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ABSTRACT 

Background: Mental health assessments across diverse populations provide valuable insights into the 

prevalence and patterns of mental health issues. However, the complexity and volume of longitudinal data 

present challenges in extracting meaningful information for effective intervention. Clustering methods have 

emerged as powerful tools for identifying hidden structures within such datasets, yet a comprehensive evaluation 

of these techniques in the context of international mental health assessments is lacking. Objectives: This study 

aims to systematically evaluate various clustering techniques applied to longitudinal mental health data from 

international assessments. The focus is on understanding how different methods capture and reveal patterns and 

subgroups within the data, thereby guiding targeted mental health interventions. Methods: We applied and 

compared three clustering techniques—K-Means Clustering, Hierarchical Clustering, and Gaussian Mixture 

Models (GMM)—to longitudinal mental health assessment data. We assessed the performance of these methods 

in identifying meaningful clusters, considering their strengths and limitations in capturing the complexity of 

mental health trajectories. Results: Our analysis revealed distinct clusters reflecting varying levels of mental 

health severity and symptom trajectories. K-Means identified broad clusters, while Hierarchical Clustering 

provided insights into the data’s hierarchical structure. GMM offered a probabilistic view, highlighting 

overlapping mental health experiences among individuals. Each method contributed uniquely to understanding 

the longitudinal patterns in the data. Implications: The findings underscore the importance of using a multi-

faceted approach to clustering in mental health research. By revealing different dimensions of mental health 

trajectories, this study provides valuable insights for tailoring interventions and resource allocation. The results 

highlight the need for ongoing evaluation of clustering techniques to enhance their applicability in diverse 

international contexts. 

Keywords: Longitudinal Clustering, Mental Health Assessments, K-Means Clustering, Hierarchical Clustering, 

Gaussian Mixture Models, International Mental Health  

INTRODUCTION 

In recent years, the importance of mental health has garnered increasing attention globally, with international 

mental health assessments playing a crucial role in understanding the prevalence, patterns, and determinants of 

mental health issues across diverse populations. These assessments provide a wealth of data, offering insights 

into the mental health status of individuals and communities. However, the complexity and volume of this data 

present challenges in extracting meaningful information that can inform public health interventions and policy 

decisions. Clustering methods have emerged as powerful tools for uncovering hidden structures within large 

datasets, allowing researchers to identify groups of individuals with similar mental health profiles. These 

techniques are particularly valuable in the context of international mental health assessments, where patterns and 

clusters may vary significantly across different cultural, social, and economic contexts. By systematically 

applying and comparing various clustering methods, researchers can better understand the distinctive patterns 

within the data, which can, in turn, guide targeted mental health interventions and resource allocation. 

Despite the potential of clustering methods, there is a need for a systematic evaluation of their performance in 

the context of international mental health data. Previous studies have applied different clustering techniques to 
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mental health datasets, but a comprehensive comparison of these methods, particularly across diverse 

populations, remains limited. Such an evaluation is essential for identifying the most effective approaches to 

clustering in this domain and for ensuring that the derived clusters are both interpretable and actionable. This 

study aims to address this gap by unveiling distinctive patterns and clusters within international mental health 

assessment data through a systematic assessment and comparison of various clustering methods. The analysis 

focuses on evaluating the performance of these methods in identifying meaningful clusters, with an emphasis on 

the practical implications of the findings for mental health research and practice. By providing a robust 

comparison of clustering techniques, this study contributes to the growing body of literature on mental health 

data analysis and offers valuable insights for future research and policy development. 

Background 

Clustering methods have emerged as essential tools in mental health research, enabling researchers to identify 

patterns and subgroups within complex datasets. These techniques group individuals based on similarities in 

symptom profiles, risk factors, or treatment outcomes, thereby offering deeper insights into mental health 

constructs and informing the development of more effective interventions [1]. The growing utilization of 

international mental health assessment tools has provided valuable insights into various aspects of psychological 

well-being. However, a significant gap remains in understanding the intricate temporal dynamics and diverse 

patterns inherent in mental health trajectories [2]. Traditional analyses often fall short in capturing these 

complexities, necessitating the adoption of advanced clustering methods to reveal hidden structures within 

longitudinal mental health data. 

Recent advancements in longitudinal clustering have provided a more detailed understanding of time profiles 

among subjects. [3] explored the performance of five longitudinal clustering methods using Monte Carlo 

simulations on synthetic datasets. Their study highlights the effectiveness of Growth Mixture Modeling (GMM) 

and the two-step approach combining growth curve modeling with k-means (GCKM) as optimal methods for 

understanding underlying patterns in repeated measurements over time. The efficiency of GCKM in handling 

large datasets further positions it as a preferred choice, while Longitudinal k-means (KML) and group-based 

trajectory modeling yield practically identical solutions under specific conditions. 

Similarly, [4] emphasize the importance of selecting appropriate clustering methods when dealing with multiple 

longitudinal features. Their evaluation of both model-based and algorithm-based approaches (including 

frequentist and Bayesian methods, group-based trajectory models, and hidden Markov models) provides 

valuable insights into the strengths and limitations of each method. Their study offers practical guidance for 

applied researchers interested in clustering multiple longitudinal features, particularly in the context of 

international mental health assessments. 

