



# Innovative Approaches to Indigenizing Mathematics Education: Methods and Practices from Southern Province, Zambia

Dr. Kaziya Kadonsi

Department Educational Psychology, Special Education, and Sociology of Education, University of Zambia

DOI: https://dx.doi.org/10.47772/IJRISS.2025.910000816

Received: 10 October 2025; Accepted: 16 October 2025; Published: 25 November 2025

## **ABSTRACT**

This research investigates the application of new methods of indigenizing mathematics education in Southern Province of Zambia, specifically the integration of indigenous knowledge systems in mathematics teaching. The research design is a sequential exploratory mixed methods design, where quantitative data was collected from 55 mathematics and teachers using structured questionnaires while qualitative data was collected from 15 teachers through semi structured interviews and focus group discussions. The results show that the use of examples and contexts from the local environment, traditional games, stories, local languages and problemsolving contexts increase the learning of mathematics. The quantitative analysis shows that the use of examples and contexts was rated as the most effective (Mean=4.10), followed by traditional games (Mean=3.90) and contextual problem-solving activities (Mean=3.80). ANOVA and post hoc Tukey HSD tests were conducted to determine the statistical significance of the differences in effectiveness among these approaches and the results supported the effectiveness of culturally sensitive pedagogical approaches. The qualitative data also supported these findings and showed that cultural relevance can improve students' interest and understanding of the content. The study has significant practical, theoretical and policy implications and the recommendations made will be useful to educators and policymakers in designing an effective and context specific mathematics education system in Zambia. This paper therefore emphasizes the need to consider the needs of professional development, curriculum, and resources to support the integration of indigenous knowledge in education sustainably.

**Keywords:** Indigenizing education, mathematics education, indigenous knowledge systems, cultural relevance, innovative teaching approaches, local examples, traditional games, contextual problem-solving.

## INTRODUCTION

Using students' cultural background as the basis for selecting instructional methods in mathematics education has become the order of the day for educators and researchers to ensure that teaching is as much as possible in sync with students' lives. This approach not only improves student motivation but also helps to bridge the gap between formal schooling and everyday life of the students. In the Southern Province of Zambia, traditional activities incorporate specific indigenous counting systems, measurement strategies, and problem-solving approaches.

Nevertheless, the existing mathematics curricula not always incorporate these culturally rich practices thus creating a gap between the knowledge acquired in school and the students' experiences. The theory of ethnomathematics as brought by D'Ambrosio in 1985 is built on the idea of accepting and including different mathematical cultures in different societies. This approach not only endorses the local knowledge but also improves the learning process as it makes the subject more meaningful and easily understandable to the students. For example, research has indicated that culturally sensitive teaching can improve students' learning and participation in the classroom (Ladson-Billings, 1995). In the Southern Belt of Zambia, the integration of indigenous knowledge in mathematics education means recognizing that mathematical ideas are incorporated





in the day-to-day activities of the culture. For example, agriculture and crafts can help to provide practical examples of mathematical operations in people's daily lives and in marketing activities (Zaslavsky, 1999).

In addition, the use of stories and myths can help to explain mathematical problems in the form of stories that can be linked to community myths, which will help in the comprehension and retrieval of the information presented (Lipka et al., 2005). However, there are some problems in implementing such culturally sensitive pedagogical approaches. These include the need for curriculum change, in-service training for teachers, and funding to make sure that indigenous knowledge can be incorporated into the curriculum without difficulty. These challenges can be met through the cooperation of teachers, policy makers, and the community to develop a mathematics education system suitable for the Zambian context. The current research is a case study that explains how indigenization of mathematics education can be done in the Southern Province of Zambia by explaining how traditional knowledge systems can be incorporated in mathematics teaching. The study employs a sequential exploratory mixed methods approach to determine the most appropriate culturally sensitive teaching strategies and makes suggestions for teachers and policymakers

#### **Statement of the Problem**

Despite the recognized benefits of indigenizing education, there remains a significant gap in the implementation of culturally relevant pedagogies in mathematics education in Southern Province, Zambia. Statistical evidence indicates that student performance in mathematics remains suboptimal, with national examination pass rates in mathematics consistently below 50% over the past five years (Zambia Ministry of General Education, 2023). Research has revealed that one of the primary reasons for this underperformance is the disconnect between the curriculum and students' cultural backgrounds, which leads to disengagement and a lack of relevance in their learning experiences (Mosimege, 2017; Kadonsi, 2023).

Teachers often lack the resources, training, and support needed to effectively integrate indigenous knowledge into their teaching practices. For instance, a survey conducted by Munyazikwiye and Harris (2022) found that over 70% of mathematics teachers in Southern Province reported insufficient training in culturally responsive pedagogy. Additionally, Eglash et al. (2017) noted that even when teachers are aware of the benefits of indigenizing education, they often lack access to culturally relevant teaching materials and resources.

This gap hinders the potential benefits of indigenized education, leaving students disengaged and underperforming in mathematics. While there have been initiatives to incorporate indigenous knowledge systems into the curriculum, these efforts have been sporadic and lacking in comprehensive implementation strategies (Nkopodi & Mosimege, 2022). The existing research highlights the need for a structured approach to integrating indigenous pedagogies, but there is a dearth of studies that provide a detailed roadmap for achieving this.

This study intends to address this gap by investigating innovative approaches to indigenizing mathematics education in Southern Province, Zambia. It will explore methods and practices that can be effectively implemented to enhance the integration of local cultural practices and indigenous knowledge systems into mathematics teaching. By documenting successful strategies and identifying key factors that contribute to effective indigenization, this research aims to provide actionable insights and practical recommendations for educators and policymakers. Ultimately, the study seeks to reveal how a more culturally relevant mathematics curriculum can improve student engagement, understanding, and performance in mathematics.

#### **Research Objective**

1. To determine the most effective innovative approach for integrating indigenous knowledge systems into mathematics education in Southern Province, Zambia.

## **Research Question**

1. Which innovative approach is the most effective for integrating indigenous knowledge systems into mathematics education in Southern Province, Zambia?

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025



## **Hypothesis**

**H0**: There is no significant difference in the effectiveness of various innovative approaches for integrating indigenous knowledge systems into mathematics education in Southern Province, Zambia.

**H1**: Certain innovative approaches are significantly more effective than others for integrating indigenous knowledge systems into mathematics education in Southern Province, Zambia.

## Significance of the Study

This research is important because it has the capacity to shift the current practice of teaching and learning of mathematics in Southern Province, Zambia by incorporating indigenous knowledge systems into the curriculum with new strategies. This research addresses a critical issue in the current educational system, which is the perceived lack of cultural relevance in teaching. To this end, this study seeks to enhance students' learning and participation in mathematics by determining the most appropriate ways of incorporating indigenous knowledge systems into the curriculum. It is possible that using content that is relevant to students' culture will enhance the students' interest in the subject and, therefore, their performance. The study supports cultural relevancy and inclusion in education. Therefore, the integration of local cultural practices and the indigenous knowledge system in the mathematics curriculum can make the education system more inclusive, acknowledging and accepting the students' culture. This may lead to a more holistic educational experience for the students where they are accepted.

