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ABSTRACT 

 
Code smell indicates a poor implementation choice that affects software quality attributes (Pérez, 2013). 

Fowler (1999) also describes it as an internal code-level problem where the code becomes complex, the 

design broken, and eventually worsens software quality. Jose (2020) has reported that most applied existing 

approaches for code smells detection are search-based (30.1%), metric-based (24.1%), and symptom-based 

approaches (19.3%). However, these existing approaches can only apply to simpler detection; the greater the 

complexity of code smell, the lower the results for code smell detection (Mantyla M, 2004). Kessentini 

(2014) also has reported that detecting the problems of code smell is difficult and the performance is not 

effective using the existing approaches such as search-based, symptom-based, visualization-based, 

probabilistic, cooperative-based, manual, metrics-based, and rule-based. As a result, many of these 

approaches extend to the application of machine learning classifiers in software code smell detection. 

Fontana (2016) reported that a supervised machine learning strategy can be used to forecast the value of the 

dependent variable using machine learning classifiers to address the problem. In this project, we propose a 

machine learning supervised Gaussian processes algorithm for JAVA open-source code smell detection. The 

Gaussian process is a highly interpretable supervised machine learning algorithm used in regression testing 

to quantify prediction uncertainty. A code smell detection application prototype will be developed to 

implement the proposed work. The effectiveness of the proposed work in terms of detection accuracy will 

be evaluated further. 

 

Keywords: Code Smell, Machine Learning classifiers, regression testing, Gaussian Process 

 

INTRODUCTION 

The phrase “smell” refers to an inherent issue in software, either at the code level (Fowler, 1999) or higher, 

characterizing symptoms noticed in components that impede software progress. Code smells are breaches of 

code design principles (Fowler, 2019), and they contribute to technical debt, impacting programmed 

maintenance and evolution. It is indisputable that the notion of smells was originally adopted by the agile 

software development community as a means of pointing out flaws or areas for improvement. This phrase is 

now used in the industry to describe anomalies in software components. According to Jose (2020), the most 

widely used existing ways for detecting code smells are search-based (30.1%), metric-based (24.1%), and 

symptom-based approaches (19.3%). However, current methodologies can only be used for simple 

detection; the larger the complexity of the code smell, the worse the results for code smell detection 

(Mantyla, 2004). Kessentini (2014) also reported that detecting the problems of code smells is difficult and 

the performance is not effective using existing approaches such as search-based, symptom-based, 
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visualization-based, probabilistic, cooperative-based, manual, metrics-based, and rule-based. 

 

A search-based technique is utilized at each phase to develop a solution by selecting the local best option 

from a pool of possibilities. Others construct a neighborhood of viable solutions, which are obtained by 

modifying the search-based approach. The quality of the solutions is assessed, and a candidate solution is 

chosen to be the current one. When the halting conditions are met, the current solution is returned. The 

search-based method generates a large sequence of refactorings as one solution without explaining to 

developers how the various operations in the solution are dependent on each other in terms of fixing specific 

quality issues or improving fitness functions, which can affect developers’ trustworthiness in practice. 

 

Because the developer must either accept or reject the whole refactoring solution, the search-based method 

is restricted in its versatility. Furthermore, because development is halted during the refactoring process, 

fully automated refactoring methodologies are inappropriate for floss refactoring, where the goal is to 

maintain great design quality while modifying existing functionality. 

The simpler detection is requiring code inspection and human judgment and this unfeasible forlarge 

software systems. The detection of simpler CS used probabilistic, metric-based, symptom-based, and search- 

based are achieved precision and recall the detection techniques are very high. 

 

The major aim is to develop code smell detection application prototype to evaluate the effectiveness of 

detection. The code smell detection application prototype implement using gaussian process classifiers for 

God Class design smell detection in JSmell, which adding the gaussian process algorithms into JSmell tools. 