The application of clustering techniques in mental health research has demonstrated significant potential in 

uncovering nuanced trajectories within mental health assessments. For instance, [5] employed hidden Markov 

models to identify three distinct subgroups of individuals with varying depressive symptom trajectories: chronic, 

episodic, and remitting. Such findings underscore the power of clustering methodologies in revealing the 

complexities of mental health conditions. 

Furthermore, the adaptability of clustering methodologies across diverse international contexts has proven 

invaluable. Studies by [5] and [6] highlight the importance of these techniques in understanding mental health 

across different populations. However, cross-cultural applications present unique challenges, making it crucial 

to navigate these challenges to ensure the robustness and relevance of clustering studies in varied contexts. The 

reviewed literature underscores the importance of selecting context-dependent and nuanced approaches to 

unravel complex patterns within mental health data. The strengths and limitations identified in previous studies 

serve as a foundation for advancing the understanding of temporal dynamics in mental health trajectories. This 

study aims to contribute to the development of more effective and context-specific methodologies for analyzing 

international mental health assessment data. By systematically assessing and comparing various clustering 

methods, this research seeks to uncover distinctive patterns and clusters within longitudinal data, with a focus 

on non-parametric approaches and model-based clustering strategies. 

https://rsisinternational.org/journals/ijriss/
https://rsisinternational.org/journals/ijriss/
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue IX September 2024 

 

Page 532 
www.rsisinternational.org 

 

 

 

METHODS 

K-Means Clustering 

K-means clustering is a fundamental algorithm used in data analysis to partition data points into a predetermined 

number of clusters, 𝑘, based on their inherent similarities. This unsupervised learning technique is particularly 

effective for numeric data, making it well-suited for analyzing symptom scores in longitudinal studies [7]. The 

algorithm is an Expectation-Maximization (EM) method that alternates between two main phases: assignment 

and update, iteratively refining the clusters until convergence [8]. 

Assignment Phase 

Each data point is assigned to the cluster with the nearest centroid based on Euclidean distance. This phase aims 

to allocate data points in a way that minimizes the variance within each cluster. Mathematically, for each data 

point 𝑥𝑖, it is assigned to cluster 𝐶𝑗 if: 

 Dist(𝑥𝑖, 𝐜𝑗) = min
𝑘
Dist(𝑥𝑖, 𝐜𝑘) 

where 𝐜𝑗  is the centroid of cluster 𝑗 and 𝐷𝑖𝑠𝑡 represents the Euclidean distance. 

Update Phase 

After the assignment of data points to clusters, the centroids of the clusters are recalculated. The new centroid 

for each cluster is the mean of all data points assigned to that cluster: 

 𝐜𝑗 =
1

|𝐶𝑗|
∑𝑥𝑖∈𝐶𝑗

𝑥𝑖 

where |𝐶𝑗| is the number of data points in cluster 𝑗 and 𝑥𝑖 are the data points in cluster 𝐶𝑗. This updated 

centroid is used in the next iteration of the assignment phase. 

Maximization Phase 

To measure the distance between data points, K-means utilizes the Euclidean distance. For a set 𝑆  of 𝑛 

subjects, each with an outcome variable 𝑌 recorded at 𝑡 time points, the trajectory for subject 𝑖 at time 𝑘 is 

denoted by 𝑦𝑖𝑘. The Euclidean distance between two trajectories, 𝑦𝑖 and 𝑦𝑗, is calculated using: 

 Dist(𝑦𝑖, 𝑦𝑗) = √
1

𝑡
∑𝑡
𝑘=1 (𝑦𝑖𝑘 − 𝑦𝑗𝑘)2 

where:   

    1.  𝑦𝑖𝑘 represents the outcome variable for subject 𝑖 at time 𝑘,  

    2.  𝑡 denotes the total number of time points.  

Choosing the Optimal Number of Clusters 

The optimal number of clusters, 𝑔 , is determined using the Calinski-Harabasz criterion. This involves 

calculating two key variance matrices:  

i. Between-Cluster Variance Matrix (𝑩): 

 𝐵 = ∑𝑔
𝑚=1 𝑛𝑚(𝐲𝑚 − 𝐲)(𝐲𝑚 − 𝐲)′ 

where:   
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        - 𝑛𝑚 is the number of trajectories in cluster 𝑚,  

        - 𝐲𝑚 is the mean trajectory of cluster 𝑚,  

        - 𝐲 is the mean trajectory of the entire dataset,  

        - tr(𝐵) denotes the trace of matrix 𝐵, representing the total between-cluster variance.  

ii. Within-Cluster Variance Matrix (𝑾): 

 𝑊 = ∑𝑔
𝑚=1 ∑

𝑛𝑚
𝑖=1 (𝐲𝑚𝑖 − 𝐲𝑚)(𝐲𝑚𝑖 − 𝐲𝑚)′ 

where:   

        - 𝐲𝑚𝑖 is the trajectory of subject 𝑖 in cluster 𝑚,  

        - tr(𝑊) represents the trace of matrix 𝑊, indicating the total within-cluster variance.  

