
Page 889

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

Code Smell Detection using Machine Learning Classification

Algorithm

Law Teng Yi

Faculty of Computer Science and Information Technology, New Era University College,

Kajang, Malaysia

DOI: https://dx.doi.org/10.47772/IJRISS.2024.805063

Received: 22 April 2024; Revised: 01 May 2024; Accepted: 06 May 2024; Published: 05 June 2024

ABSTRACT

Code smell indicates a poor implementation choice that affects software quality attributes (Pérez, 2013).

Fowler (1999) also describes it as an internal code-level problem where the code becomes complex, the

design broken, and eventually worsens software quality. Jose (2020) has reported that most applied existing

approaches for code smells detection are search-based (30.1%), metric-based (24.1%), and symptom-based

approaches (19.3%). However, these existing approaches can only apply to simpler detection; the greater the

complexity of code smell, the lower the results for code smell detection (Mantyla M, 2004). Kessentini

(2014) also has reported that detecting the problems of code smell is difficult and the performance is not

effective using the existing approaches such as search-based, symptom-based, visualization-based,

probabilistic, cooperative-based, manual, metrics-based, and rule-based. As a result, many of these

approaches extend to the application of machine learning classifiers in software code smell detection.

Fontana (2016) reported that a supervised machine learning strategy can be used to forecast the value of the

dependent variable using machine learning classifiers to address the problem. In this project, we propose a

machine learning supervised Gaussian processes algorithm for JAVA open-source code smell detection. The

Gaussian process is a highly interpretable supervised machine learning algorithm used in regression testing

to quantify prediction uncertainty. A code smell detection application prototype will be developed to

implement the proposed work. The effectiveness of the proposed work in terms of detection accuracy will

be evaluated further.

Keywords: Code Smell, Machine Learning classifiers, regression testing, Gaussian Process

INTRODUCTION

The phrase “smell” refers to an inherent issue in software, either at the code level (Fowler, 1999) or higher,

characterizing symptoms noticed in components that impede software progress. Code smells are breaches of

code design principles (Fowler, 2019), and they contribute to technical debt, impacting programmed

maintenance and evolution. It is indisputable that the notion of smells was originally adopted by the agile

software development community as a means of pointing out flaws or areas for improvement. This phrase is

now used in the industry to describe anomalies in software components. According to Jose (2020), the most

widely used existing ways for detecting code smells are search-based (30.1%), metric-based (24.1%), and

symptom-based approaches (19.3%). However, current methodologies can only be used for simple

detection; the larger the complexity of the code smell, the worse the results for code smell detection

(Mantyla, 2004). Kessentini (2014) also reported that detecting the problems of code smells is difficult and

the performance is not effective using existing approaches such as search-based, symptom-based,

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/
https://dx.doi.org/10.47772/IJRISS.2024.805063

Page 890

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

visualization-based, probabilistic, cooperative-based, manual, metrics-based, and rule-based.

A search-based technique is utilized at each phase to develop a solution by selecting the local best option

from a pool of possibilities. Others construct a neighborhood of viable solutions, which are obtained by

modifying the search-based approach. The quality of the solutions is assessed, and a candidate solution is

chosen to be the current one. When the halting conditions are met, the current solution is returned. The

search-based method generates a large sequence of refactorings as one solution without explaining to

developers how the various operations in the solution are dependent on each other in terms of fixing specific

quality issues or improving fitness functions, which can affect developers’ trustworthiness in practice.

Because the developer must either accept or reject the whole refactoring solution, the search-based method

is restricted in its versatility. Furthermore, because development is halted during the refactoring process,

fully automated refactoring methodologies are inappropriate for floss refactoring, where the goal is to

maintain great design quality while modifying existing functionality.

The simpler detection is requiring code inspection and human judgment and this unfeasible forlarge

software systems. The detection of simpler CS used probabilistic, metric-based, symptom-based, and search-

based are achieved precision and recall the detection techniques are very high.

The major aim is to develop code smell detection application prototype to evaluate the effectiveness of

detection. The code smell detection application prototype implement using gaussian process classifiers for

God Class design smell detection in JSmell, which adding the gaussian process algorithms into JSmell tools.

The experiment deals with the effectiveness of detection of God Class design detection in JSmell. The

experiment is based on the research question which is RQ1: The effectiveness of code smell detection

application prototype and existing application code smell detection? .RQ2: How does Gaussian process

classifiers affect effectiveness to detect God Class code smell. We have formulated research questions in

two hypotheses denoted as H0 and Ha. The following specify the null and alternative hypothesis.