 

The experiment deals with the effectiveness of detection of God Class design detection in JSmell. The 

experiment is based on the research question which is RQ1: The effectiveness of code smell detection 

application prototype and existing application code smell detection? .RQ2: How does Gaussian process 

classifiers affect effectiveness to detect God Class code smell. We have formulated research questions in 

two hypotheses denoted as H0 and Ha. The following specify the null and alternative hypothesis. 

 H0: The equality of the effectiveness of prototype detection God Class and existing detection code 

smell tool. 

 Ha: The difference of the effectiveness of prototype detection God Class and existing detection code 

smell tool. 

 

LITERATURE REVIEW 

 
Fowler and Beck (Fowler, 2000) identified and proposed higher levels of bad code smells taxonomy for 

classifying the classes. The classes are bloaters, object-orientation abusers, change preventers, dispensables, 

encapsulators, and couplers. Bloaters are instances of code that have grown so huge that they can no longer 

be handled efficiently. The Bloater category includes Long Method, Large Class, Primitive Obsession, Long 

Parameter List, and Data Clumps. Categories of Object-Orientation abuser have switch statements, 

temporary field, refused bequest, Alternative classes with different interfaces, and parallel inheritance 

hierarchies. Because the Alternative Classes with Different Interfaces smell lacks a common interface for 

closely related classes, it can also be considered a sort of inheritance abuse. The Category of Change 

Preventers refers to code structures that hinder modification of the software. These categories include 

Divergent Change and Shotgun Surgery. The crucial point is that the classes and prospective modifications 

must have a one-to-one connection. Category of dispensables are Lazy Class, Data Class, Duplicate Code, 

and Speculative Generality. These code smells denote something that should be deleted from the code. 
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Classes that are not contributing enough must be deleted or their responsibilities enhanced. Category of 

Encapsulators are the Message chains and Middle Man. The fragrances in this category are opposites, which 

means that lowering one will cause the other to grow. Encapsulators deal with the objects, data, or 

operations that are accessed. Category of couplers which are feature envy and Inappropriate Intimacy. Both 

code smells indicate strong coupling, which is contrary to the object-oriented design principles. Of course, 

we might argue that these odours belong in the Object-Orientation Abusers category, but since they both 

focus solely on coupling. It appears obvious that the presence of some fragrances would correlate favorably 

with the presence of others, while others would correlate negatively. We identified negative connections 

only with the Primitive Obsession fragrance (Mika Mäntylä, 2003) in our small sample research, which had 

the greatest (r > 0.575) and most significant (p < 0.01) associations between the code smell. 

 

From Fernandes et al., only focused on tools rather than the techniques. However, Vale et al. take considers 

in the product lines and highlight the exist of the code smell using which techniques can be applied. The 

most used approaches to identifying refactoring opportunities are quality metrics-oriented, pre-condition 

oriented, and clustering oriented (Guilherme Lacerda, 2020). Fowler et al. define the 22 sets of symptoms of 

code smell that include large classes, feature envy, long parameter lists, and lazy classes (M. Fowler, 1999). 

In addition, Fowler provided 68 object-oriented refactoring techniques with the goal of reorganizing classes, 

methods, and variables for modifications and extensions for programmed maintenance (Martin Fowler, 

2002). 

 

A Literature Review on Code Smells and Refactoring is carried out, which investigates the significance of 

detecting and correcting code smells in terms of availability, relativity, scalability, unobtrusiveness, 

expressiveness, context sensitivity, and Rationality. Various code smells with varied symptoms have been 

explored in try to enhance detection and provide improvement suggestions. Each sort of code smell is 

followed by refactoring recommendations to eliminate it. The table below lists and discusses 22 distinct 

forms of code smells. 