The Calinski-Harabasz criterion 𝐶(𝑔) is calculated to select the optimal number of clusters: 

 𝐶(𝑔) =
tr(𝐵)

tr(𝑊)
 

where:   

• 𝐶(𝑔) is the ratio of between-cluster variance to within-cluster variance, with higher values indicating more 

distinct clusters.  

Distance Calculation 

K-means clustering employs Euclidean distance to measure the similarity between joint trajectories. This 

distance is computed as: 

 𝑑(𝐘1, 𝐘2) = √∑𝑇
𝑡=1 ∑

𝑝
𝑗=1 |𝑌1𝑗𝑡 − 𝑌2𝑗𝑡|2 

where:   

1.  𝐘1 and 𝐘2 are the joint trajectories of two subjects,  

  

2. 𝑇 denotes the number of time points,  

 

3. 𝑝 represents the number of variables.  

This approach efficiently partitions the data into clusters, facilitating the analysis of mental health patterns across 

longitudinal data. 

Hierarchical Clustering 

Hierarchical clustering is a method used to organize data into a tree-like structure, reflecting the relationships 

between data points. It operates by iteratively merging or splitting clusters based on their similarity, creating a 

dendrogram that visualizes the nested grouping of data. This approach can be divided into two main types: 

agglomerative, which builds clusters from individual data points upward, and divisive, which starts with a single 

cluster and breaks it down. Bayesian hierarchical clustering adds a probabilistic framework to estimate cluster 

assignments and parameters, offering a nuanced view of the data. Each method provides valuable insights into 

the structure and relationships within the international mental health assessment data. 
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Agglomerative Hierarchical Clustering 

Agglomerative hierarchical clustering is a bottom-up approach that starts with each data point as an individual 

cluster and iteratively merges the closest pairs of clusters. This method utilizes various distance metrics and 

linkage criteria to determine cluster similarity. 

To begin, the algorithm calculates the distance between each pair of data points using the Euclidean distance, 

defined as: 

 Dist(𝑦𝑖, 𝑦𝑗) = √
1

𝑡
∑𝑡
𝑘=1 (𝑦𝑖𝑘 − 𝑦𝑗𝑘)2 

where 𝑦𝑖𝑘 and 𝑦𝑗𝑘 are the values of the outcome variable 𝑌 for subjects 𝑖 and 𝑗 at time 𝑘, and 𝑡 is the 

number of time points. This distance measure quantifies the similarity between pairs of data points. 

Agglomerative clustering proceeds by merging clusters based on one of several linkage criteria: 

1.  Single Linkage: The distance between clusters is defined as the minimum distance between any pair of data          

points in the clusters.  

2.  Complete Linkage: The distance is the maximum distance between any pair of points in the clusters.  

3.  Average Linkage: The distance is the average of all distances between pairs of points in the clusters.  

The algorithm continues merging clusters until the desired number of clusters is achieved or all points are in a 

single cluster. The hierarchical structure of clusters can be visualized using a dendrogram, which illustrates the 

order in which clusters are merged. 

Divisive Hierarchical Clustering 

Divisive hierarchical clustering takes a top-down approach, starting with a single cluster containing all data 

points and iteratively splitting it into smaller clusters. This method is particularly useful for refining clusters and 

understanding data at different levels of granularity. 

The splitting process begins by evaluating which cluster should be split based on criteria such as within-cluster 

variance. The variance within a cluster is given by: 

 𝑊 = ∑𝑔
𝑚=1 ∑

𝑛𝑚
𝑖=1 (𝐲𝑚𝑖 − 𝐲𝑚)

2 

Where 

𝐲𝑚𝑖 is the value of the outcome variable for the 𝑖-th data point in cluster 𝑚, and 𝐲𝑚 is the mean of cluster 𝑚. 

The splitting continues until the desired number of clusters is reached or further splitting does not provide 

additional meaningful distinctions. 

Determining the Number of Clusters 

The optimal number of clusters is determined by examining the dendrogram, which shows the clustering process. 

The number of clusters can be selected by cutting the dendrogram at a specific level. Methods for choosing the 

number of clusters include: 

1. The Elbow Method: Identifies the point at which additional clusters provide diminishing returns in cluster 

quality.  

2. Silhouette Analysis: Assesses how similar each data point is to its own cluster relative to other clusters.  
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Bayesian Hierarchical Clustering 

Bayesian hierarchical clustering utilizes probabilistic models to infer cluster assignments and parameters. This 

approach incorporates Bayesian methods to estimate the number of clusters and their characteristics, offering a 

flexible and data-driven clustering solution. 

The Dirichlet Process (DP) is a key component of Bayesian hierarchical clustering, allowing for an infinite 

number of possible clusters. The Dirichlet Process is parameterized by a concentration parameter 𝛼, which 

influences the number of clusters formed. The likelihood function, representing the probability of the observed 

data given the cluster assignments, is used to update beliefs about the clusters as new data is observed. 