 H0: The equality of the effectiveness of prototype detection God Class and existing detection code

smell tool.

 Ha: The difference of the effectiveness of prototype detection God Class and existing detection code

smell tool.

LITERATURE REVIEW

Fowler and Beck (Fowler, 2000) identified and proposed higher levels of bad code smells taxonomy for

classifying the classes. The classes are bloaters, object-orientation abusers, change preventers, dispensables,

encapsulators, and couplers. Bloaters are instances of code that have grown so huge that they can no longer

be handled efficiently. The Bloater category includes Long Method, Large Class, Primitive Obsession, Long

Parameter List, and Data Clumps. Categories of Object-Orientation abuser have switch statements,

temporary field, refused bequest, Alternative classes with different interfaces, and parallel inheritance

hierarchies. Because the Alternative Classes with Different Interfaces smell lacks a common interface for

closely related classes, it can also be considered a sort of inheritance abuse. The Category of Change

Preventers refers to code structures that hinder modification of the software. These categories include

Divergent Change and Shotgun Surgery. The crucial point is that the classes and prospective modifications

must have a one-to-one connection. Category of dispensables are Lazy Class, Data Class, Duplicate Code,

and Speculative Generality. These code smells denote something that should be deleted from the code.

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/

Page 891

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

Classes that are not contributing enough must be deleted or their responsibilities enhanced. Category of

Encapsulators are the Message chains and Middle Man. The fragrances in this category are opposites, which

means that lowering one will cause the other to grow. Encapsulators deal with the objects, data, or

operations that are accessed. Category of couplers which are feature envy and Inappropriate Intimacy. Both

code smells indicate strong coupling, which is contrary to the object-oriented design principles. Of course,

we might argue that these odours belong in the Object-Orientation Abusers category, but since they both

focus solely on coupling. It appears obvious that the presence of some fragrances would correlate favorably

with the presence of others, while others would correlate negatively. We identified negative connections

only with the Primitive Obsession fragrance (Mika Mäntylä, 2003) in our small sample research, which had

the greatest (r > 0.575) and most significant (p < 0.01) associations between the code smell.

From Fernandes et al., only focused on tools rather than the techniques. However, Vale et al. take considers

in the product lines and highlight the exist of the code smell using which techniques can be applied. The

most used approaches to identifying refactoring opportunities are quality metrics-oriented, pre-condition

oriented, and clustering oriented (Guilherme Lacerda, 2020). Fowler et al. define the 22 sets of symptoms of

code smell that include large classes, feature envy, long parameter lists, and lazy classes (M. Fowler, 1999).

In addition, Fowler provided 68 object-oriented refactoring techniques with the goal of reorganizing classes,

methods, and variables for modifications and extensions for programmed maintenance (Martin Fowler,

2002).

A Literature Review on Code Smells and Refactoring is carried out, which investigates the significance of

detecting and correcting code smells in terms of availability, relativity, scalability, unobtrusiveness,

expressiveness, context sensitivity, and Rationality. Various code smells with varied symptoms have been

explored in try to enhance detection and provide improvement suggestions. Each sort of code smell is

followed by refactoring recommendations to eliminate it. The table below lists and discusses 22 distinct

forms of code smells.

Long methods are seen as a code smell because the more lines of code a method has, the more difficult it is

for developers to comprehend and understand what the function does. Long methods are caused by the fact

that it is easier to write code than to read it, resulting in more code being added over time without removing

unneeded complexity (Aleksandar Kovačević, 2022). Long methods can be solved by breaking them down

into smaller, more focused methods. It can replace the entire method with a new method object and

decomposing sophisticated conditional logic. Long methods are regarded an anti-pattern in software

development because they break concepts of modularity and make the code harder to comprehend and

maintain. The metric threshold for detecting long method code smell is MLOC greater than 30, VG greater

than 4, and NBD greater than 3, indicating that the lengthy method is large, complex, and has a high number

of nested blocks (Priscila P. Souza, 2017).

The code smell is detected in three steps. The first step is to use JFlex and Java to parse the source code. The

second phase is Reification, which is essentially a defect definition based on the target system’s meta-model

(Ra’ul Marticorena, 2005), and this procedure is used to capture high-level faults, and a repository is kept

track of them. The detection method is designed and implemented as visitors on the meta-model as the final

phase.