 

Long methods are seen as a code smell because the more lines of code a method has, the more difficult it is 

for developers to comprehend and understand what the function does. Long methods are caused by the fact 

that it is easier to write code than to read it, resulting in more code being added over time without removing 

unneeded complexity (Aleksandar Kovačević, 2022). Long methods can be solved by breaking them down 

into smaller, more focused methods. It can replace the entire method with a new method object and 

decomposing sophisticated conditional logic. Long methods are regarded an anti-pattern in software 

development because they break concepts of modularity and make the code harder to comprehend and 

maintain. The metric threshold for detecting long method code smell is MLOC greater than 30, VG greater 

than 4, and NBD greater than 3, indicating that the lengthy method is large, complex, and has a high number 

of nested blocks (Priscila P. Souza, 2017). 

The code smell is detected in three steps. The first step is to use JFlex and Java to parse the source code. The 

second phase is Reification, which is essentially a defect definition based on the target system’s meta-model 

(Ra’ul Marticorena, 2005), and this procedure is used to capture high-level faults, and a repository is kept 

track of them. The detection method is designed and implemented as visitors on the meta-model as the final 

phase. 

Amal Alazba’s research provides actual evidence for software practitioners and machine learning engineers 

on the use of stacking ensemble applications in identifying code smells, hence influencing the software 

reworking process and the associated software quality assurance duties. The findings show that specialized 

classifiers, such as the Gaussian Process, Multilayer Perceptron, and Decision Trees, can detect most code 

smells (Aliamaan, 2021). 
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Heuristic techniques use detection criteria based on software metrics to discover code smells. The typical 

technique used by such approaches consists of two steps: identifying the primary symptoms that 

characterize a code smell and mapping them to a set of thresholds based on structural metrics. The second 

stage is to combine these symptoms to arrive at the final rule for detecting the code smell. Kreimer 

suggested a prediction model based on code metrics as independent variables that can lead to high levels of 

accuracy, as well as a decision tree to identify two Code smells (J. Kreimer, 2005). 

JSmell is a software tool that helps programmers to automatically detect bad smells in Java code (Moha, 

2007). This tool also displays a tree structure of the system’s source code breakdown. This tool assists the 

user in comprehending source code at a high level. JSmell (Roperia, 2009) is a C#-based Java fragrance 

detector. “Data Class,” “Message Chain,” “Primitive Obsession,” “Speculative Generality,” “Parallel 

Inheritance Hierarchy,” “Duplicate Code,” and “Comments” are among the seven code scents identified. It 

parses the code file with the ANTLR (ANother Tool for Language Recognition) parser and collects 

statistical information to identify the Smells. 

To detect a smell, JSmell comprises two steps. During the first phase, it parses all Java source code files and 

collects necessary information such as method declarations, variable declarations, and class names. It then 

utilizes this statistical data and parses all of the code again in the second phase to detect the scents present in 

each of them. This work aims to implement the Gaussian process classifiers for God Class design smell 

detection in JSmell, which adds the Gaussian process algorithms into JSmell tools. A God Class, sometimes 

known as a Blob, is a class that tends to centralize the majority of the system’s intellect and takes on a large 

number of tasks. It is distinguished by the existence of several characteristics, methods, and dependencies 

on data classes. 

The most of available approaches either reverse engineer the source code to discover design patterns or 

create tools to detect design patterns in source code (Detten, 2010). Although it is very simple to extract 

structural pieces from source code such as classes, attributes, methods, and translate them into graphs or 

other representations, but it has low accuracy and fails to forecast most design patterns successfully 

(Dongjin Yu, 2018). Simultaneously, extracting semantic (lexical) information from source code is difficult 

and has not yet been extensively tried in finding design patterns. 

Code smell detection is the process of finding code fragments that may violate the structure or semantic 

properties related to coupling and complexity. For example, in this scenario, it requires the internal 

attributes to define these properties and capture through software metrics and properties that can be 

expressed for following metrics. According to Fowler’s research, the code smell has been identified with the 

software refactoring. From a collection of previous work to detect the code smell that can using machine 

learning-based code approach and the hybrid-based code approach for software system. Due to the extended 

issues, parameter tuning in machine learning technique applied by using hybrid-based code approach to 

solve the issue. The hybrid-based code combines with meta-heuristic technique and algorithm to find the 

code smell occur. 