The clustering process involves sampling from the posterior distribution of the cluster assignments and 

parameters. Markov Chain Monte Carlo (MCMC) methods are typically used to approximate this posterior 

distribution. The posterior distribution combines the prior distribution (reflecting initial beliefs about the data) 

with the likelihood of the observed data: 

𝑃(clusters|data) ∝ 𝑃(data|clusters) × 𝑃(clusters) 

where 𝑃(data|clusters)  is the likelihood of the data given the clusters, and 𝑃(clusters)  is the prior 

distribution over possible cluster assignments. 

Validation and Integration 

Each clustering method’s results are validated using various metrics. For agglomerative and divisive clustering, 

silhouette scores and dendrogram analysis are employed to assess the coherence and separation of clusters. For 

Bayesian hierarchical clustering, posterior predictive checks and model fit criteria such as the Deviance 

Information Criterion (DIC) are used to evaluate the model’s performance. 

The findings from each clustering method are compared and integrated to provide a comprehensive 

understanding of the data. By combining insights from different approaches, the study aims to uncover 

meaningful patterns and relationships within the international mental health assessment data. 

Gaussian Mixture Models (GMM) 

Gaussian Mixture Models (GMM) are a probabilistic model-based clustering technique that assumes data is 

generated from a mixture of several Gaussian distributions. This approach provides a more nuanced view of 

cluster assignments compared to deterministic methods like K-means, by assigning probabilities of membership 

to each cluster. 

MATHEMATICAL FRAMEWORK 

In GMM, the data is assumed to be generated by a mixture of 𝐾 Gaussian components. Each component 𝑘 is 

characterized by its mean vector 𝜇𝑘  and covariance matrix Σ𝑘 . The overall density function of the data is 

modeled as a weighted sum of these Gaussian components: 

 𝑓(𝐱) = ∑𝐾
𝑘=1 𝜋𝑘𝑓𝑘(𝐱|𝜃𝑘) (1) 

where:   

1. 𝜋𝑘  represents the prior probability of the 𝑘 -th Gaussian component. It indicates how prevalent each 

component is in the overall mixture.  

2. 𝑓𝑘(𝐱|𝜃𝑘) denotes the density function of the 𝑘-th Gaussian component with parameters 𝜃𝑘 = (𝜇𝑘, Σ𝑘), 
which includes the mean and covariance matrix of the Gaussian distribution.  

For a Gaussian component, the density function is given by: 
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 𝑓𝑘(𝐱|𝜃𝑘) =
1

(2𝜋)𝑝/2|Σ𝑘|
1/2

exp (−
1

2
(𝐱 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝐱 − 𝜇𝑘)) (2) 

In this formula:   

    1. 𝜇𝑘 is the mean vector of the 𝑘-th component.  

    2. Σ𝑘 is the covariance matrix of the 𝑘-th component.  

    3. |Σ𝑘| denotes the determinant of Σ𝑘, which scales the density function.  

Covariance Matrix Decomposition 

The covariance matrix Σ𝑘 can be decomposed using Cholesky decomposition. This decomposition simplifies 

the inversion of Σ𝑘 and is useful in numerical computations. If Σ𝑘 is decomposed as: 

 Σ𝑘 = 𝑇𝑘𝑇𝑘
𝑇 (3) 

where 𝑇𝑘 is a lower triangular matrix, then the density function of the Gaussian component can be written as: 

 𝜙(𝐱𝑖|𝜇𝑘, Σ𝑘) =
1

(2𝜋)𝑝/2det(𝐷𝑘)
1/2 exp (−

1

2
(𝐱𝑖 − 𝜇𝑘)

𝑇𝑇𝑘
𝑇𝐷𝑘

−1𝑇𝑘(𝐱𝑖 − 𝜇𝑘)) (4) 

Here:   

1.  𝐷𝑘 is a diagonal matrix resulting from the modified Cholesky decomposition.  
 

2. The term 𝑇𝑘 is a lower triangular matrix that aids in the numerical stability of the model.  

Parameter Estimation with EM Algorithm 

The Expectation-Maximization (EM) algorithm is employed to estimate the parameters of the GMM. The 

algorithm iteratively refines the estimates of the Gaussian parameters using the following steps: 

1. Expectation Step (E-Step): Calculate the posterior probabilities of component membership for each data 

point based on the current parameter estimates:  

 𝑟̂𝑖𝑘 = 𝑃(𝑥𝑖 ∈ 𝑘|𝑥𝑖) =
𝜋̂𝑘𝑓(𝑥𝑖|𝜃̂𝑘)

∑𝐾ℎ=1 𝜋̂ℎ𝑓(𝑥𝑖|𝜃̂ℎ)
 (5) 

This formula computes the probability that a data point 𝐱𝑖 belongs to the 𝑘-th component, given the current 

estimates of the model parameters. 