Amal Alazba’s research provides actual evidence for software practitioners and machine learning engineers

on the use of stacking ensemble applications in identifying code smells, hence influencing the software

reworking process and the associated software quality assurance duties. The findings show that specialized

classifiers, such as the Gaussian Process, Multilayer Perceptron, and Decision Trees, can detect most code

smells (Aliamaan, 2021).

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/

Page 892

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

Heuristic techniques use detection criteria based on software metrics to discover code smells. The typical

technique used by such approaches consists of two steps: identifying the primary symptoms that

characterize a code smell and mapping them to a set of thresholds based on structural metrics. The second

stage is to combine these symptoms to arrive at the final rule for detecting the code smell. Kreimer

suggested a prediction model based on code metrics as independent variables that can lead to high levels of

accuracy, as well as a decision tree to identify two Code smells (J. Kreimer, 2005).

JSmell is a software tool that helps programmers to automatically detect bad smells in Java code (Moha,

2007). This tool also displays a tree structure of the system’s source code breakdown. This tool assists the

user in comprehending source code at a high level. JSmell (Roperia, 2009) is a C#-based Java fragrance

detector. “Data Class,” “Message Chain,” “Primitive Obsession,” “Speculative Generality,” “Parallel

Inheritance Hierarchy,” “Duplicate Code,” and “Comments” are among the seven code scents identified. It

parses the code file with the ANTLR (ANother Tool for Language Recognition) parser and collects

statistical information to identify the Smells.

To detect a smell, JSmell comprises two steps. During the first phase, it parses all Java source code files and

collects necessary information such as method declarations, variable declarations, and class names. It then

utilizes this statistical data and parses all of the code again in the second phase to detect the scents present in

each of them. This work aims to implement the Gaussian process classifiers for God Class design smell

detection in JSmell, which adds the Gaussian process algorithms into JSmell tools. A God Class, sometimes

known as a Blob, is a class that tends to centralize the majority of the system’s intellect and takes on a large

number of tasks. It is distinguished by the existence of several characteristics, methods, and dependencies

on data classes.

The most of available approaches either reverse engineer the source code to discover design patterns or

create tools to detect design patterns in source code (Detten, 2010). Although it is very simple to extract

structural pieces from source code such as classes, attributes, methods, and translate them into graphs or

other representations, but it has low accuracy and fails to forecast most design patterns successfully

(Dongjin Yu, 2018). Simultaneously, extracting semantic (lexical) information from source code is difficult

and has not yet been extensively tried in finding design patterns.

Code smell detection is the process of finding code fragments that may violate the structure or semantic

properties related to coupling and complexity. For example, in this scenario, it requires the internal

attributes to define these properties and capture through software metrics and properties that can be

expressed for following metrics. According to Fowler’s research, the code smell has been identified with the

software refactoring. From a collection of previous work to detect the code smell that can using machine

learning-based code approach and the hybrid-based code approach for software system. Due to the extended

issues, parameter tuning in machine learning technique applied by using hybrid-based code approach to

solve the issue. The hybrid-based code combines with meta-heuristic technique and algorithm to find the

code smell occur.

Machine learning technique can help to differentiate the characteristics of code smell and non-code smell of

source code. To exist of machine learning technique, the proposed of the multi-label classification methods

to find the code smell for affected by the multiple type of code smell (Guggulothu, 2020). The author uses

the dataset that converted into multi-label dataset from the two-code smell dataset, and it show the positive

correlation among code smell are the long method and feature envy. The manual static code analysis code

smell in Machine learning application and using 74 from open-source project and run on Pylint by using

manual analysis to show the code smell are detected in duplicate occurs occurs (vanOort, 2021).

The multi-criteria approach provided here is designed to facilitate generalization to other scents, but efforts

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/

Page 893

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

should be taken to validate and adjust to those other smells. Establishing precedence among different types

of code smell is outside the scope of this investigation. The method is broken down into five steps.

In the initial phase, we randomly selected a group of Java software projects, with the source code acting as

the approach’s input. The projects chosen differed in size and scope. They were taken from the Source

Forge repository (Khalid Alkharabsheh, 2022), which is one of the most well-known open-source

repositories. The next step is Multiple smell detectors are employed to analyze the source code of the target

version of the software. Several tools were employed to detect God Classes. We chose a collection of tools

that were frequently referenced and used in the context. Furthermore, they have a high precision of God

class detection (Khalid Alkharabsheh, 2022).