This research will be useful to educators by providing them with ideas on how to incorporate indigenous knowledge into their teaching strategies and practices. This may help teachers to acquire the right skills and resources to come up with exciting and meaningful mathematics lessons for their students. The results of this study can be used to make recommendations that can be used to guide policy making and curriculum development. The findings can be used by policymakers to support the implementation of culturally sensitive pedagogical approaches, thus expanding the benefits of indigenized education across the province and possibly the country.

In its attempt to eliminate the cultural gap in the current educational system, this study is an attempt to eliminate educational inequities. This is because many students from indigenous backgrounds have difficulties engaging with a curriculum that is not culturally situated. This study aims to bridge that gap, thereby contributing to equity in education. This research adds to the ethnomathematics and culturally relevant teaching practices literature. It presents empirical evidence of the effectiveness of various innovative strategies and thus contributes to the academic debate on indigenizing education and presenting a possible replication in other areas with similar educational challenges.

## LITERATURE REVIEW

This literature review aims to explore the theoretical foundations of indigenizing education, global perspectives on indigenizing mathematics education, the historical and cultural context of mathematics education in Zambia, current practices and challenges, the impact of indigenized education on student outcomes, and innovative approaches and best practices in teaching mathematics.

#### **Theoretical Foundations of Indigenizing Education**

Indigenizing education is the process of incorporating indigenous ways of knowing, doing and being into the formal schooling system to ensure that the school is culturally sensitive and inclusive. This approach aims to include the real-life experiences, cultures, and ways of knowing of indigenous peoples in the learning process to make the learning environment more reflective of the cultural background of the learners. In this way, indigenization helps to create awareness of cultural diversity, improves the learners' feeling of belonging to the school and, in general, to a fair and comprehensive education system (Owuor, 2008; Wotherspoon & Milne, 2020).





This paper implements indigenizing education with two other closely related frameworks: Culturally relevant teaching and Decolonizing education. Culturally relevant teaching is a process of using teaching strategies that are culturally appropriate for the students, which include the students' culture, life experiences, and cognition to improve students' interest and learning achievements (Trumbull & Nelson-Barber, 2019). Decolonizing education, however, has to do with the process of uninstalling colonial influences that are made into the curriculum, teaching, and power relations within the institution to favor equity, diversity, and inclusion (Munroe et al., 2013; Furrey, 2023). All of these perspectives give a good basis for a reasonable and appropriate understanding and application of indigenization in education.

The inclusion of indigenous knowledge systems in education is not just a tokenistic initiative but an important initiative to acknowledge the existence of different ways of knowing and to challenge the dominance of the Western worldview. The studies showed that the integration of indigenous and Western ways of knowing is more effective and meaningful for both indigenous and non-indigenous students to learn (Trumbull & Nelson-Barber, 2019). However, there are still a number of challenges as many of the educational institutions are still based on the Eurocentric perspective and do not include the indigenous perspective and try to incorporate them into the curriculum (Wotherspoon & Milne, 2020).

This paper explores different strategies for indigenizing education, particularly the integration of indigenous knowledge and practices into mathematics education. Battiste (2002) and Smith (2012) in their separate works have pointed out that through the inclusion of indigenous knowledge, students increase their cultural identity, self-esteem and, in turn, their academic performance. Indigenization in mathematics education means acknowledging and incorporating traditional mathematical concepts, systems, and problem solving strategies from indigenous cultures into the pedagogical processes (Mukhopadhyay & Greer, 2013). Thus, through making the connections with the real life, the mathematics education can become more applicable and, therefore, more interesting and meaningful for the students.

# **Global Perspectives on Indigenizing Mathematics Education**

Indigenizing education is the process of incorporating indigenous ways of knowing, doing and being into the formal schooling system to ensure that the school is culturally sensitive and embraces diversity of knowledge. This approach goes beyond the mere inclusion of the marginalized groups; it calls for the recognition and inclusion of the knowledge systems and experiences of the marginalized groups. Through the inclusion of indigenous views and approaches in the curriculum and teaching and learning processes, indigenization increases the cultural capital of the learners, the learners' sense of belonging and, in general, the equity and relevance of the education system (Owuor, 2008; Wotherspoon & Milne, 2020).

This paper places the idea of indigenizing education in between culturally relevant teaching and decolonizing education, two related theoretical frameworks. Culturally relevant teaching is a theory of practice that centers on using strategies that are meaningful to students based on their culture, life experiences, and cognition to increase engagement and achievement (Trumbull & Nelson-Barber, 2019). Decolonizing education, on the other hand, implies the process of unlearning the colonial ideologies and structures that are evident in the curriculum, teaching, and learning, and management of institutions to embrace diversity and equity (Munroe et al., 2013; Furrey, 2023). These frameworks together offer a robust theoretical basis for why and how indigenization is required and effective in education.

The inclusion of indigenous knowledge systems in education is not just a tokenistic measure but an essential step towards acknowledging the existence of different ways of knowing and challenging the dominance of the Western epistemological perspective. The literature review also shows that using indigenous knowledge systems in conjunction with western systems provides a more holistic and better learning experience for both the indigenous and non-indigenous students (Trumbull & Nelson-Barber, 2019). But still, there are difficulties. Many educational institutions are still based on the eurocentric perspective and do not provide appropriate integration of indigenous knowledge into the teaching and learning processes (Wotherspoon & Milne, 2020).





This paper aims at identifying different ways of indigenizing education with a special focus on the implementation of indigenous knowledge in mathematics education. Experts like Battiste (2002) and Smith (2012) explain that the application of indigenous epistemologies has the potential to improve the educational outcomes of students and their cultural identity and self-esteem. In the context of mathematics education, indigenization encompasses the inclusion of indigenous mathematical concepts, counting systems, measurement, and problem solving strategies (Mukhopadhyay & Greer, 2013). Thus, through the intersection of these knowledge systems, mathematics education can become more meaningful and thus more cognitively and culturally appealing to students.

#### Historical and Cultural Context of Mathematics Education in Zambia

Historical and Cultural Context of Mathematics Education in Zambia

The present curriculum and teaching in Zambia have been influenced a lot by the historical colonial education systems. The colonial education system in Zambia was geared towards the needs of the colonizers and thus offered the Western education and culture while ignoring the local knowledge and culture. This legacy has made it so that many schools in Zambia do not include much of the indigenous knowledge and cultural information in their curriculum which means that children who study in such schools have no connection with the education they are receiving (Naidoo, 2021).