2. Maximization Step (M-Step): Update the parameters 𝜋𝑘, 𝜇𝑘, and Σ𝑘 to maximize the likelihood function 

based on the posterior probabilities:  

The likelihood function for the mixture model is: 

 𝐿(𝜗; 𝐱) = ∏𝑛
𝑖=1 [∑

𝐾
𝑘=1 𝜋𝑘𝑓(𝐱𝑖|𝜃𝑘)] (6) 

The complete-data log-likelihood function, which incorporates the missing group labels, is given by: 

𝑄(𝜋𝑘, 𝜇𝑘, Σ𝑘) = ∑𝐾
𝑘=1 𝑛𝑘log𝜋𝑘 −

𝑛𝑝

2
log2𝜋 − ∑𝐾

𝑘=1
𝑛𝑘

2
log|Σ𝑘| − ∑𝐾

𝑘=1
𝑛𝑘

2
tr{𝑇𝑘𝑆𝑘𝑇𝑘

𝑇Σ𝑘
−1}(7) 

This function measures how well the parameters fit the data, incorporating the expected values of the missing 

data labels. 
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3. Parameter Update: Maximizing 𝑄 with respect to 𝜋𝑘 and 𝜇𝑘 gives:  

 𝜇𝑘 =
∑𝑛𝑖=1𝛾𝑖𝑘

∑𝑛𝑖=1𝛾𝑖𝑘
 (8) 

This equation updates the mean vector 𝜇𝑘 of the 𝑘-th component based on the posterior probabilities. 

Comparative Analysis 

In the comparative analysis, we evaluate the performance of three clustering techniques: K-Means, Hierarchical 

Clustering, and Gaussian Mixture Models (GMM). Each method is assessed based on several criteria, including 

clustering effectiveness, computational efficiency, and the ability to handle different data distributions. 

Clustering Effectiveness: To compare the effectiveness of each clustering algorithm, we utilize several 

evaluation metrics. The Silhouette Score measures how similar an object is to its own cluster compared to other 

clusters, providing insight into the quality of clustering. Additionally, the Within-Cluster Sum of Squares 

(WCSS) is used for K-Means to evaluate the compactness of clusters. 

Computational Efficiency: The computational efficiency of each algorithm is analyzed based on execution 

time and resource utilization. K-Means, known for its speed and scalability, is contrasted with Hierarchical 

Clustering, which can be computationally intensive, especially with large datasets. GMM’s performance is 

assessed with respect to the Expectation-Maximization (EM) algorithm’s convergence rate and computational 

cost. 

Handling of Data Distributions: Each clustering method’s ability to manage different data distributions is 

evaluated. K-Means assumes spherical clusters and may struggle with non-spherical or overlapping clusters. 

Hierarchical Clustering is assessed for its flexibility in capturing hierarchical relationships among data points. 

GMM, with its probabilistic approach, is tested for its effectiveness in modeling clusters with different shapes 

and densities. 

Validation Methods: Cross-validation techniques are employed to ensure robust evaluation. Internal validation 

methods such as the aforementioned Silhouette Score and Within-Cluster Sum of Squares (WCSS) provide 

insight into the clustering results without requiring external data. For external validation, if ground truth labels 

are available, metrics like Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) are used to 

compare clustering results against known classifications. 

Parameter Tuning: The performance of each algorithm is sensitive to its parameters. For K-Means, the optimal 

number of clusters is determined using the Elbow Method and Silhouette Analysis. Hierarchical Clustering is 

tuned by selecting appropriate linkage methods (e.g., Single, Complete, Average) and distance metrics. For 

GMM, parameters such as the number of components and covariance structure are optimized using model 

selection criteria like the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC). 

Limitations and Assumptions: Each clustering method has inherent limitations and assumptions. K-Means 

assumes that clusters are spherical and of similar size, which may not hold in all datasets. Hierarchical Clustering 

can be sensitive to the choice of distance metric and linkage method, and its performance may degrade with very 

large datasets. GMM assumes that data is generated from a mixture of Gaussian distributions, which may not 

accurately represent all types of data. Additionally, the EM algorithm used in GMM can converge to local 

optima, requiring careful initialization. 

RESULTS 

Clustering Analysis 

In analyzing the IMHA dataset, we employed K-Means, Hierarchical Clustering, and Gaussian Mixture 

Modeling (GMM) to uncover distinct subgroups within the data. Each method was evaluated for its effectiveness 

in identifying meaningful patterns in the longitudinal data. 
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K-Means Clustering 

We applied the K-Means algorithm to analyze clustering patterns in wave W1 and W3, as well as in the combined 

dataset. Euclidean distance was used as the metric for measuring clustering distance, a common choice for K-

Means Clustering due to its simplicity and effectiveness in multidimensional spaces. 

To ensure robustness, we set a high ‘nstart ‘value of 25, which enabled the algorithm to explore multiple initial 

solutions and reduce the likelihood of local minima. Figure 1 depicts the random clusters for waves W1 and W3 

as shown. 