Machine learning technique can help to differentiate the characteristics of code smell and non-code smell of 

source code. To exist of machine learning technique, the proposed of the multi-label classification methods 

to find the code smell for affected by the multiple type of code smell (Guggulothu, 2020). The author uses 

the dataset that converted into multi-label dataset from the two-code smell dataset, and it show the positive 

correlation among code smell are the long method and feature envy. The manual static code analysis code 

smell in Machine learning application and using 74 from open-source project and run on Pylint by using 

manual analysis to show the code smell are detected in duplicate occurs occurs (vanOort, 2021). 

The multi-criteria approach provided here is designed to facilitate generalization to other scents, but efforts 
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should be taken to validate and adjust to those other smells. Establishing precedence among different types 

of code smell is outside the scope of this investigation. The method is broken down into five steps. 

 

In the initial phase, we randomly selected a group of Java software projects, with the source code acting as 

the approach’s input. The projects chosen differed in size and scope. They were taken from the Source 

Forge repository (Khalid Alkharabsheh, 2022), which is one of the most well-known open-source 

repositories. The next step is Multiple smell detectors are employed to analyze the source code of the target 

version of the software. Several tools were employed to detect God Classes. We chose a collection of tools 

that were frequently referenced and used in the context. Furthermore, they have a high precision of God 

class detection (Khalid Alkharabsheh, 2022). 

 

The output of each tool will be incorporated into the preliminary list of God classes received from all tools 

(union set) in this stage after the software systems have been analyzed in the previous step. In the fourth 

stage, some of the parameters for each God Class in the union set for each of the three criteria are computed, 

which is regarded as the heart of the proposed approach. The examined aspects focus on code stability, 

maintainability, and developer evaluation. First, the historical information criterion is used to assess the 

stability of the classes on the target version. For this reason, a sample of prior versions should be studied. 

Furthermore, the maintainability element is evaluated by taking into account the density and severity of 

odors in the target version. Finally, the God class list is prioritized and retrieved. 

 

To choose the tools, we used a list of criteria that included being available and free, being common in God 

class identification, analyzing Java source code, and having good detection accuracy. The chosen tools were 

the most referenced in works relevant to the activity of design scent detection, according to our systematic 

mapping study on design smell detection, released in 2019 (Class, 2018). To detect the God class, the 

selected tools used a variety of methodologies. The strategies were developed using specific definitions of 

the God class. The use of different detection algorithms will raise the total number of God classes in the 

dataset while minimizing the threats to construct validity. 

 

METHODOLOGY 

 

The open-source tool Designite Java includes code smells categorized into two categories: design smells and 

implementation smells. Design smells cover 17 categories, while implementation smells cover 10 to detect 

the code smells. Designite Java comes with a command line to input the command to run the application. 

 

 
 

Figure 3.1. Designite Java Process 
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In the third step of extracting metrics, the thresholds of each code smell are extracted. After extracting 

metrics, code smells are extracted by using the thresholds and saved to a CSV file record. The process is 

done with 4 steps. 

Designite Java application detects the 10 implementation code smells that do not include comments code 

smell. We add two code smells which are comments code smell and God Class code smell. Comments code 

smell can detect the single-line and multiple-line comments in a Java file. To detect comments code smells, 

we add a regular pattern to match specific types of comments. The regular pattern is shown in the table. 
 

Single Comments //[^\r\n]* 

Multi Comments /\\*[\\s\\S]*?\\*/ 

String Comments \”(?:\\\\.|[^\\\\\”\r\n])*\” 

Character Comments ‘(?:\\\\.|[^\\\\’\r\n])+’ 

Any of comments [\\s\\S] 

Table3.1.Regular Pattern of Comments Code Smell 

The comments code smell did not need have threshold and formula to detect comments. To apply all pattern, 

we use the java compile function to detect all regular pattern and match to write it to output file. 

