𝑇/𝑌 = 1) = 𝑥′𝛽 + 𝜎𝜖                (7) 

With 𝜎 as a scale parameter and 𝜖 an error term satisfying 𝑃(𝑒𝜎𝜖 > 𝑡) = 𝑆𝑠0(𝑡) , then 𝑇/𝑌 = 1 will follow the 

model (6).   

With Weibull as the baseline distribution describing time-to-employment data, the error term (𝜖) is assumed to 

follow an extreme value distribution, as such the resulting AFT will be Weibull. Therefore, the survival 

function of the employment sub population following Weibull distribution given covariates Xs is given by 

𝑆𝑠(𝑡|𝑥) = exp [−(𝑡𝑒−𝑥′𝛽)
1

𝜎 ]                           (8) 

Therefore, our corresponding MCM is a Weibull AFT MCM given by  

𝑆(𝑡/𝑥) = 𝑝(𝑥) + (1 − 𝑝(𝑥))exp [−(𝑡𝑒−𝑥′𝛽)
1

𝜎 ]      (9) 

Here, the unemployment fraction, 𝑝(𝑥) = lim
𝑡→∞

𝑆(𝑡/𝑥) 

Cox Proportional Hazard Model (CPHM) 

Semi-parametric survival regression model known as Cox Proportional Hazard Model (Cox, 1972), is the 

popular survival regression model used to ascertain the influence of covariates on survival, modeled through 

hazard function. Here, effects of covariates are measured on the hazard instead of survival as in AFT model. 

Based on this model the hazard of getting employment of a graduate at time t with a given set of time-

independent explanatory variables x, is given by  

ℎ(𝑡|𝑥) = ℎ0(𝑡)exp (𝛽1𝑥1, 𝛽2𝑥2, … , 𝛽𝑝𝑥𝑝)  
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where ℎ0(𝑡) is called the baseline hazard function and β, the regression coefficient. 

CPHM as semi-parametric model makes no assumptions about the shape of the baseline hazard function. But 

irrespective of its shape, it is the same for everyone. The choice of CPHM is appropriate or even better if 

proportional assumption is satisfied, or if we are not confident about the shape of the baseline hazard. 

Proportional hazards assumption will be tested using Schoenfeld test procedure and subsequently select 

covariates to be used in the semi-parametric CPH mixture cure model. 

Cox Proportional Hazard Mixture Cure Model (CPH MCM) 

if 𝑋 is a vector of covariates that influence the survival time of the employed graduates (susceptible sub-

population) and β is the vector of the coefficients in 𝑋, then based on the proportional hazard assumption, then 

the latency part of the MCM is given as 

𝑆𝑠(𝑡/𝑥) =  𝑆𝑠0(𝑡)exp (𝑥′𝛽)  while the hazard function given by  

ℎ𝑠(𝑡/𝑥) =  ℎ𝑠0(𝑡)exp (𝛽′𝑥) and the corresponding CPH MCM is given by 

𝑆(𝑡/𝑥) = 𝑝(𝑥) + (1 − 𝑝(𝑥))𝑆𝑠0(𝑡)exp (𝑥′𝛽)       (10) 

Therefore, the cure fraction (𝑝(𝑥)) is obtain as    

lim
𝑡→∞

𝑆(𝑡/𝑥)      

Note that, the baseline survival/hazard function is unspecified as in the usual CPH model.                      

Model Assessment  

Models in this work will be compared based on either Loglikelihood (LL) or Akaike information criterion. 

Akaike (1974) proposed criterion to be used in selecting best model among both nested and non-nested 

models. The AIC used in this work is given by  

𝐴𝐼𝐶 = −2 log(𝐿) + 2(𝑘 + 𝑐)  

Here, L is the likelihood value, k, number of covariates in the model and c, the number of model-specific 

distributional parameters (Bradburn, Clark, Love and Altman, 2003). AIC is a measure of error and as such a 

model with lower AIC is preferred than the one with higher AIC. Unlike AIC, higher value of Loglikelihood 

indicates better model. All our models will be analyzed using functions in the R statistical software version 

4.0.4. 

RESULTS AND DISCUSSION 

Descriptive Statistics 

Table 1 has shown the distribution of our categorical demographic variables. Majority of the graduates 

aremales constituting about 87% while females are about 13%. With respect to gender, the employment 

percentage of males is higher while that of second-class upper is higher with respect to grade. Most of the 

students graduated with SCL degree. 