 

a. Random Cluster for Wave 1                     

 

b. Random Cluster for Wave 3 

Figure 1: Comparison of Clustering Results for Wave 1 and Wave 3 

Determining the optimal number of clusters involved using the Elbow method, the Silhouette method, and the 

Gap statistic. The Elbow method, which examines the within-cluster sum of squares (WCSS) for various 

numbers of clusters, consistently suggested that 2 clusters were optimal for W1, W3, and the combined dataset. 

Figures 2 illustrating the Elbow method results are included below. 

 

a. Optimal K for Wave 1             b. Optimal K for Wave 3 

 

c. Optimal K for Combined Waves 

Figure 2: Optimal K for W1, W2 and combined wave 
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The Silhouette method, which assesses clustering quality by measuring the similarity of data points to their own 

cluster versus other clusters, also indicated that 2 clusters were optimal. Figures showing the Silhouette results 

are provided below. 

 

a. Optimal K for Wave 1 Silhouette             b. Optimal K for Wave 3 Silhouette 

Figure 3: Optimal number K for Wave 1 and Wave 3 Silhouette method 

The Gap statistic suggested a higher number of clusters, with 5 clusters for W1 and 7 clusters for W3, and 6 

clusters for the combined dataset. Figures displaying the Gap statistic results are shown below. 

 

a. Optimal K for Wave 1 and 2                 b. Optimal K for Wave 3 Silhouette 

Figure 4: Optimal number K for Wave 1 and Wave 3 Gap statistics 

Despite the variation in the number of clusters suggested by different methods, the Elbow method’s 

recommendation of 2 clusters was deemed the most reliable for our dataset and research objectives. The final K-

Means clustering analysis identified two distinct clusters in the combined dataset. Cluster 1, consisting of 631 

data points, was characterized by lower mean values across various IMHA-related variables such as sleep issues, 

PTSD symptoms, anxiety, interpersonal conflict, life stress, and depression. In contrast, Cluster 2, with 299 data 

points, showed higher mean values for these variables, indicating more severe symptoms. The summary of 

clustering results, including within-cluster sum of squares (WCSS) for each cluster, is detailed below. This 

highlights the differences between the clusters and provides insights for targeted interventions and support 

strategies based on cluster membership. 

Table 1: Clustering Summary 

 Metric  Cluster 1  Cluster 2  Percentage Explained  

Within Cluster Sum of Squares (WCSS)  56631.99  43395.04   18.90%  

The summary statistics underscore the robustness of the K-Means clustering analysis, confirming the 

effectiveness of the chosen methods in revealing meaningful patterns within the IMHA dataset. 

Hierarchical Clustering Results 

Hierarchical Clustering was employed to investigate the data structure, utilizing various methodologies to 

uncover distinct clusters and patterns. 
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Agglomerative Hierarchical Clustering 

Agglomerative Hierarchical Clustering (AHC) was performed using three linkage methods: average linkage, 

complete linkage, and single linkage. 

Average Linkage This method computed the average distance between all pairs of points across clusters. The 

resulting dendrogram, shown in Figure 14, illustrates how clusters merge hierarchically based on average 

pairwise distances. 

 

Figure 5: Cluster dendrogram from average linkage. 

Average Linkage Complete Linkage Complete linkage clustering defined the distance between clusters as the 

maximum distance between any pair of data points in the clusters. The dendrogram for complete linkage, 

depicted in Figure 15, highlights the hierarchical merging process based on maximum distances. 

 

Figure 6: Cluster dendrogram from complete linkage. 

Average Linkage Single Linkage Single linkage clustering used the minimum distance between any pair of 

data points from different clusters. The resulting dendrogram, shown in Figure 16, reveals the hierarchical 

relationships based on minimum pairwise distances. 

 

Figure 7: Cluster dendrogram from single linkage. 

The results indicated that while single and average linkage methods produced similar cluster formations, the 

complete linkage method resulted in a distinct cluster configuration. These findings underscore the impact of the 

linkage criterion on the clustering outcome. 
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Cluster Configurations 

Clustering the data into two groups using Hierarchical Clustering revealed distinct clusters, as shown in Figure 

17. This configuration provided insights into the broad structural patterns within the data. 

 

Figure 8: Hierarchical cluster with 2 clusters. 

When the number of clusters was set to three, the results, illustrated in Figure 18, demonstrated a more detailed 

segmentation of the data. 

 

Figure 9: Hierarchical cluster with 3 clusters. 

Combined Dataset Analysis 

Hierarchical Clustering was also applied to the combined dataset across all waves to explore clustering at a 

macro level. The characteristics of the clusters for the three-cluster solution are detailed in Table ??, which 

includes the mean, median, and standard deviation of each variable. 

Table 2: Cluster characteristics for K=3!  

