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ABSTRACT 

 

Kulli, Akka and Beineke obtained a characterization of planar graphs whose line graphs have crossing number 

1. Akka, Jendrol, Klesvcv and Panshetty presented a character- nation of planar graphs whose line graphs have 

crossing number 2. The main result of this paper is a characterization of graphs whose line graphs have crossing 

number 3. 

The primary contribution of this paper is the characterization of graphs whose line graphs have a crossing number 

of three. Let be a graph and its line graph. The main result identifies necessary and sufficient structural properties 

of that ensure has a crossing number of three. 

Further research can expand on this work by examining families of graphs that exhibit higher crossing numbers 

and exploring computational approaches for practical applications in visualization and optimization. 
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INTRODUCTION 

A graph G is said to be planar when it is isomorphic to a graph G(π) whose vertex set V is a vertex set in a 

plane π while the edges are Jordan curves (non - self intersecting) in π such that two different edges have at-

most end vertices in common. A diagram of a planar graph G which conforms with these conditions is called 

a planar representation of G. Two planar representations of G will be regarded as distinct if they cannot be made 

to coincide with another by elastic deformation of the plane. 

All graphs considered here are finite, undirected and without loops or multiple edges. For other definitions see 

[7]. 

With every graph G there is associated a graph L(G) called the line graph of G in such a way that two vertices of 

L(G) are adjacent if and only if the corresponding edges of G are adjacent. This concept originated by Whitney 

[12]. The crossing number Cr(G) of a graph G is the least number of intersections of pairs of edges in any 

embedding of G in the Plane. Obviously, G is planar if and only if Cr(G) = 0. This concept is contained in the 

Turan’s bricks factory problem. 

J. Sedlacvek [11] has obtained that the line graph of graph G is planar if and only if G is planar, the degree of 

each vertex is at most 4 and all vertices of degree 4 are cut vertices. By using this result D.L. Greenwell and 

R.L. Hemminger [5] established that a graph has a planar line graph if and only if it has no subgraph 

homeomorphic to K3,3, K1,5, P4 + K1 or K2 + K3. Kulli, Akka and Beineke [10] obtained a characterization of 

planar graphs whose line graphs have crossing number 1. In [1], the same characterization was established in 

terms of forbidden subgraphs. Jendrolv and Klesvcv [9] presented a characterization of a nonplanar graphs to have 

a line graph with crossing number 1. This corrects some errors in Kulli et.al [10]. Akka, Jendrolv, Klesvcv and 

Panshetty [2] established a characterization of planar graphs whose line graphs have crossing number 2. Akka 

and Mallikarjun Ghaleppa [3] obtained a characterization of a nonplanar graphs to have a line graph with crossing 
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number 2. This corrects some errors in Akka et.al [2]. Primary purpose of this paper is to establish a 

characterization of a nonplanar graph to have a line graph with crossing number 3. 

If e = uv an edge of G, the corresponding vertex of L(G) is denoted by l(e) or l(uv). Every vertex x of G with 

degree p where p ∈ {2, 3, ..., ∆(G)} induces in L(G) the clique on p vertices which we denote by Kx. The following 

Theorems and Lemmas will be useful in proof of our main Theorem p. 

Theorem A [11]. The line graph of a planar graph G is planar if and only if ∆(G) ≤ 4 and every vertex of 

degree 4 is a cut-vertex. 

We may revise Theorem A to read: 

Theorem B. The line graph of a planar graph G has crossing number 0 if and only if ∆(G) ≤ 4 

and every vertex of degree 4 is a cut vertex. 

Theorem C [10]. The line graph of any nonplanar graph has crossing number at-least 3. 

Theorem D [10]. The line graph of a planar graph G has a crossing number 1 if and only if 

(1) or (2) holds: 

(1) ∆(G) = 4 and there is a unique noncut-vertex of degree 4. 

(2) ∆(G) = 5, every vertex of degree 4 is a cut-vertex, there is a unique vertex of degree 5 and it is a cut-

vertex having at-most 3 incident edges in any block. 

Theorem E [2]. The line graph L(G) of a planar graph G has crossing number 2 if and only one of the following 

conditions holds: 

(1) ∆(G) = 4 and exactly two of the vertices of degree 4 are not cut vertices of G. 