Table 2 Demographic variables 

covariates Sample Size (n) Employed (%) Unemployed (%) 

Gender 
   

Female 35 16 (45.7) 19 (54.3) 
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Male 238 125 (52.5) 113 (47.5) 

Grade 
   

First Class 6 4 (66.7) 2 (33.3) 

Second Class Upper 52 35 (67.3) 17 (32.7) 

Second Class Lower 142 63 (44.4) 79 (55.6) 

TC 73 39 (53.4) 34 (46.6) 

Kaplan Meier 

The Kaplan Meier in fig 1 has shown the possibility of an unemployment fraction. The estimated fraction is 

33.8% with a median survival time of 47 months as shown in table 3. KM was also constructed for gender (fig 

2) and grade (fig 3). As shown in table 3, the KM estimates of unemployment fraction is 47.7% for females 

and 32.9% for males. Based on the log-rank test, gender is not statistically significant (P = 0.8) in influencing 

time-to-employment. The KM estimate of unemployment fraction with respect to grade has shown that, SCL 

graduates has the highest unemployment proportion and SCU has the least. Grade is found to be significant in 

influencing time-to-employment based on the log-rank test (P = 0.0003), that means employment experience of 

a graduate is significantly determine by his/her grade of certificate. Table 3 has also given the result of 

Schoenfeld tests where both Gender and Grade were found to satisfy PH assumption at 5% level with P = 

0.067 and P = 0.46 respectively as such can be included in our models. The only continuous variable in the 

research, Age, also satisfied the PH assumption (P = 0.41).  Most researchers would not include variables that 

are not significant in either AFT or CPH Models (eg Gender), but we wish to include it here since we are 

dealing with cure models, this is because the nature or strength of its relationship with survival may change in 

the employment sub-population when cure is removed. In addition, we would like to know as part of our 

objectives whether a covariate also influences unemployment probability. Therefore, we wish to build the AFT 

and CPH Mixture Cure Models with each of the covariate as the sole explanatory variable. Since in literature 

researchers considers only non-cure survival regression models (CPH or AFT) to analyze time-to-employment 

data, we would also construct CPHM and AFTM comparison 

withtheirMCMcounterpart.ForcomparisonwiththeirMCMcounterpart.  

 

                                     Fig 2. Kaplan – Meier Survival Curves according to Gender 
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Fig 3. Kaplan – Meier Survival Curves according to Grade 

Table 3 KM estimate of Unemployment fraction, Log-rank and Schoenfeld tests 

Covariates 

Cure 

Fraction 

(%) 

Median 

Survival 

Time 

Log-rank Test 

(P-value) 
Remark 

PH 

Assumption 

(P-value) 

Remarks 

Entire 

Data 
33.8 47 - - - - 

Gender 
      

Female 47.7 45 P = 0.8 Not Sig 0.067 Satisfied 

Male 32.9 48 
    

Grade 
      

FC 33.3 25 
    

SCU 18.2 33 P = 0.0003 Sig 0.46 Satisfied 

SCL 41.6 51 
    

TC 33.3 49 
    

Age - - - - 0.41 Satisfied 

CPH MCM versus Weibull AFT MCM 

As shown in table 4, CPH MCM gives a closer estimate of unemployment fraction to the empirical estimate by 

Kaplan-Meier as well as lower AIC compared to Weibull AFT MCM. None of the covariates in the two 

models was found to significantly influence unemployment fraction. 

Table 5 compares CPH MCM and Weibull AFT MCM. All the regression parameters (coefficient) in CPH 

MCM are < 0. This means that, each of the reference group have higher hazard of getting employment than the 

group/s of interest. For example, females as the reference group have higher hazard as such get employment 

faster than males. The HR of 2.1778 implies that at any given point in time, the hazard of getting employment 

of females is 2.18 times that of males, or at any given point in time, females have about 118% more likely to 

get employment than males. More importantly the difference in survival with respect to gender is significant in 

the CPH MCM. Age was also significant in the CPH MCM, but grade was not significant.  

With respect to Weibull AFT MCM, all the regression parameters of the covariates are greater than zero. This 

means that, all the groups of interest have higher survival probability than the reference group. That is, they 

stay more in the labor market compared to the reference group. For example, at any given point in time, males 

have 1.58 times more likely to stay in labor market than females or males have to wait 1.58 times to get 

employment than females. But, none of the covariates (Gender, Grade and Age) is significant in influencing 

time-to-employment in the latency part of the Weibull AFT MCM. This can partly be attributed with the fact 
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that, Weibull AFT MCM could not effectively estimate cure fraction like CPH MCM, otherwise would have 

shown the significant influence of Age and Gender on time-to-employment of the susceptible sub population 

like was revealed by CPH MCM. None of the covariates in each of the models significantly influence the 

probability of unemployment in the incidence sub-model. 

Table 4 Cure Fraction Estimates from Cure models 

Model Kaplan-Meier CPH MCM 
 

Weibull AFT MCM 
 

Covariate Cure Fraction 
Cure 

Fraction 

P-

Value 
AIC 

Cure 

Fraction 

Entire 

Data 
33.8 28.6 - 1427.83 24.8 

Gender 
     

Female 47.7 47.5 
  

45.5 

Male 32.9 32.9 0.2215 1483.29 24.1 

Grade 
     

FC 33.3 31.6 
  

31.5 

SCU 18.2 16.9 0.9433 
 

8.64 

SCL 41.6 41.5 0.9859 
 

29.4 

TC 33.3 33.9 
  

24.9 

Age - - 0.5874 1425.21 - 

Table 5 Analysis of CPH MCM and Weibull AFT MCM 

Model Sub-Model Covariates Coefficients HR/TR SE(Coeff) P-Value 

CPH 

MCM 
Gender 

RG = Female, 

Male 
-0.7783 2.1778 0.3536 0.0277* 

 
Latency 

Grade RG = 

FC     

  
SCU -0.9028 2.4665 1.8425 0.6242 

  
SCL -1.3132 3.7181 1.8161 0.4696 

  
TC -1.5354 4.6432 1.8317 0.4019 

 
Age Continuous -0.1032 1.1088 0.0481 0.0317* 

 
Incidence 

     