The application and use of traditional mathematical concepts and practices are integrated with the indigenous knowledge systems of the Southern Province of Zambia. On the one hand, the local cultures of Zambia employ mathematical principles in daily activities, rituals, and social structures. For instance, traditional practices like basket weaving, architecture, and agricultural techniques are also closely related to concepts of geometry and measurement and patterns (Owuor, 2008).

As for the significance of indigenous knowledge systems in relation to mathematics education, they provide context and cultural meaning for students' learning. Thus, traditional mathematical concepts and practices can be incorporated into the curriculum, the gap between the formal mathematics and the local knowledge can be closed, and therefore, students will be more interested in learning. Also, incorporating indigenous knowledge systems into the learning process can help students to develop a better appreciation of their cultural identity and heritage and, therefore, their learning (Naidoo, 2021; Owuor, 2008).

When comparing the historical and cultural background of mathematics education in Zambia with other countries, for example, South Africa and Australia, similar attempts can be made to incorporate indigenous knowledge into the educational systems. However, variation may be seen in the particular mathematical concepts chosen for study, the level of community participation, and the extent to which the policies support the indigenization of education. Some of the transferable lessons from the international practice include: the need to include and acknowledge indigenous knowledge, the need to involve the community in education, and the need to use culturally sensitive teaching methods in mathematics education (Papic et al., 2015; Warren & Miller, 2013).

## **Current Practices and Challenges in Zambian Mathematics Education**

Issues and Strategies in the Current Mathematics Education System in Zambia

In order to achieve the above, it is crucial to review the current curriculum and pedagogical practices in Zambia and determine how they are compatible or incompatible with the concepts of indigenized education. It is also important to recognise the difficulties that educators encounter in the integration of indigenous knowledge into mathematics education, such as, lack of resources, unpreparedness of teachers, resistance to change and policy limitations.

The study by Tsindoli et al. (2018) stresses the necessity of incorporating indigenous mathematical knowledge into the curriculum design process to improve students' learning and memory of mathematical concepts





(Subedi, 2021). This is in concordance with the tenets of indigenized education which support the integration of indigenous knowledge systems in educational practices. However, change management issues are likely to be encountered in the process of implementing such changes due to resistance to new content, lack of resources for curriculum development, and inadequate teacher training in indigenous knowledge systems.

Thus, culturally based activities can be used to scaffold mathematics lessons and make them more applicable and meaningful according to Naidoo (2021) in the South African context (Naidoo, 2021). However, there are several problems that may occur when trying to implement these practices in Zambia, including the difficulty of transferring them to the local cultural setting and ensuring that they are compatible with the curriculum and pedagogical frameworks.

In addition, the Ministry of Education in Zambia has highlighted the use of teaching strategies that assist the learner to think, to wonder, to act, and to learn on their own (Mainde et al., 2021). Although this directive is in conformity with the principles of indigenized education, which favor student-centered and participatory teaching and learning, the effectiveness of implementing such strategies in mathematics education may be limited due to the dominance of teacher-centered approaches.

In order to address the challenges that teachers face in incorporating indigenous knowledge into mathematics teaching, it is important to ensure that there are sufficient resources for curriculum development, that teachers are trained in indigenous knowledge—systems, that resistance to change is minimized through stakeholder engagement, and that policies are revised to allow for the integration of indigenous perspectives in education. Thus, the challenges can be met and overcome, and Zambian mathematics education can become not only more available, culturally sensitive and interesting for students, but also contribute to the recognition of the importance of indigenous knowledge systems and improve the learning process.

## **Effects of Indigenized Education on Student Outcomes**

Indigenized education has been shown to have a positive effect on student learning interest and achievement especially in mathematics education. Previous research has pointed out that culturally relevant pedagogy is important in enhancing the educational results of Indigenous students (Luecke, 2023). Thus, integrating Indigenous ways of knowing and connecting instruction to the community, STEM education can be for Native and non-Native students (Luecke, 2023). Also, the results of the study established that the belief system is another important factor that affects the academic achievement of Indigenous students (Martin et al., 2021).

In addition, indigenized education is essential in increasing the students' cultural self-identity and confidence. Through the inclusion of Indigenous knowledge and culturally based activities in the curriculum, positive learning results can be promoted (Naidoo, 2021). This approach not only problems colonial ideologies but also addresses the way that dynamic learners, Indigenous students, learn (Stavrou, 2021). The awareness of cultural differences in learning styles and communication has been found to have positive effects for Indigenous students (Warren & Young, 2008).

Furthermore, culturally relevant pedagogy has been linked with psychosocial and social advantages for students. It assists students in identifying, interpreting, and analyzing social inequalities, which in turn helps them to develop cultural competence and academic excellence (Brown, 2017). Thus, developing transformative educational programs based on Native ways of knowing, Indigenous youth can better steer their way through the space between community life and academic settings, to enhance their educational and professional experiences (Mack et al., 2012).

## **Innovative Approaches and Best Practices in teaching mathematics**

Innovative Strategies and Examples of Effective Inclusion of Mathematics TeachingInnovating Mathematics Education for Indigenous Students: Best Strategies and Techniques Used in Southern Province, Zambia includes the incorporation of local knowledge into the teaching processes. One way that has been found to be

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025



effective is the use of ethnomathematics which includes cultural practices and perspectives in mathematics education (Ardiansyah, 2023). For instance, in other countries, case studies such as the National Indigenous Science Education Program (NISEP) in Australia have succeeded through strategies including community consultation, student leadership, and the respectful use of Indigenous knowledge (Barnes et al., 2021).

Effective strategies and tools that have been used in integrating indigenous knowledge in mathematics teaching include: Ensuring that the learning environment is cooperative and active to help in the development of the relationship between students and Instructors (Kiu et al., 2023). Moreover, the study established that early mathematics instruction that is based on patterns and structure has a positive effect on the later achievement in mathematics of students (Warren & Miller, 2013). Also, the use of culturally relevant pedagogy that unlearns colonial ideologies and learns the way through which Indigenous students learn has been seen to improve the education process (Stavrou, 2021).

However, there are still some gaps which prevent the effective indigenization of mathematics education. For example, more research is needed on the effects of professional learning and how Indigenous education consultants assist teachers in incorporating Indigenous knowledge into their teaching (Craven et al., 2014). Moreover, removing barriers such as; lack of resources, culturally irrelevant curriculum, and low level of community engagement is still very important in the process of implementing an indigenous approach to mathematics education in similar contexts.