Cluster slpw1 ptsw1 anxw1_1 anxw1_2 confw1_1 strsw1_1 depw1_1 confw1_2 slpw1_2 angw1_1 

Row 1 1 1.0206 1.4816 0.9491 1.4665 1.5076 1.6634 1.0173 1.4491 1.4004 

Row 2 4 4.8 5.4 3.4 5 5.8 4.6 4 4.6 5 

Row 3 3 0 0 0 6 4 6 0 0 6 

Cluster slpw1_3 strsw1_2 strsw1_3 anxw1_3 slpw1_4 anxw1_4 strsw1_4 strsw1_5 ptsw1_2 depw1_2 

Row 1 2 2.1418 0.7359 1.4134 1.9058 2.0238 2.0617 1.2035 0.8961 1.2457 

Row 2 4 5.2 1.6 5.6 5 3.2 3.4 6 3.8 4.6 
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Row 3 0 1 6 0 3 6 0 6 0 0 

Cluster depw1_3 anxw1_5 ptsw1_3 anxw1_6 anxw1_7 angw1_2 ptsw1_4 confw1_3 depw1_4 angw1_3 

Row 1 1.4535 1.1569 1.5206 1.2987 1.0108 1.3442 1.7403 1.2576 1.6255 1.0574 

Row 2 5.00E+00 4.80E+00 6 3.2 4.6 5 2.6 5 5.2 4.8 

Row 3 6 0 0 6 0 6 6 3 4 6 

Cluster anxw1_8 angw1_4 angw1_5 ptsw1_5 depw1_5 ptsw1_6 depw1_6 wrkdisw1 angw1_6 psyw1 

Row 1 0.421 0.5422 0.5617 0.7933 1.2002 0.9762 1.1277 1.0498 0.6212 1.316 

Row 2 4.2 2.4 1.8 5 5.8 4.4 3.4 1.4 1 5 

Row 3 0 6 1 5 0 1 0 2 1 6 

Dendrograms of the combined dataset, produced using different linkage methods, are shown in Figures 19, 20, 

and 21. The clustering outcome of the three clusters is as shown in figure 13. These visualizations offer insights 

into the hierarchical relationships within the entire dataset. 

While Divisive Hierarchical Clustering was not extensively detailed, it was used to refine cluster analysis by 

starting with a single cluster and iteratively splitting it. This method, typically visualized through dendrograms 

similar to those of agglomerative methods, provided a different perspective on cluster granularity. The results 

indicated that divisive clustering offered insights into finer data distinctions, complementing the findings from 

agglomerative clustering. 

Bayesian Hierarchical Clustering utilized probabilistic models to estimate clusters and their characteristics. The 

Dirichlet Process model, combined with Markov Chain Monte Carlo (MCMC) methods, provided a probabilistic 

view of cluster assignments. This approach allowed for flexible cluster estimations and refined understanding of 

data structure, complementing the agglomerative methods. 

 

Figure 10. Combined cluster dendrogram - Average.  

  

Figure 11 Combined cluster dendrogram - Complete. 
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Figure 12: Combined cluster dendrogram - Single.  

Figure 13: Combined cluster dendrogram - Another Method. 

 

The Hierarchical Clustering analysis, incorporating agglomerative, divisive, and Bayesian methods, provided a 

comprehensive view of the data’s cluster structure. The choice of linkage method and clustering approach 

influenced the results, offering valuable insights into the data’s hierarchical relationships and potential 

subgroups. 

Gaussian Mixture Modeling (GMM) 

Gaussian Mixture Model (GMM) clustering is a robust technique in data analysis, allowing for probabilistic 

assignment of data points to multiple clusters. Unlike traditional clustering methods, GMM provides a more 

nuanced understanding of latent structures within datasets. 

Determining the Optimal Number of Clusters 

To identify the optimal number of clusters, we employed two methods: the Elbow Method and the Bayesian 

Information Criterion (BIC). 

Elbow Method We calculated the within-cluster sum of squares (WSS) for a range of cluster numbers (k) from 

1 to 10. The WSS plot (Figure 23) indicated a slight "elbow" at three clusters, suggesting this as the optimal 

number. 

 

Figure 14: WSS plot for the Elbow Method. 

Bayesian Information Criterion (BIC) values were also calculated for the same range of clusters. The BIC 

plots for Wave 1 and Wave 3 (Figures 28 and 29) identified 2 and 4 clusters as optimal, with the lowest BIC 

values. 
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 a. BIC plot for Wave 1.                   b. BIC plot for Wave 3. 

Figure 15: BIC plots for Wave 3 and Wave 4. 

Both methods consistently indicated that the optimal number of clusters is 2, enhancing the reliability of our 

GMM analysis. We proceeded to fit the GMM to the dataset, resulting in the cluster assignments shown in the 

scatter plot (Figure 27). 

 

Figure 16: Scatter plot of data points with cluster assignments. 

With two clusters identified as optimal, we examined the distinct characteristics of each. Summary statistics 

(mean, median, standard deviation) for each cluster revealed that Cluster 1 contains the majority of data points, 

with moderate variability and central tendency values near the overall dataset mean. In contrast, Cluster 2, which 

has significantly fewer data points, exhibited extreme values or outliers, differentiating it from Cluster 1. 

Comparative Analysis 

The performance of GMM was compared with K-means and Hierarchical Clustering methods using silhouette 

scores, WSS, and BIC. 