(2) ∆(G) = 5, there are exactly two vertices of degree 5, each is a cut-vertex of G and each has at most 3 

incident edges in any block. Every vertex of degree 4 is a cut-vertex. 

(3) ∆(G) = 5, there is a unique vertex of degree 5, it is a cut-vertex having at-most 3 incident edges in any 

block, and there is a unique not cut-vertex of degree 4 in G. 

(3) ∆(G) = 5, there is a unique vertex of degree 5, it is a cut-vertex having exactly 4 incident edges in one 

block, and, moreover, either at-least one of the 4 vertices adjacent to the vertex of degree 5 in the block 

has degree 2 or in the block there is a vertex of degree 2, which together with the vertex of degree 5 forms 

a cut-set of the block. Every vertex of degree 4 is a cut-vertex of G. 

Theorem F [9]. Let G be a nonplanar graph. Then Cr(L(G)) = 1 if and only if the following conditions 

hold: 

(1) Cr(G) = 1 

(2) ∆(G) ≤ 4, and every vertex of degree 4 is a cut-vertex of G. 

(3) There exists a drawing of G in the plane with exactly one crossing in which each crossed edge is incident 

with a vertex of degree 2. 

Lemma 1 [2]. If in G there is a vertex of degree 5 which is not a cut-vertex of G then L(G) has at-least 3 crossings. 

Lemma 2 [2]. Let v be a cut-vertex of degree 5 in G and let 4 edges incident with v be in one block B of G. If in 

Ball vertices adjacent to v have degree at-least 3 and there is no vertex u of degree 2 such that the vertex set {u, 
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v} forms a cut-set of B’s, then L(G) has at-least 3 crossings. 

Lemma 3 [2]. Let G1 be a graph obtained from G by the transformation shown in fig 1 were v is a vertex of 

degree 4 which is not a cut-vertex of G. If 1 ≤ Cr(L(G)) < 3 then 

Cr(L(G1)) < Cr(L(G)) 

Lemma 4 [9]. Cr(G) < Cr(L(G)). 

MAIN RESULT 
 

Theorem. The line graph of a graph (planar or nonplanar) G has crossing number 3 if and only if one of the 

following conditions holds: 

(1) ∆(G) = 3, and G has a unique induced subgraph K3,3 

(2) ∆(G) = 4, and G has exactly 3 non-cut-vertices of degree 4. 

(3) ∆(G) = 5, and every vertex of degree 4 is a cut-vertex, there are exactly 3 vertices of degree 5 and each has 

at-most 3 edges in any block 

(4) ∆(G) = 5, there is a unique noncut-vertex of degree 4, and there are exactly two vertices of degree 5 and each 

has at-most 3 edges in any block 

(5) ∆(G) = 5, there are exactly 2 non-cut-vertices of degree 4 and there is a unique vertex of degree 5 and it has 

at-most 3 edges in any block 

(6) ∆(G) = 5, there is a unique noncut-vertex of degree 4, and there is a unique vertex v of degree 5 and it 

has exactly 4 edges in any block and moreover, either at-least one of the 4 vertices adjacent v in the block 

has degree 2 or in the block there is a vertex of degree 2 which together with v forms a cut-set of the block. 

(7) ∆(G) = 5, there is a unique vertex of degree 5 and it has at-most 3 edges in any block and there is a unique 

vertex v of degree 5 and it has exactly 4 edges in any block and more over either at-least one of the 4 vertices 

adjacent to v in the block has degree 2 or in the block there is a vertex of degree 2 which together with v forms 

a cut-set of the block. Every vertex of degree 4 is a cut-vertex of G 

(8) ∆(G) = 5, there is a unique vertex v of degree 5 and it has exactly 4 vertices in any block B and in Ball 

vertices adjacent to v have degree at-least 3 and there is no vertex u of degree 2 such that the vertex set {u, 

v} forms a cut-set of B. 

(9) ∆(G) = 5, every vertex of degree 4 is a cut-vertex, and there is a unique non-cut-vertex of degree 5. 

(10) ∆(G) = 6, there is a unique cut-vertex of degree 6 and it has at-most 3 incident edges in any block. 

Proof. Assume that the line graph L(G) of a graph G has crossing number 3. Then by Theorem E and Theorem F, 

we have a graph G is either planar or nonplanar. 