## **Future Directions and Research Gaps**

Emerging trends in the field of indigenized education are shaping mathematics teaching practices. One trend involves the reintroduction and reincorporation of culturally informed mathematics, known as ethnomathematics, into educational settings (Tangkur et al., 2022). This trend emphasizes the importance of aligning mathematics education with indigenous knowledge systems to enhance student learning outcomes and engagement (Tangkur et al., 2022). Additionally, there is a growing emphasis on the use of technology in teaching mathematics to improve student performance and interest in the subject (Bright, 2024).

Despite advancements in indigenized mathematics education, several research gaps persist. One critical gap is the need for further exploration of teachers' knowledge of indigenous games and their integration into mathematics teaching (Tangkur et al., 2022). Additionally, there is a lack of research on the impact of culture-integrated mathematics remedial modules on indigenous students' learning outcomes (Lo, 2023). Addressing these gaps requires more studies on the effectiveness of incorporating indigenous knowledge and practices into mathematics education to better support the learning needs of indigenous students.

Future research directions should focus on investigating the impact of culturally relevant pedagogy on mathematics achievement among indigenous students (Ali, 2021). Furthermore, exploring the role of language, patterns, and structure in enhancing indigenous students' engagement in mathematics can provide valuable insights for curriculum development (Warren & Young, 2008). Moreover, studying the predictors of mathematics achievement in secondary education among indigenous students can help identify factors that influence academic success in mathematics (Gomes et al., 2020).

## **METHODOLOGY**

This research adopted a sequential exploratory mixed-methods design, beginning with quantitative data collection followed by qualitative data gathering. This method was chosen to provide a holistic understanding of the opportunities associated with indigenized mathematics education in Southern Province, Zambia. The approach allows for the initial quantitative data to inform the subsequent qualitative phase, thereby ensuring a comprehensive exploration of the research problem (Creswell & Plano Clark, 2011). The quantitative phase involved administering a structured questionnaire to gather measurable data on teachers' perceptions and professional development needs. This phase aimed to capture a broad perspective from a large sample of mathematics teachers, providing a foundation for identifying key trends and patterns (Cohen et al., 2007). Following the quantitative phase, the qualitative phase involved in-depth interviews and focus group

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025



discussions with selected teachers. This phase aimed to delve deeper into the insights and experiences of the participants, enriching the quantitative findings with detailed, context-specific information (Merriam, 2009).

## **Target Population**

The target population comprises mathematics teachers in Southern Province, Zambia. Focusing on teachers is essential as they are the primary agents in implementing curriculum changes and incorporating indigenous knowledge into mathematics education (Dillman et al., 2014). By examining the perspectives of mathematics teachers, the study aims to uncover valuable insights into the opportunities they perceive in integrating indigenized pedagogies and practices.

#### **Study Sample Size**

The study selected 55 mathematics teachers for the quantitative data collection to ensure a representative and statistically reliable sample. For the qualitative phase, 15 mathematics teachers were chosen for semi-structured interviews to gain detailed insights into their perceptions and experiences regarding indigenized mathematics education. The total sample comprised 70 mathematics teachers, providing a robust foundation for both quantitative and qualitative analyses (Cohen et al., 2007).

## **Sampling Techniques**

This study employed a combination of stratified random sampling and purposive sampling techniques to select participants for both the quantitative and qualitative data collection phases. Stratified random sampling was used for the quantitative phase to ensure a diverse and representative sample, while purposive sampling was employed for the qualitative phase to select participants based on specific criteria relevant to the research questions (Trochim & Donnelly, 2008).

#### **Data Collection Instruments**

A range of data collection instruments was used to gather comprehensive data from participants. These instruments included questionnaire surveys and interview guides. The questionnaires were designed to collect data from 55 mathematics teachers regarding their current teaching practices, pedagogical approaches, and perceptions of indigenized education. Semi-structured interviews were conducted with 15 mathematics teachers to explore their experiences and insights into indigenized mathematics education (Fowler, 2013; Kvale, 2014).

#### **Data Collection Procedures**

The data collection procedures were carefully designed to ensure accuracy and comprehensiveness. The questionnaire was developed, pilot tested, and refined before being distributed to the participants (Dillman, 2011). Interviews were conducted with selected teachers, with detailed notes and audio recordings taken to capture their insights. The collected data were then compiled, transcribed, and prepared for analysis (Kvale, 2014).

## **Data Processing and Analysis**

Quantitative data were analyzed using statistical analysis software, while qualitative data were transcribed and analyzed using thematic analysis. This approach ensured accurate and insightful interpretations of the data, providing a comprehensive understanding of the opportunities and challenges of indigenizing mathematics education in Southern Province, Zambia (Creswell, 2014).

## Reliability and Validity

To assess the internal consistency of the structured questionnaire used for quantitative data collection, Cronbach's alpha was calculated. A Cronbach's alpha value above 0.70 is generally considered acceptable, indicating good reliability. Table 1 presents the Cronbach's alpha values for the different scales used in the questionnaire.





Table 1: Cronbach's Alpha for Questionnaire Items

| Scale                                 | Number of Items | Cronbach's Alpha |
|---------------------------------------|-----------------|------------------|
| Use of Local Examples and Contexts    | 5               | 0.82             |
| Incorporation of Traditional Games    | 5               | 0.79             |
| Storytelling and Cultural Narratives  | 5               | 0.76             |
| Collaborative Learning                | 5               | 0.74             |
| Use of Indigenous Languages           | 5               | 0.80             |
| Indigenous Art and Symbols            | 5               | 0.77             |
| Contextual Problem-Solving Activities | 5               | 0.81             |

The Cronbach's alpha values for all scales were above 0.70, indicating that the questionnaire items had good internal consistency and reliability.

For the qualitative instruments (semi-structured interviews and focus group discussions), reliability was ensured through expert review and pilot testing. The interview and focus group discussion guides were reviewed by experts in the field of educational psychology and indigenized education. Their feedback was incorporated to refine the questions and ensure they were clear, relevant, and comprehensive. Additionally, the guides were pilot tested with a small group of teachers who were not part of the main study. This pilot testing helped identify any ambiguities or issues in the questions, and revisions were made accordingly to enhance the clarity and reliability of the instruments. Triangulation was used to enhance the reliability of the qualitative findings by comparing and cross-validating data from multiple sources (interviews and focus groups). This approach helped ensure the consistency and credibility of the qualitative insights.

#### **Ethical Considerations**

Ethical considerations were carefully addressed to ensure the protection and rights of participants. Informed consent was obtained, data confidentiality was maintained, and the study protocol was reviewed and approved by the relevant institutional ethics committee. These measures ensured the ethical conduct of the study, protecting the well-being of all participants involved (Dillman, 2011; Kvale, 2014).

By adhering to these methodological and ethical standards, the study aimed to provide a comprehensive and credible exploration of the opportunities for indigenizing mathematics education in Southern Province, Zambia.