The output of each tool will be incorporated into the preliminary list of God classes received from all tools

(union set) in this stage after the software systems have been analyzed in the previous step. In the fourth

stage, some of the parameters for each God Class in the union set for each of the three criteria are computed,

which is regarded as the heart of the proposed approach. The examined aspects focus on code stability,

maintainability, and developer evaluation. First, the historical information criterion is used to assess the

stability of the classes on the target version. For this reason, a sample of prior versions should be studied.

Furthermore, the maintainability element is evaluated by taking into account the density and severity of

odors in the target version. Finally, the God class list is prioritized and retrieved.

To choose the tools, we used a list of criteria that included being available and free, being common in God

class identification, analyzing Java source code, and having good detection accuracy. The chosen tools were

the most referenced in works relevant to the activity of design scent detection, according to our systematic

mapping study on design smell detection, released in 2019 (Class, 2018). To detect the God class, the

selected tools used a variety of methodologies. The strategies were developed using specific definitions of

the God class. The use of different detection algorithms will raise the total number of God classes in the

dataset while minimizing the threats to construct validity.

METHODOLOGY

The open-source tool Designite Java includes code smells categorized into two categories: design smells and

implementation smells. Design smells cover 17 categories, while implementation smells cover 10 to detect

the code smells. Designite Java comes with a command line to input the command to run the application.

Figure 3.1. Designite Java Process

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/

Page 894

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

In the third step of extracting metrics, the thresholds of each code smell are extracted. After extracting

metrics, code smells are extracted by using the thresholds and saved to a CSV file record. The process is

done with 4 steps.

Designite Java application detects the 10 implementation code smells that do not include comments code

smell. We add two code smells which are comments code smell and God Class code smell. Comments code

smell can detect the single-line and multiple-line comments in a Java file. To detect comments code smells,

we add a regular pattern to match specific types of comments. The regular pattern is shown in the table.

Single Comments //[^\r\n]*

Multi Comments /*[\\s\\S]*?*/

String Comments \”(?:\\\\.|[^\\\\\”\r\n])*\”

Character Comments ‘(?:\\\\.|[^\\\\’\r\n])+’

Any of comments [\\s\\S]

Table3.1.Regular Pattern of Comments Code Smell

The comments code smell did not need have threshold and formula to detect comments. To apply all pattern,

we use the java compile function to detect all regular pattern and match to write it to output file.

Figure 3.2. Compile Library Function

Compile function is built in java function to compile the pattern of regular pattern. To try read java file first

and compare the regular pattern, the true Boolean which match with pattern, it list in text file.

Below is the equation showing the formula and states the thresholds for detecting the God class (GC).

Figure 3.3. God Class Thresholds Formula

http://www.rsisinternational.org/

Page 895

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

WMC is the weight method count which sum of the cyclomatic complexity of all methods in class. TCC is

the relative number of directly connected to methods in class. ATFD is the accessed to foreign data which

the number of attributes of foreign classes or via the accessor methods.

To calculate the tight class cohesion which formula of below:

TCC= NDC/NP

NP is the maximum number for possible connections which N is numbers of methods. The number of

methods is calculated as the equation of N * (N – 1). The NDC denotes the number of direct connections,

which corresponds to the number of edges in the connection graph. A pair of public methods shares an

attribute directly if both methods reference the attribute and transitively if one of the two methods does not

reference the attribute but directly or transitively calls a method that does. The open-source code of

Designite Java application is a command-based line. To run the application using command to debug whole

application. After debugging, we need to click the output to review results.

Figure 3.4. Threshold God Class

The threshold for God Class defined in threshold class and it call the function getter and setter for weight

method count, tight class cohesion and access foreign data.

http://www.rsisinternational.org/

Page 896

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

Figure 3.5. Compare Number of God Class

The number of weight method count, tight class cohesion, and access foreign data compare the threshold.

The number is exceeding the threshold, it counts as God Class categories.

Figure 3.6. Graphic User Interface Code Detection

The graphics user interface shows the steps to click button from steps 1 to 3. First step to compile

applications. Compile program to install and build jar application. The progress bar shows the completed of

debug applications. Step 2 is run application and show the process for extracting code smells. The done

message show completed process after parsing source code, resolving symbols, extracting metrics, and

extracting code smells. Last step, we did not need to open output result in folder. The click button of open

CSV file will open file to show implementation code smells.