Silhouette Scores Higher silhouette scores indicate better-defined clusters. GMM with 3 clusters achieved a 

score of 0.3358, closely matching the highest score obtained by hierarchical clustering with the average linkage 

method (0.3393) (Table 3). K-means, however, showed a decreasing trend in silhouette scores as the number of 

clusters increased, with the highest score observed for 2 clusters (0.1872). 

Table 3: Clustering Methods and Silhouette Scores. 

Method  Clusters  Silhouette Score  

K-means   2   0.18724313  

K-means  3 0.16970886  

K-means   4  0.11840441  
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K-means   5  0.09752392  

K-means   6  0.05747756  

K-means   7  0.03766300  

K-means   8  0.03638399  

K-means   9  0.03365919  

K-means   10  0.04027898  

Hierarchical  average 0.33930212  

Hierarchical  complete 0.19159332  

Hierarchical  single 0.24450682  

GMM   3  0.33581514  

Hierarchical clustering was evaluated using three different linkage methods: average, complete, and single. The 

average linkage method achieved the highest silhouette score (0.3393), indicating the best cluster cohesion and 

separation. The complete linkage method followed with a score of 0.1916, while the single linkage method 

resulted in a score of 0.2445. The Gaussian Mixture Model (GMM) with 3 clusters was also analyzed. The 

silhouette score for GMM was 0.3358, closely matching the performance of the hierarchical clustering with the 

average linkage method, and significantly higher than most K-means clustering results. the silhouette scores for 

K-Means and hierarchical clustering are shown below. 

 

a. Silhouette score (K-Means)             b. Silhouette score (Hierarchical) 

Figure 17: BIC plots for Wave 3 and Wave 4. 

Within-Cluster Sum of Squares (WSS) and BIC, WSS, a measure of cluster compactness, decreased with an 

increasing number of clusters for both K-means and hierarchical clustering. BIC for GMM demonstrated a clear 

minimum, further supporting the choice of the optimal number of clusters (Figure 31). this was also confirmed 

with the silhouette score for for athe three clustering method as shown in figure 19. 

  

a. Comparative visualization of WSS and BIC for different clustering methods. b. Comparative visualization of 

Silhouette score for different clustering methods. 

Figure 18: Comparative visualizations of clustering methods. 

https://rsisinternational.org/journals/ijriss/
https://rsisinternational.org/journals/ijriss/
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS |Volume VIII Issue IX September 2024 

 

Page 546 
www.rsisinternational.org 

 

 

 

DISCUSSION 

The study’s findings provide valuable insights into the mental health profiles of university students through the 

application of K-Means Clustering, Hierarchical Clustering, and Gaussian Mixture Models (GMM). Each 

method offered unique contributions to understanding the data. 

K-Means Clustering, known for its efficiency, identified two key clusters that highlighted distinct levels of 

mental health severity. However, its assumption of spherical clusters can sometimes oversimplify the data, 

potentially missing nuanced patterns of mental health symptoms [9, 10]. Hierarchical Clustering, with its ability 

to explore multiple levels of granularity, revealed additional subgroups and provided a more detailed view of the 

mental health continuum, though it can be sensitive to noise and computationally intensive [11]. GMM’s 

probabilistic approach captured the overlapping nature of mental health symptoms, confirming the presence of 

multiple clusters and offering a nuanced understanding, though it requires careful parameter selection [12]. 

The identification of distinct mental health profiles has significant implications for intervention strategies. The 

clustering results suggest that tailored interventions are necessary to address the varying needs of different 

student subgroups. For instance, students in high-severity clusters might benefit from more intensive support 

services, while those in lower-severity clusters might need less frequent or different types of intervention [12]. 

This segmentation can guide the development of targeted mental health programs and improve resource 

allocation, ensuring that interventions are responsive to the specific needs of each group. 

The findings of this study align with previous research on the complexity of mental health experiences among 

university students. Studies have demonstrated that mental health symptoms often do not fit neatly into discrete 

categories and that clustering methods can reveal valuable patterns in the data [10, 11]. The use of GMM, in 

particular, complements findings from recent research highlighting the benefit of probabilistic models in 

capturing overlapping symptomatology [12]. This study adds to the literature by applying multiple clustering 

techniques and comparing their effectiveness, thereby providing a more comprehensive view of mental health 

profiles. 

While this study provides valuable insights, it has limitations. The reliance on clustering methods may overlook 

other factors influencing mental health, such as socio-cultural variables or individual experiences. Future 

research could benefit from incorporating additional data sources or qualitative methods to capture a broader 

range of influences on mental health [9]. Additionally, the study’s focus on university students in a specific 

geographic region may limit the generalizability of the findings. Future studies should consider expanding the 

sample to include diverse populations to enhance the applicability of the results. 

In conclusion, this study underscores the importance of using multiple clustering methods to gain a nuanced 

understanding of mental health data. The implications for targeted interventions are significant, and the findings 

fit well within existing literature, while also highlighting areas for future research to address limitations and 

broaden the scope of mental health analysis. 
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