Case I. Let G be a nonplanar graph. By Krakowski’s Theorem on planar graph, it is sufficient to prove that 

L(K3,3) have crossing number at-least 3. The graph L(K3,3) is isomorphic to C3XC3 and Harary et.al [8] have 

shown that the crossing of this graph is 3. Thus, the line graph of K3,3 has at-least 3 crossings in every drawing 

as was to be shown. Hence K3,3 is a subgraph of G. 

Case II. Let G be a planar graph. Assume that the line graph L(G) of a planar graph G has crossing number 

3. Then by Theorem B, we have ∆(G) ≤ 4. 

First, we suppose that ∆(G) = 4. It follows from Theorem B and Theorem E that G has at-least 3 non-cut-
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vertices of degree 4. Assume that G has at-least 4 non-cut-vertices of degree 4. Applying Lemma 3 to one of 

these vertices we can obtain G1 with 3 non-cut-vertices of degree 4 whose line graph has fewer than three 

crossings. This contradicts Theorem E. Hence G has exactly 3 non-cut-vertices of degree 4. 

Suppose ∆(G) = 5. By Lemma 1, every vertex of degree 5 is a cut-vertex. G has at-most 3 vertices of degree 5, 

otherwise L(G) has at-least 4 subgraphs isomorphic to K5 each with at-least one crossing among its edges. 

Suppose G has 3 cut-vertices u, v and w of degree 5 and let u has 4 incident edges in one block. Theorem D 

implies that u, v and we are in the same block of G. Without loss of generality we may suppose that they are not 

mutually adjacent, because by inserting a vertex of degree 2 between u, v; v, w or w, u we obtained a graph 

whose line graph has no more crossings than L(G). In every good drawing of L(G) there is at-least one crossing 

among the edges of Kv
s. Hence by contracting the edges of Kv

s into one vertex we obtained a line graph of a 

graph containing u and w each with 4 incident edges in one block. This line graph has crossing number at-most 

two which contradicts the Theorem D. Thus, each of u, v and w has at-most 3 incident edges in a block. More-

over using Lemma 3 and Theorem D, one can easy to see that very vertex of degree 4 is a cut-vertex. 

Assume now there are exactly two vertices v1 and v2 of degree 5 which are cut-vertices of G. If each vi has at-

most 3 incident edges in one block, then by Theorem D there are in G, at-least two non-cut-vertices of degree 4. 

By Lemma 3 and Theorem D, it is easy to see that in this case there is a unique vertex of degree 4 that is not a 

cut-vertex of G. 

Suppose now there is a unique vertex v of degree 5 which is a cut-vertex of G. If v has at-most 3 incident edges 

in one block then by Lemma 3 and Theorem D, there are in G at-least 2 non-cut-vertices of degree 4. By Lemma 

3 and Theorem D, one can easily prove that in this case there are exactly two non-cut-vertices of degree 4 in G. 

Let v be a unique cut-vertex of degree 5 in G and it has exactly 4 incident edges in one block. By Lemma 3 and 

Theorem D it is easy to see that in this case there is a unique non-cut-vertices of degree 4 in G. Moreover, at-

least one vertex adjacent to v in the block with 4 edges incident with v has degree 2 or in that block there is a 

vertex of degree 2 which together with v from a cut-set of the block. Otherwise by Lemma 2, L(G) contains at-

least 4 crossings. 

G has at-most one vertex of degree 5 it has at-most 3 edges in any block otherwise L(G) contains at-least 

two subgraphs isomorphic to K5, each with at-least one crossing among its edges. Suppose G has two cut-

vertices u and v of degree 5 and let u has 4 incident edges in one block. Theorem D implies that both u and 

v are in the same block of G. Without loss of generality, we may suppose that they are not adjacent because by 

inserting a vertex of degree 2 between u and v. We obtained a graph whose line graph has no more crossings than 

L(G). In every good drawing of L(G) there is at-least one crossing among the edges of Kv
s. Thus, by contracting 

the edges of Kv
s in to one vertex we obtained a line graph of a graph containing u with 4 incident edges in one 

block. This line graph has crossing number at-most two (See Theorem E). These crossings together with one 

crossing of Kv
s L(G) has 3 crossings. 

Let v be a unique cut-vertex of degree 5 in G and it has exactly 4 incident edges in a block B. by Lemma 3 and 

Theorem D every vertex of degree 4 is a cut-vertex of G. More-over at-least one vertex adjacent to v in the block 

with 4 edges incident with v has degree 2 or in that block there is a vertex of degree 2 which together with v form 

a cut-set of the block, then L(G) has two crossings, a contradiction. Thus, every vertex adjacent to v in B has degree 3. 