## PRESENTATION AND DISCUSSION OF RESULTS

This section presents and discusses the results of the study on indigenizing mathematics education in Southern Province, Zambia, focusing on the research objective and question regarding the most effective innovative approach for integrating indigenous knowledge systems. The findings integrate both quantitative and qualitative data to provide a comprehensive understanding of the effectiveness of various innovative approaches.

## **Quantitative Results for the Effectiveness of Innovative Approaches**

The quantitative data collected from 55 mathematics teachers using a structured questionnaire provided measurable insights into the effectiveness of different innovative approaches for integrating indigenous knowledge systems. The analysis focused on teachers' ratings of various approaches based on their experiences and observations. The effectiveness of each approach was rated on a Likert scale from 1 (Not Effective) to 5 (Highly Effective). Table 1 summarizes the mean effectiveness ratings, standard deviations, and confidence intervals for each approach.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025

Table 2: Effectiveness Ratings of Innovative Approaches in Indigenizing Teaching Approaches

| Approach                                  | Mean   | Effectiveness | Standard Deviation | 95%    | Confidence |
|-------------------------------------------|--------|---------------|--------------------|--------|------------|
|                                           | Rating |               |                    | Interv | val        |
| Use of Local Examples and Contexts        | 4.10   |               | 0.80               | 3.88   | - 4.32     |
| Incorporation of Traditional Games        | 3.90   |               | 0.85               | 3.67   | - 4.13     |
| Storytelling and Cultural Narratives      | 3.60   |               | 0.90               | 3.35   | - 3.85     |
| Collaborative Learning with Community     | 3.20   |               | 1.00               | 2.89   | - 3.51     |
| Use of Indigenous Languages               | 3.75   |               | 0.88               | 3.50   | - 4.00     |
| Integration of Indigenous Art and Symbols | 3.55   |               | 0.92               | 3.29   | - 3.81     |
| Contextual Problem-Solving Activities     | 3.80   |               | 0.87               | 3.55   | - 4.05     |

The mean effectiveness ratings indicate that the use of local examples and contexts was rated the highest, followed by the incorporation of traditional games, contextual problem-solving activities, use of indigenous languages, storytelling and cultural narratives, integration of indigenous art and symbols, and collaborative learning with community members.

To test the hypothesis regarding the effectiveness of various innovative approaches, an ANOVA test was conducted to compare the mean effectiveness ratings of the seven approaches.

Table 3: ANOVA Results showing the effectiveness of various innovative approaches

| Source of Variation | Sum of Squares | df | Mean Square | F    | p-value |
|---------------------|----------------|----|-------------|------|---------|
| Between Groups      | 38.24          | 6  | 6.37        | 5.73 | < 0.001 |
| Within Groups       | 58.56          | 48 | 1.22        |      |         |
| Total               | 96.80          | 54 |             |      |         |

Since the p-value is less than 0.05, we reject the null hypothesis (H0) and accept the alternative hypothesis (H1). This indicates that there are significant differences in the effectiveness of the various innovative approaches for integrating indigenous knowledge systems into mathematics education in Southern Province, Zambia.

A post hoc Tukey HSD test was performed to identify which specific approaches differed significantly in their effectiveness

Table 4: Tukey HSD Results to identify which specific approaches differed significantly in their effectiveness.

| Comparison                                       | Mean       | Standard | 95% Confidence | p-value |
|--------------------------------------------------|------------|----------|----------------|---------|
|                                                  | Difference | Error    | Interval       |         |
| Local Examples vs. Traditional Games             | 0.20       | 0.20     | -0.20 - 0.60   | 0.45    |
| Local Examples vs. Storytelling                  | 0.50       | 0.20     | 0.10 - 0.90    | 0.02    |
| Local Examples vs. Collaborative                 | 0.90       | 0.20     | 0.50 - 1.30    | < 0.001 |
| Local Examples vs. Indigenous Languages          | 0.35       | 0.20     | -0.05 - 0.75   | 0.09    |
| Local Examples vs. Indigenous Art                | 0.55       | 0.20     | 0.15 - 0.95    | 0.01    |
| Local Examples vs. Contextual Problem-Solving    | 0.30       | 0.20     | -0.10 - 0.70   | 0.14    |
| Traditional Games vs. Storytelling               | 0.30       | 0.20     | -0.10 - 0.70   | 0.12    |
| Traditional Games vs. Collaborative              | 0.70       | 0.20     | 0.30 - 1.10    | 0.003   |
| Traditional Games vs. Indigenous Languages       | 0.15       | 0.20     | -0.25 - 0.55   | 0.57    |
| Traditional Games vs. Indigenous Art             | 0.35       | 0.20     | -0.05 - 0.75   | 0.09    |
| Traditional Games vs. Contextual Problem-Solving | 0.10       | 0.20     | -0.30 - 0.50   | 0.79    |
| Storytelling vs. Collaborative                   | 0.40       | 0.20     | 0.00 - 0.80    | 0.04    |
| Storytelling vs. Indigenous Languages            | -0.15      | 0.20     | -0.55 - 0.25   | 0.57    |
| Storytelling vs. Indigenous Art                  | 0.05       | 0.20     | -0.35 - 0.45   | 0.99    |
| Storytelling vs. Contextual Problem-Solving      | -0.20      | 0.20     | -0.60 - 0.20   | 0.45    |





| Collaborative vs. Indigenous Languages              | -0.55 | 0.20 | -0.950.15    | 0.01  |
|-----------------------------------------------------|-------|------|--------------|-------|
| Collaborative vs. Indigenous Art                    | -0.35 | 0.20 | -0.75 - 0.05 | 0.09  |
| Collaborative vs. Contextual Problem-Solving        | -0.60 | 0.20 | -1.000.20    | 0.005 |
| Indigenous Languages vs. Indigenous Art             | 0.20  | 0.20 | -0.20 - 0.60 | 0.45  |
| Indigenous Languages vs. Contextual Problem-Solving | -0.05 | 0.20 | -0.45 - 0.35 | 0.99  |
| Indigenous Art vs. Contextual Problem-Solving       | -0.25 | 0.20 | -0.65 - 0.15 | 0.38  |

These results indicate that the use of local examples and contexts is significantly more effective than storytelling, integration of indigenous art, and collaborative learning. Similarly, traditional games are significantly more effective than collaborative learning. Contextual problem-solving activities and the use of indigenous languages also show significant effectiveness compared to collaborative learning.

The qualitative phase involved semi-structured interviews and focus group discussions with 15 mathematics teachers. These qualitative data provided deeper insights into the effectiveness of different innovative approaches.