 
 

Figure 3.2. Compile Library Function 

Compile function is built in java function to compile the pattern of regular pattern. To try read java file first 

and compare the regular pattern, the true Boolean which match with pattern, it list in text file. 

 

Below is the equation showing the formula and states the thresholds for detecting the God class (GC). 

 

 

Figure 3.3. God Class Thresholds Formula 
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WMC is the weight method count which sum of the cyclomatic complexity of all methods in class. TCC is 

the relative number of directly connected to methods in class. ATFD is the accessed to foreign data which 

the number of attributes of foreign classes or via the accessor methods. 

 

To calculate the tight class cohesion which formula of below: 

TCC= NDC/NP 

 

NP is the maximum number for possible connections which N is numbers of methods. The number of 

methods is calculated as the equation of N * (N – 1). The NDC denotes the number of direct connections, 

which corresponds to the number of edges in the connection graph. A pair of public methods shares an 

attribute directly if both methods reference the attribute and transitively if one of the two methods does not 

reference the attribute but directly or transitively calls a method that does. The open-source code of 

Designite Java application is a command-based line. To run the application using command to debug whole 

application. After debugging, we need to click the output to review results. 

 

 
 

Figure 3.4. Threshold God Class 

The threshold for God Class defined in threshold class and it call the function getter and setter for weight 

method count, tight class cohesion and access foreign data. 
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Figure 3.5. Compare Number of God Class 

 

The number of weight method count, tight class cohesion, and access foreign data compare the threshold. 

The number is exceeding the threshold, it counts as God Class categories. 

 

 

Figure 3.6. Graphic User Interface Code Detection 

The graphics user interface shows the steps to click button from steps 1 to 3. First step to compile 

applications. Compile program to install and build jar application. The progress bar shows the completed of 

debug applications. Step 2 is run application and show the process for extracting code smells. The done 

message show completed process after parsing source code, resolving symbols, extracting metrics, and 

extracting code smells. Last step, we did not need to open output result in folder. The click button of open 

CSV file will open file to show implementation code smells. 

 

RESULTS 

After running the application, the comments code smell detected and saved the information in text file 

format. 

The detection of comments code smell detects single and multiline of comments in Java file. 

The output of detection God Class code smell save in CSV file format. The detection of code smell detects 

line by line of code which list the method, package, and the class of java. 
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Figure 5.2. God Class Code Smell Output 

Besides that God class code smell, the other code smell is detected and recorded. 

 

ANALSYSIS 

To evaluate the effectiveness of detection of God Class, we use the open-source project version. Below 

shows the list of open-source project with version and the number of God class detect with existing 

detection tool. 

Each project was assigned two versions: the target version and the previous version (Khalid Alkharabsheh, 

2022). The table’s last column displays the number of classes added to or removed from the previous 

version of the software projects. This number may be used to show code improvement by deleting classes or 

separating complicated or huge classes (God Class) into two or more classes, hence reducing the overall 

number of classes. 
 

Project Name Version 
Number of God Class 

Detected 

Angry IP Scanner 3.5 4 

Apeiron 2.94 9 

Check style 8.0.0 9 

Digi Extractor 2.5.2 36 

Free mind 1.1.0 62 

Table 6.1 Latest Version of Project Source Code. 

We use the same version of open-source to test the prototype of code smell detection to detect the number of 
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God class. 

The data has been collected to test the hypothesis as listed in table. 

The evaluation is shown in the table below, with the negative numbers representing distinct numbers 

detected on the God class. The existing detection technique can only detect the class, but prototyping 

detection can identify the god class. The difference in number is derived by subtracting the prototype 

detection tools from the existing detection tools. Negative values indicate that the God class has been 

detected. To calculate the effectiveness, divide the protype detection number by the existing detection 

number plus the prototype detection. 