RESULTS

After running the application, the comments code smell detected and saved the information in text file

format.

The detection of comments code smell detects single and multiline of comments in Java file.

The output of detection God Class code smell save in CSV file format. The detection of code smell detects

line by line of code which list the method, package, and the class of java.

http://www.rsisinternational.org/

Page 897

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

Figure 5.2. God Class Code Smell Output

Besides that God class code smell, the other code smell is detected and recorded.

ANALSYSIS

To evaluate the effectiveness of detection of God Class, we use the open-source project version. Below

shows the list of open-source project with version and the number of God class detect with existing

detection tool.

Each project was assigned two versions: the target version and the previous version (Khalid Alkharabsheh,

2022). The table’s last column displays the number of classes added to or removed from the previous

version of the software projects. This number may be used to show code improvement by deleting classes or

separating complicated or huge classes (God Class) into two or more classes, hence reducing the overall

number of classes.

Project Name Version
Number of God Class

Detected

Angry IP Scanner 3.5 4

Apeiron 2.94 9

Check style 8.0.0 9

Digi Extractor 2.5.2 36

Free mind 1.1.0 62

Table 6.1 Latest Version of Project Source Code.

We use the same version of open-source to test the prototype of code smell detection to detect the number of

http://www.rsisinternational.org/

Page 898

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

God class.

The data has been collected to test the hypothesis as listed in table.

The evaluation is shown in the table below, with the negative numbers representing distinct numbers

detected on the God class. The existing detection technique can only detect the class, but prototyping

detection can identify the god class. The difference in number is derived by subtracting the prototype

detection tools from the existing detection tools. Negative values indicate that the God class has been

detected. To calculate the effectiveness, divide the protype detection number by the existing detection

number plus the prototype detection.

As an example, (1/5) *100 equals 20%. The rest of the class is at 80 percent. 20 percent is the detection of

god class, and thus demonstrates the usefulness of scanning the complexity of the Java source code file.

Project Name Angry IP Scanner Apeiron Check style Digi Extractor Free mind

Existing Detection Tools 4 9 9 36 62

Prototype Detection Tools 1 2 46 3 58

Different -3 -7 37 -33 -4

Table 6.3 Different number of God Class Detection

The paired-sample t-test, also known as the dependent sample t-test, is a statistical process used to

determine if the mean difference between two sets of data is zero.

Figure 6.1. Distribution of Two Tails

The p-value equals 0.867, (P (x≤-0.1785) = 0.4335). The larger the p-value the more it supports H0 and it

show the high percentage. Since the p-value > α, H0 cannot be rejected.

http://www.rsisinternational.org/

Page 899

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

The paired sample t-test, also known as the dependent sample t-test, is a statistical process used to determine

if the mean difference between two sets of data is zero. The p-value equals 0.867, (P(x≤-0.1785) = 0.4335).

The larger the p-value the more it supports H0 and it show the high percentage. Since the p-value > α, H0

cannot be rejected.

CONCLUSION AND DISCUSSION

The prototype detection application did not cover all 22 code smells, only 11 of them. The output contains a

list of method names, class names, and code smell. The goal is to detect the God class code smell and

classify the number of God classes using a machine learning algorithm. Aside from the God class code

smell, the comments code smell is included, as is the use of the pattern to discover multiline and single

comments. The comments code smell is saved as a text file, while the God class code smell is saved as a csv

file.

After running and debugging the application, the information saved in the csv file is overwritten. The

prototype application improved command line-based applications by adding a graphical user interface. The

limitation is this prototype application only can detect java file or java source code and this application build

in java platform. The open-source project code compares existing detection tools and prototype detection

tools to the most recent version. Because the runtime is longer and stuck to detect a large number of files

and directories, the open-source project code is downloaded from source forge and GitHub repository and

input into prototype detection tools one by one.

We comparison with existing approaches to code smell detection for highlighting the strengths and

weaknesses.

Existing Approach:

Strengths:

 Can detect a large number of code smells in a file, providing comprehensive coverage.

 Faster runtime, presumably due to simpler detection methods.

Weaknesses:

 Detection accuracy is lacking, potentially leading to false positives or negatives.

 Only shows the numbers of code smells without providing detailed information about the classes

affected.