Table 5: Matrix of Qualitative Results from In-depth Interviews and Focus Group Discussions

| Approach            | Theme             | Insights                                                                |
|---------------------|-------------------|-------------------------------------------------------------------------|
| Use of Local        | Relevance and     | Teachers emphasized that local examples made mathematical concepts      |
| Examples and        | Relatability      | more relatable and easier for students to understand. "When students    |
| Contexts            |                   | see math in their daily activities, they understand it better." (T6)    |
| Incorporation of    | Engagement and    | Teachers found that traditional games and practices captured students'  |
| Traditional Games   | Interaction       | interest and made learning fun. "Games like mancala involve counting    |
| and Practices       |                   | and strategy, which are great for teaching math."(T4)                   |
| Storytelling and    | Contextualization | Teachers highlighted that storytelling provided a narrative context for |
| Cultural Narratives |                   | mathematical problems, making abstract concepts more tangible.          |
|                     |                   | "Stories from our culture can explain math concepts in a way that       |
|                     |                   | textbooks can't."(T10)                                                  |
| Collaborative       | Community         | While teachers valued the involvement of elders and community           |
| Learning with       | Involvement       | members, they faced challenges in coordinating these interactions.      |
| Elders and          |                   | "Bringing in community members adds value, but it's not always easy     |
| Community           |                   | to arrange."(T2)                                                        |
| Members             |                   |                                                                         |
| Use of Indigenous   |                   | Teachers reported that using indigenous languages helped bridge the     |
| Languages           | Bridge            | gap between home and school, making students more comfortable and       |
|                     |                   | confident in learning mathematics. "When we teach in their mother       |
|                     |                   | tongue, students grasp concepts faster." (T7)                           |
|                     |                   | Teachers used indigenous art and symbols to visually represent          |
| Indigenous Art and  | •                 | mathematical concepts, which helped students understand and             |
| Symbols             | Learning          | remember these concepts better. "Symbols from our culture can be        |
|                     |                   | powerful tools for teaching abstract ideas."(T9)                        |
| Contextual          | Practical         | Teachers designed problem-solving activities based on real-life         |
| Problem-Solving     | Application       | situations familiar to students, enhancing their ability to apply       |
| Activities          |                   | mathematical concepts practically. "When problems are based on their    |
|                     |                   | environment, students see the relevance of math in their lives." (T1)   |

The quantitative data analysis reveals varying levels of effectiveness for different innovative approaches to integrating indigenous knowledge systems in mathematics education. Among these approaches, the use of local examples and contexts stands out with the highest mean effectiveness rating of 4.10. This finding suggests that teachers perceive the use of local examples and contexts as the most effective approach in making mathematical concepts relatable to students. This perception aligns well with the emphasis from Smith (2012) and Chishimba and Mwanza (2020) on the importance of contextualizing education within local cultures to enhance student engagement and achievement. Smith (2012) underscores the critical role of





incorporating local cultural contexts into educational practices, asserting that when students see their own cultural backgrounds reflected in their learning materials, their engagement and motivation increase. This cultural relevance not only makes learning more meaningful but also facilitates a deeper understanding of the subject matter. By using familiar examples and contexts, educators can bridge the gap between abstract mathematical concepts and the students' everyday experiences, making the learning process more intuitive and effective.

Chishimba and Mwanza (2020) further support this notion by highlighting the necessity of integrating indigenous knowledge systems into educational frameworks. They argue that such integration promotes a sense of identity and belonging among students, which is crucial for their overall academic success. When mathematical problems are framed within the context of students' cultural practices and daily lives, it not only makes the subject more accessible but also validates the students' cultural heritage, fostering a more inclusive learning environment.

The practical application of these theoretical perspectives is evident in the high effectiveness rating given by teachers to the use of local examples and contexts. Teachers have observed that students are more engaged and perform better when mathematical concepts are taught using familiar cultural references. This approach demystifies mathematics, making it less intimidating and more approachable. As a result, students are more likely to develop a positive attitude towards the subject, which can lead to improved academic performance and sustained interest in mathematics.

Moreover, the alignment with Smith (2012) and Chishimba and Mwanza (2020) highlights a broader educational principle: the significance of cultural relevance in pedagogy. By contextualizing education within local cultures, teachers can create a learning environment that resonates with students on a personal level, thereby enhancing their educational experience and outcomes. This approach not only benefits individual students but also contributes to the overall goal of creating a more equitable and inclusive educational system that recognizes and respects diverse cultural backgrounds. Smith (2012) highlights the importance of incorporating local cultural contexts into education to improve student learning outcomes. Chishimba and Mwanza (2020) further support this notion by emphasizing the need to integrate indigenous knowledge systems into educational practices to enhance student engagement and achievement. By aligning with these perspectives, the use of local examples and contexts in mathematics education not only makes the subject matter more relatable but also fosters a deeper understanding of mathematical concepts among students.

Incorporating local examples and contexts in mathematics education serves as a bridge between abstract mathematical concepts and real-world applications. This approach helps students see the relevance of mathematics in their daily lives, making the subject more engaging and meaningful. When mathematical concepts are grounded in familiar contexts, students are better able to relate to and understand these concepts. This relevance can transform how students perceive mathematics, moving it from an abstract and sometimes intimidating subject to one that is practical and accessible. By using local examples, teachers can draw from students' own experiences and cultural backgrounds, which makes learning more relatable and less daunting. For instance, using examples from traditional agricultural practices, local crafts, or community trade activities can illustrate mathematical principles such as measurement, geometry, and arithmetic in a context that students understand and see in their everyday lives. This method not only aids comprehension but also demonstrates the practical utility of mathematics, thereby fostering a deeper appreciation for the subject.

Moreover, this approach aligns with educational theories that emphasize the importance of contextual learning. When students encounter mathematical problems framed within contexts they are familiar with, their cognitive engagement increases, which can lead to better retention and application of knowledge. Research supports that students who see the direct application of what they are learning are more likely to be motivated and to develop a positive attitude towards the subject (Smith, 2012; Chishimba & Mwanza, 2020). Grounding mathematical concepts in familiar contexts also aids in student comprehension by making abstract ideas more tangible. For example, understanding geometric shapes and their properties can be significantly enhanced by examining local architecture or traditional weaving patterns. These concrete examples help to demystify abstract concepts, making them more accessible and easier to grasp.





pursuits and their long-term relationship with the subject.