As an example, (1/5) *100 equals 20%. The rest of the class is at 80 percent. 20 percent is the detection of 

god class, and thus demonstrates the usefulness of scanning the complexity of the Java source code file.  
 

Project Name Angry IP Scanner Apeiron Check style Digi Extractor Free mind 

Existing Detection Tools 4 9 9 36 62 

Prototype Detection Tools 1 2 46 3 58 

Different -3 -7 37 -33 -4 

Table 6.3 Different number of God Class Detection 

 

The paired-sample t-test, also known as the dependent sample t-test, is a statistical process used to 

determine if the mean difference between two sets of data is zero. 

 

 
 

Figure 6.1. Distribution of Two Tails 

The p-value equals 0.867, (P (x≤-0.1785) = 0.4335). The larger the p-value the more it supports H0 and it 

show the high percentage. Since the p-value > α, H0 cannot be rejected. 
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The paired sample t-test, also known as the dependent sample t-test, is a statistical process used to determine 

if the mean difference between two sets of data is zero. The p-value equals 0.867, (P(x≤-0.1785) = 0.4335). 

The larger the p-value the more it supports H0 and it show the high percentage. Since the p-value > α, H0 

cannot be rejected. 

 

CONCLUSION AND DISCUSSION 

The prototype detection application did not cover all 22 code smells, only 11 of them. The output contains a 

list of method names, class names, and code smell. The goal is to detect the God class code smell and 

classify the number of God classes using a machine learning algorithm. Aside from the God class code 

smell, the comments code smell is included, as is the use of the pattern to discover multiline and single 

comments. The comments code smell is saved as a text file, while the God class code smell is saved as a csv 

file. 

After running and debugging the application, the information saved in the csv file is overwritten. The 

prototype application improved command line-based applications by adding a graphical user interface. The 

limitation is this prototype application only can detect java file or java source code and this application build 

in java platform. The open-source project code compares existing detection tools and prototype detection 

tools to the most recent version. Because the runtime is longer and stuck to detect a large number of files 

and directories, the open-source project code is downloaded from source forge and GitHub repository and 

input into prototype detection tools one by one. 

We comparison with existing approaches to code smell detection for highlighting the strengths and 

weaknesses. 

Existing Approach: 

Strengths: 

 Can detect a large number of code smells in a file, providing comprehensive coverage. 

 Faster runtime, presumably due to simpler detection methods. 

Weaknesses: 

 Detection accuracy is lacking, potentially leading to false positives or negatives. 

 Only shows the numbers of code smells without providing detailed information about the classes 

affected. 

Current Approach (With Classifiers Algorithm): 

Strengths: 

 Can detect code smells at both the directory and file levels, offering a broader perspective on code 

quality. 

 Provides detailed information, including class names and the number of code smells, in a CSV file, 

aiding in further analysis. 

Weaknesses: 

 Longer runtime compared to the existing approach, likely due to the file and directory. 

http://www.rsisinternational.org/


Page 900 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024 

www.rsisinternational.org 

 

 

 

The file should include the java source code, which has the extension java file. To build the code, it should 

look for duplicate classes in another java file. Because it can detect the god class in many files and duplicate 

the class, hence increasing the number of detections. 

The major aim is to develop code smell detection application prototype to evaluate the effectiveness of 

detection God Class. The hypothesis testing as below: 

𝐻0 : 𝑈𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 −   𝑈𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = 0  

𝐻𝑎 : 𝑈𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 −   𝑈𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒  ≠ 0 

As the results show the p-value equals 0.867, (P(x ≤ -0.1785) = 0.4335). The larger the p-value the more it 

supports null hypothesis and it show the high percentage. Conclusion that the existing and prototype 

detection tools are equal effectiveness and also show that strong evidence that cannot reject null hypothesis. 
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