Current Approach (With Classifiers Algorithm):

Strengths:

 Can detect code smells at both the directory and file levels, offering a broader perspective on code

quality.

 Provides detailed information, including class names and the number of code smells, in a CSV file,

aiding in further analysis.

Weaknesses:

 Longer runtime compared to the existing approach, likely due to the file and directory.

http://www.rsisinternational.org/

Page 900

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue V May 2024

www.rsisinternational.org

The file should include the java source code, which has the extension java file. To build the code, it should

look for duplicate classes in another java file. Because it can detect the god class in many files and duplicate

the class, hence increasing the number of detections.

The major aim is to develop code smell detection application prototype to evaluate the effectiveness of

detection God Class. The hypothesis testing as below:

𝐻0 : 𝑈𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝑈𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = 0

𝐻𝑎 : 𝑈𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝑈𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 ≠ 0

As the results show the p-value equals 0.867, (P(x ≤ -0.1785) = 0.4335). The larger the p-value the more it

supports null hypothesis and it show the high percentage. Conclusion that the existing and prototype

detection tools are equal effectiveness and also show that strong evidence that cannot reject null hypothesis.

REFERENCES

1. Aliamaan, A.A. (2021). Code smell detection using feature selection and stacking ensemble:

An empirical investigation. Information and Software Technology.

2. Apostolos Ampatzogloua, S. C. (2013). Research state of the art on GoF design patterns: A mapping

study. The Journal of Systems and Software.

3. Class, I.o. (2018). Khalid Alkharabsheh, Shahed Almobydeen, Yania Crespo, José A. Taboada.

International Computer Sciences and Informatics Conference. Amman Arab.

4. Detten, M.M. (2010). Reverse engineering with the reclipse tool suite. Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering, 299-300.

5. Dongjin Yu, P. Z. (2018). Efficiently detecting structural design pattern in stances based on ordered

sequences. Journal of Systems and Software, 35-56.

6. F.A, F. M. (2016). Comparing and experimenting matching learning techniques forced smell

detection. Empir. Sofw. Eng, 1143-1191.

7. Fowler, M. (1999). Refactoring: Improving the Design of existing Code. Addision-Wesley.

8. Fowler, M. (2019). Refactoring: Improving the Design of Existing code. Addison-Wesley.

9. Fowler, M. a. (2000). “Bad Smells in Code”, Refactoring: Improving the Design of Existing Code.

Addison-Wesley. Guggulothu, T. &. (2020). Code smell detection using multi-label classification

approach. Software quality journal, 1063-1086.

10. Guilherme Lacerda, F.P. (2020). Code smells and refactoring: A tertiary systematic review of

challenges and observations. The Journal of Systems and Software.

11. Khalid Alkharabsheh, S. A. (2022). Prioritization of god class design smell: Amulti-criteria based

approach. Journal of King Saud University–Computer and Information Sciences, 9332-9342.

12. Lincke, R. (2007). Compendium of Software Quality Standards and Metrics-Version 1.0. IEEEStd

1061-1992.

13. M.Fowler,K.B.(1999).Refactoring: Improving the Design of Existing Code Reading. MA, USA:

Addison Wesley.

14. Mantyla M, V. J. (2004). Bad smells- humans as code critics. 20th IEEE International conference on

Software Maintenance, (pp. 399–408).

15. Martin Fowler, K. B. (2002). Refactoring: Improving the. Addison-Wesley Professional.

16. Mika Mäntylä, J. V. (2003). A Taxonomy and an Initial Empirical Study of Bad Smells in Code.

Proceedings of the International Conference on Software Maintenance, 1063-6773.

17. Moha, N. (2007). Decor: A tool for detection of design defect.

18. Ra’ul Marticorena, C.L. (2005). Parallel Inheritance Hierarchy: Detection from a static view of the

system. 6th international workshop on object oriented reengineering. van Oort, B.C. (2021). The

prevalence of code smells in machine learning projects. IEEE/ACMI st work shop on AI Engineering

software engineering for AI, 1-8

http://www.rsisinternational.org/

	Law Teng Yi
	ABSTRACT
	INTRODUCTION
	LITERATURE REVIEW
	METHODOLOGY
	RESULTS
	ANALSYSIS
	CONCLUSION AND DISCUSSION
	Existing Approach:
	Current Approach (With Classifiers Algorithm):

	REFERENCES