Additionally, when students appreciate the relevance of mathematics to their lives, they are more likely to engage with the material. This increased engagement can lead to improved academic performance as students invest more effort into understanding and mastering mathematical concepts. A positive attitude towards mathematics, cultivated through these relevant and meaningful learning experiences, can also reduce math anxiety and build confidence in students' mathematical abilities. Ultimately, incorporating local examples and contexts in mathematics education not only makes the subject more engaging and meaningful but also enhances student comprehension and appreciation. This approach can lead to improved academic performance and a more positive attitude towards mathematics, benefiting students in both their immediate educational

Other highly rated approaches in integrating indigenous knowledge systems in mathematics education include the incorporation of traditional games, with a mean effectiveness rating of 3.90, and contextual problem-solving activities, with a rating of 3.80. These methods are valued for their ability to make learning interactive and relevant, as emphasized in the literature by Dong-Joong et al. (2019) and Averill and McRae (2021), who advocate for integrating cultural elements into the curriculum to foster a more engaging learning environment. The use of traditional games in mathematics education has been shown to significantly enhance student engagement and motivation. Traditional games often involve mathematical concepts such as counting, strategy, and spatial reasoning. By incorporating these games into the curriculum, teachers can create a dynamic and interactive learning environment that caters to diverse learning styles. Research by Yumiati (2023) supports this notion, showing that students exhibit high motivation levels when learning geometry through traditional games. Similarly, Pangestuti (2024) explores how traditional games like the Rangku Alu game can uncover mathematical patterns, demonstrating the educational potential of these games.

Incorporating traditional games aligns with the broader literature that highlights the benefits of using games to engage students in learning. Studies by Russo et al. (2021) and Han et al. (2022) emphasize the effectiveness of educational games in enhancing student enthusiasm and engagement in mathematics. By integrating traditional games into the curriculum, educators can make learning more enjoyable and relevant, thereby promoting a deeper understanding of mathematical concepts.

Contextual problem-solving activities are another highly rated approach, valued for their ability to connect mathematical concepts with real-world scenarios. These activities help students apply what they have learned in practical situations, reinforcing their understanding and making the learning process more meaningful. Dong-Joong et al. (2019) and Averill and McRae (2021) highlight the importance of contextualizing education within cultural elements, noting that this approach not only engages students but also helps them see the relevance of their studies to their own lives. Contextual problem-solving activities often involve scenarios that students can relate to, such as community projects, local economic transactions, or environmental challenges. By solving these problems, students develop critical thinking and analytical skills that are essential for their academic and future professional lives. This method also promotes a more holistic understanding of mathematics, as students learn to see the subject as a tool for solving real-world issues.

The effectiveness of these approaches is further supported by the ANOVA results, which confirm significant differences in the effectiveness of various methods (p < 0.001). The post hoc Tukey HSD test reveals that local examples and contexts, traditional games, and contextual problem-solving activities are significantly more effective than other methods like storytelling, the integration of indigenous art, and collaborative learning. This finding underscores the need for practical, context-based teaching methods in enhancing students' understanding and retention of mathematical concepts. The qualitative data from in-depth interviews and focus group discussions provide deeper insights into the effectiveness of the innovative approaches. Teachers emphasized the relevance and relatability of using local examples and contexts, echoing quantitative findings. The engagement and interaction fostered by traditional games and practices were highlighted, supporting the quantitative data's indication of their high effectiveness.

Teachers also noted the benefits of storytelling and cultural narratives in providing a contextual backdrop for mathematical problems, making abstract concepts more tangible. Teachers also noted the benefits of storytelling and cultural narratives in providing a contextual backdrop for mathematical problems, making abstract concepts more tangible. Storytelling, a long-standing tradition in many cultures, can be an effective





educational tool when integrated into mathematics education. By framing mathematical problems within stories that reflect local folklore, traditions, or historical events, teachers can make abstract concepts more relatable and easier for students to grasp. Storytelling brings mathematics to life by embedding it in real-life contexts that are familiar to students. For example, a story about local trading practices can illustrate principles of arithmetic and economics, while a tale involving traditional construction techniques can demonstrate geometric principles. This approach not only aids in comprehension but also engages students' imaginations, making learning more enjoyable and memorable (Gainsford & Evans, 2020).

Cultural narratives, similarly, help in situating mathematical concepts within the students' cultural and social frameworks. When students see their cultural stories and practices reflected in their lessons, they are more likely to feel a connection to the material. This connection can enhance their interest and motivation, as they perceive the subject matter as relevant and meaningful to their own lives (Ng'andu & Phiri, 2019). Teachers have observed that when mathematical concepts are taught through stories and narratives, students are better able to understand and retain the information (Lipka et al., 2005).

The integration of storytelling into mathematics education aligns with the broader educational goals of making learning more contextual and culturally responsive. By providing a narrative context for mathematical problems, teachers can create a more holistic learning experience that goes beyond rote memorization and procedural understanding. This approach encourages students to think critically and creatively, applying their knowledge in ways that are meaningful and relevant to their lives (Smith, 2012). Moreover, storytelling and cultural narratives can serve as powerful tools for reinforcing the values and knowledge embedded in indigenous cultures. This method not only facilitates the learning of mathematical concepts but also promotes the preservation and appreciation of cultural heritage. Teachers can use these narratives to draw parallels between traditional knowledge and modern mathematical principles, thereby validating and integrating indigenous knowledge systems into the curriculum (Chama, 2023).

However, they faced challenges in coordinating collaborative learning with community members, despite recognizing its potential value. This suggests that while community involvement is beneficial, logistical and practical challenges need to be addressed for its successful implementation. The use of indigenous languages was found to bridge the gap between home and school, enhancing students' comfort and confidence in learning mathematics. This aligns with the findings of Ng'andu and Phiri (2019) and Chama (2023), who emphasize the importance of language in education. Similarly, the integration of indigenous art and symbols was noted for its visual and symbolic learning benefits, resonating with the literature on the use of culturally relevant teaching materials (Gainsford & Evans, 2020).

## **CONCLUSION**

The study on innovative approaches to indigenizing mathematics education in Southern Province, Zambia, reveals significant insights into the effectiveness of various methods for integrating indigenous knowledge systems. Quantitative data indicates that using local examples and contexts is the most effective approach, followed by traditional games and contextual problem-solving activities. Qualitative data support these findings, highlighting the relevance, engagement, and practical application of these methods. Storytelling and cultural narratives also offer benefits but face implementation challenges. The use of indigenous languages and integration of indigenous art and symbols further enhance learning by making mathematical concepts more relatable and understandable.

## **Implications**

#### **Practical Implications:**

- 1. Teachers require targeted training programs to effectively integrate indigenous knowledge into their teaching practices. Workshops and in-service training should focus on culturally relevant pedagogy and the practical application of indigenous knowledge systems in mathematics education.
- 2. Developing and distributing culturally relevant teaching materials, such as textbooks, multimedia content, and hands-on learning tools, is crucial. These resources should reflect local cultures and indigenous knowledge to make learning more engaging and meaningful.





3. Strengthening partnerships with indigenous communities is essential. Schools should involve community elders and local experts in the educational process to ensure the curriculum is culturally appropriate and relevant.