Suppose G has at-least one non-cut-vertex v of degree 5. Then G has a subgraph P5 + v, the edges incident 

with a non-cut-vertex v of degree 5 in G form in L(G) the complete graph on 5 vertices. We note in every 

good drawing of L(G) at-least one crossing exist in K5, since contradicting the edges of L(G) not incident with the 

vertices of K5 results in a graph isomorphic to K6 and Cr(K6) = 3 by Theorem E, there is in G at-least one non-

cut-vertex of degree 4. By Lemma 3 and Theorem D, it is easy to see that in this case there is unique vertex of 

degree 4 that is not a cut-vertex of G. L(G) has at-least 4 crossings, a contradiction. Thus, G has a unique non-

cut-vertex of degree 5 and every vertex of degree 4 is a cut-vertex. 

Suppose ∆(G) ≥ 7 and let degv = n ≥ 7. Then L(G) contains a subgraph K7 with at-least 4 crossings in its 
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edges [6]. It is Known that the crossing number of Kn+1, n ≥ 6 is Cr(K7) = Cr(K6+1) = 
1

4
[
6+1

2
] [

6

2
] [

6−2/2

2
] >

3, contradiction. It remains to prove that v be aunique cut-vertex of degree 6 in G and it has exactly 4 

incident edges in one block. By Lemma 3 and Theorem D, every vertex of degree 4 is a cut-vertex of G, L(G) 

has at-least 4 crossing, a contradiction. 

Conversely first we suppose that the conditions (1) to (10) hold. Assume (1) holds then by Theorem E, L(G) has 

crossing number at-least 3. By Lemma 4, Cr(G) = 1 and G has a unique induced subgraph K3,3. 

If (2) holds then v1, v2, v3 (mutually adjacent or nonadjacent) are 3 non-cut-vertices of degree 4. Using 

transformation from figure 1(a) On three vertices vi from G1 from G by making the transformation in Fig 1(b). 

Then L(G1) is planar and must contain the configuration in Fig 2(a). This can be transformed to give rise to a 

drawing of L(G) with only 3 crossings (See Fig 2(b)). 

Now assume that the condition (3) holds. Let v1, v2 and v3 (mutually adjacent or nonadjacent) be three vertices of 

degree 5. Then the edges incident with v1 can be split into two sets of sizes 2 and 3 such way that no edges in 

different sets are in the same block. Form G11 from G by the transformation as in Fig 3(a). Then by Theorem 

D, Cr(G11) = 1, f is a cut-vertex of L(G11) and the vertices of the block of L(G11) containing the vertices c, d, e and 

f but other than these vertices lie in the region with c, d and e on its boundary. We can assume that the vertices 

of the block of L(G11) containing the edge {a, b} other than a, b and f lie in the triangular region with the vertices 

a, b and f on its boundary. The transformation of L(G11) into L(G) with exactly 3 crossings as shown in Fig 3(b). 

 

Figure 1: 

Figure 2: 
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Figure 3: 

Next suppose that the condition (4) holds. The edges incident with vertices vi i=1,2 of degree 5 can be split into 

sets of sizes 2 and 3 so that no edges in different sets are in the same block. Transform G to G11 as in Fig 3(a). 

Then ∆(G11) = 4 and G11 contains one non-cut-vertex u of degree 4. By Theorem D, Cr(L(G11)) = 1 and the line 

graph of the block containing u is in L(G11) (See Fig 3(a)), either in the triangular region with a, b and f on its 

boundary or in the region with c, d and e on its boundary. This can be again transformed to obtained a drawing 

of L(G) with two additional crossings as shown in Fig 3(b). 

Suppose that the condition (5) holds. The edges at the vertex v of degree 5 can be split into two sets of size 2 

and 3 so that no edges in different sets are in the same block. Transform G to G11 as in Fig 3(a). Then L(G11) is 

again planar (See Fig 3(b)) and L(G) can be drawn with one crossing as indicated in Fig 3(b). Also, G has three 

non-cut-vertices v1, v2 and v3 of degree 4 each. It is easy to seen from Theorem A that they must lie in the same 

block of G. By inserting a vertex of degree two in between each pair, if necessary, we may assume they are not 

adjacent. In a drawing of L(G) with one crossing, the vertices from the 4 edges at v1, v2 or v3 must form a 

complete 4- graph of either type 1 or type 2 in Fig 4 and not both can be of type 1. Suppose three are of type 2 

(See Fig 5(a)). Then in G edges e1, e2 and e3 

 

Figure 4: 

are on cycle that contains only one other edge at each of v1, v2 and v3. In L(G) such a cycle must give 3 crossings. 