 
Gender Male 

 
0.1738 

  

 
Grade SCU 

 
0.9017 

  

  
SCL 

 
0.9433 

  

  
TC 

 
0.9859 

  

 
Age Continuous 

 
0.5874 

  
WAFT 

MCM 
Gender 

RG = Female, 

Male 
0.4558 1.58 0.2824 0.1065 

 
Latency 

Grade RG = 

FC     
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SCU 0.6238 1.87 1.3112 0.6343 

  
SCL 0.8983 2.46 1.2994 0.4894 

  
TC 0.9165 2.5 1.3032 0.4819 

 
Age Continuous 0.0335 1.034 0.0285 0.2388 

 
Incidence 

     

 
Gender Male 

 
0.2215 

  

 
Grade SCU 

 
0.7912 

  

  
SCL 

 
0.9832 

  

  
TC 

 
0.9449 

  

 
Age Continuous 

 
0.482 

  

Note: For easier interpretation of HR, we swap reference group with group of interest 

(exp−(coefficient/loghazard)                

CPHM versus CPH MCM 

The regression parameter (coefficient) in both CPHM and CPH MCM for Gender is less than zero (Table 6). 

This means that, females as the reference group have higher hazard as such get employment faster than males. 

While females and males have almost similar hazard of getting employment in the CPHM (1.0574), the 

difference is large in CPH MCM (2.1778). More importantly the difference in survival with respect to gender 

is only significant in the CPH MCM. With respect to Grade all the regression parameters are less than zero in 

both CPHM and CPH MCM which implies higher hazard/chances of getting employment for FC graduates 

(reference group) compared to all other graduates. But the difference is only significant between FC and SCL 

graduates in the CPHM. Also like in gender, the difference in hazard of getting employment between FC and 

each of the other graduates increases when cure was removed as shown in table 6. For example, at any given 

point in time, FC graduates have over 170% more likely to get employment than the TC graduates in the 

CPHM, but the percentage difference is over 360 in the CPH MCM. 

Age is only significant in influencing employment in the CPH MCM with younger graduates having higher 

hazard of employment compared to older graduates. Here also, the hazard ratio is higher in the mixture model. 

We can see that, while a graduate who is one year younger has 5% more hazard of getting employment 

compared to a graduate who is one year older in non-cure model (CPH), the percentage more than doubles 

(11%) in the cure model (CPH MCM).   

Table 6 Analysis of CPH Model and CPH MCM 

Model 
Sub-

Model 

Covari

ates 

Coeffi

cients 

HR/T

R 

SE(Coeff

) 

P-

Value 

Coefficie

nts 

(MCM) 

HR 

(MCM

) 

SE(Co

eff) 

(MCM

) 

P-

Value 

(MC

M) 

CPHM 
Gende

r 

RG = 

Female, 

Male 

-

0.0558 
1.0574 0.2658 0.834 -0.7783 2.1778 0.3536 

0.027

7* 

Latenc

y 
Grade 

RG = 

FC         

  
SCU 

-

0.2977 
1.347 0.5339 0.5771 -0.9028 2.4665 1.8425 

0.624

2 

  
SCL 

-

1.0689 
2.912 0.5213 

0.0404

* 
-1.3132 3.7181 1.8161 

0.469

6 
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TC 

-

0.9972 
2.711 0.5317 0.0607 -1.5354 4.6432 1.8317 

0.401

9 

Age 
(Contin

uous)   

-

0.0528 
1.054 0.0458 0.2489 -0.1032 1.1088 0.0481 

0.031

7* 

Incide

nce 

Gende

r 
Male 

 
0.1738 

      

 
Grade SCU 

 
0.9017 

      

  
SCL 

 
0.9433 

      

  
TC 

 
0.9859 

      
Age 

   
0.5874 

      

Note: For easier interpretation of HR, we swap reference group with group of interest 

(exp−(coefficient/loghazard))               

CONCLUSION 

The analysis revealed that the unemployment proportion tends to inflate the time-to-employment function; 

therefore, when it is removed, the true influence of variables on time-to-employment functions emerges. The 

status may even change from insignificant to significant or vice versa, as we have seen in the CPH MCM with 

gender and age going from insignificant to significant and grade changing from significant to insignificant, 

respectively. This demonstrates the advantage of cure models in revealing the true effect of variables on 

survival. The findings may aid the government and other stakeholders in employment planning policies to 

avoid a high percentage of unemployment, which leads to poverty, and poverty leads to insecurity. The rising 

rate of unemployment, which affects all nations, may be linked to the current global degree of insecurity.  
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