Similarly if vi gives rise of type 1 and vj of type 2. It follows that L(G) has at-least 3 additional crossings (Fig 

5(b)). 

Now assume (6) holds. Let u and v be the vertices of degree 2 and 5 respectively. Let a, b, c, d and e be edges 

incident with the vertex v such that e is a bridge and the other edges belong to a subgraph of G2 where G2 is 

connected subgraph of G not containing e. Let G1 be a subgraph of G induced by edges of G not belonging to 

G2. By Theorem D, Cr(L(G2)) = 1 and L(G1) is planar. Because L (G2 − u) is planar (See Theorem B), the graph 

L(G2) can be drawn in such a way that the edges of the subgraph K4 of L(G2) induced by the edges a,b c and d do 

not cross one another and one crossing of L(G2) is realized with one of these edges and the edge (in fact K2) which 

associated in L(G) to the vertex u. Let us draw L(G1) (of course without crossings) in to a triangular region of K4 
not containing inside any vertex of L(G2), in such a way that the 
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Figure 5: 

vertex e is on outer face with respect to the drawing of L(G1). Then we can join the vertex e with the vertices 

a, b.c and d of L(G2) not producing more than one crossing. 

All that remains is to show that any vertex u of degree 4 must be not-cut-vertex. Suppose there are at-least two 

non-cut-vertices w and z of degree 4. Then by Theorem A, there are two crossings. The result in a drawing of L(G) 

having at-least 4 crossings, a contradiction. Thus, G has exactly one non-cut-vertex of degree 4. Therefore L(G) 

has exactly 3 crossings. 

Assume (7) holds. It is easily seeing that G cannot have 3 vertices of degree 5, So let v1 and v2 (adjacent or not-

adjacent) be the vertices each has degree 5. We observe that if v1 has 4 (it may have all 5) of its edges a,b ,c and 

d in one block then the line graph of that block has crossing number at-least 1. So, if L(G) has only one crossing, 

the fifth line e in G at v1 must have appear in an optimal drawing of L(G) as in Fig (6). But a and b lie in a block, 

so there must be a cycle containing them and neither c or d. 

It follows that L(G) would have crossing number at-least 2 so v1 has at most 3 edges in any block. So, L(G) must 

have crossed number at-least 2. So v1 has at-most 3 edges in a block and v2 has 4 edges in a block. 

 

Figure 6: 

It remains to prove that v2 is a cut-vertex of degree 5 having exactly 4 incident edges a, back and d in one block. 

By case 6, the line graph L(G) has two more crossings. So, L(G) must have crossed number 3. 

Assume (8) holds. Then Lemma 2, L(G) has 3 crossings. 

Assume (9) holds. Suppose degv = 5 and v is not a cut-vertex of G. By Lemma 1, L(G) has at-most 3 crossings. 

It sufficient to prove that Cr(L(G)) ≥ 3. Let a, b, c, d and e be the edges incident to v and let f, g, h and i be the 

edges not incident with v. Removal of an edges for i which is incident to a vertex of degree 2 in the block we 

get there is a unique vertex of degree 5, it is a cut-vertex having exactly 4 incident edges in one block. Then by 

Theorem E, L(G) has at-least 2 crossings. Adding an edge f (or i) in an optimal drawing increase one crossing. 

Thus Cr(L(G)) ≥ 3. 

Assume (10) holds. Let v be the vertex of degree 6. We observed that if v has at-least 4 of its lines a, b, c and d 

in one block then the line graph of that block has crossing number at-least one. So if L(G) has only one crossing 
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the fifth and sixth edges e and f in G at v must appear in an optimal drawing of L(G) as in Fig 7. 

Figure 7: 

But a and b lie in a block, so there must be a cycle containing them and neither c or d. It follows that L(G) would 

have crossing number at-least 3. So, v has at-most 3 edges in any one block. This completes the proof. 
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