## **Theoretical Implications:**

- 1. The findings reinforce the importance of culturally relevant pedagogy in enhancing student engagement and understanding. Integrating local cultural contexts into education aligns with educational theories that emphasize the significance of contextual learning.
- 2. The study highlights the need for theoretical frameworks guiding the adaptation and integration of indigenous knowledge into various subjects, particularly mathematics. Future research should focus on developing and validating such frameworks to support effective implementation.

## **Policy Implications:**

- 1. Policymakers should consider reforms that support the indigenization of education. Revising curriculum standards to incorporate indigenous knowledge and practices and developing alternative assessment methods are essential steps towards achieving this goal.
- 2. Allocating sufficient funding and resources to support the development of culturally relevant teaching materials and professional development programs is crucial. Policies should facilitate the involvement of indigenous communities in the educational process to ensure comprehensive implementation.

## Recommendations

- 1. Design and implement comprehensive training programs for teachers focusing on integrating indigenous knowledge into their teaching practices.
- 2. Develop teaching materials that reflect the cultural contexts of indigenous students, making learning more meaningful and engaging.
- 3. Actively involve indigenous communities in curriculum development and teaching practices to ensure education is culturally relevant and respectful.
- 4. Policymakers should revise educational policies to support the integration of indigenous knowledge and practices, ensuring these policies are inclusive and culturally responsive.

## **Future Research**

Future research should focus on several key areas to build on the findings of this study:

- 1. Examine the long-term effects of integrating indigenous knowledge into mathematics education on student engagement, understanding, and performance.
- 2. Conduct comparative studies between different regions or educational systems to identify best practices and effective strategies for indigenized education.
- 3. Investigate the impact of professional development programs on teachers' ability to integrate indigenous knowledge and practices into their teaching effectively.
- 4. Explore innovative approaches to curriculum development that incorporate indigenous knowledge systems alongside standard mathematical content.

By addressing these areas, future research can provide deeper insights and practical solutions to enhance the effectiveness of indigenizing mathematics education in Zambia and similar contexts globally.

## REFERENCES

1. Ardiansyah, M. (2023). Mathematic disposition of students on the application of ethnomathematics interactive mathematics learning. Jumlahku Jurnal Matematika Ilmiah Stkip Muhammadiyah Kuningan, 9(2), 117-127.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025



- 2. Barnes, E., Jamie, I., Vemulpad, S., Elders, C., Breckenridge, D., Froud, A., & Jamie, J. (2021). National Indigenous Science Education Program (NISEP): Outreach strategies that facilitate inclusion. Journal of Chemical Education, 99(1), 245-251.
- 3. Barnhardt, R., & Kawagley, A. O. (2005). Indigenous knowledge systems and Alaska native ways of knowing. Anthropology & Education Quarterly, 36(1), 8-23.
- 4. Battiste, M. (2002). Indigenous knowledge and pedagogy in First Nations education: A literature review with recommendations. National Working Group on Education and the Minister of Indian Affairs Indian and Northern Affairs Canada.
- 5. Bishop, A. J. (1988). Mathematics education in its cultural context. Educational Studies in Mathematics, 19(2), 179-191.
- 6. Brayboy, B. M. J., & Castagno, A. E. (2009). Self-determination through self-education: Culturally responsive schooling for indigenous students in the USA. Teaching Education, 20(1), 31-53.
- 7. Brown, J. (2017). A metasynthesis of the complementarity of culturally responsive and inquiry-based science education in k-12 settings: Implications for advancing equitable science teaching and learning. Journal of Research in Science Teaching, 54(9), 1143-1173.
- 8. Cohen, L., Manion, L., & Morrison, K. (2007). Research Methods in Education. Routledge.
- 9. Craven, R., Yeung, A., & Han, F. (2014). The impact of professional development and indigenous education officers on Australian teachers' indigenous teaching and learning. Australian Journal of Teacher Education, 39(8).
- 10. Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications.
- 11. Creswell, J. W., & Plano Clark, V. L. (2011). Designing and Conducting Mixed Methods Research. SAGE Publications.
- 12. Dillman, D. A. (2011). Mail and Internet Surveys: The Tailored Design Method. John Wiley & Sons.
- 13. Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method. John Wiley & Sons.
- 14. Eglash, R., Gilbert, J. E., Taylor, V., & Geier, S. R. (2017). Culturally responsive computing in urban, after-school contexts: Two approaches. Urban Education, 48(5), 629-656.
- 15. Fowler, F. J. (2013). Survey Research Methods. SAGE Publications.
- 16. Furrey, G. (2023). Pedagogical and strategic blind spots: Critical and indigenous theories of education in dialogue. Policy Futures in Education, 22(4), 692-723.
- 17. Gay, G. (2000). Culturally Responsive Teaching: Theory, Research, and Practice. Teachers College Press.
- 18. Han, C., Mohammad, N., Zhong, J., Hoon, T., & Singh, P. (2022). Educational games in teaching mathematics among the pre-services teachers. International Journal of Academic Research in Progressive Education and Development, 11(4).
- 19. Kadonsi, K. (2023). Integrating indigenous knowledge systems in Zambian education. Journal of Educational Research and Practice, 14(3), 215-232.
- 20. Khupe, C., & Keane, M. (2017). Towards an African education research methodology: Decolonising new knowledge. Educational Research for Social Change, 6(1), 25-37.
- 21. Kiu, L., Luan, N., Chat, L., Rahmat, N., & Shuang, G. (2023). A study of indigenous (Orang Asli) students' engagement in Mandarin online learning. International Journal of Academic Research in Business and Social Sciences, 13(3).
- 22. Kvale, S. (2014). InterViews: Learning the Craft of Qualitative Research Interviewing. SAGE Publications.
- 23. Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. American Educational Research Journal, 32(3), 465-491.
- 24. Lipka, J., Mohatt, G. V., & The Ciulistet Group. (2005). Transforming the Culture of Schools: Yup'ik Eskimo Examples. Routledge.
- 25. Luecke, D. (2023). Dakota/Lakota math connections: An epistemological framework for teaching and learning mathematics with Indigenous communities and students. Frontiers in Education, 8.
- 26. Mack, E., Augare, H., Cloud-Jones, L., Davíd, D., Gaddie, H., Honey, R., & Wippert, R. (2012). Effective practices for creating transformative informal science education programs grounded in Native ways of knowing. Cultural Studies of Science Education, 7(1), 49-70.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025



- 27. Mainde, D., Chola, D., & Mpolomoka, D. (2021). Interrogating civic education pedagogies that stimulate political participation in selected secondary schools in Zambia. International Journal of Research and Innovation in Social Science, 05(02), 269-279.
- 28. Martin, A., Ginns, P., Anderson, M., Gibson, R., & Bishop, M. (2021). Motivation and engagement among Indigenous (Aboriginal Australian) and non-Indigenous students. Educational Psychology, 41(4), 424-445.
- 29. McCarty, T. L., & Lee, T. S. (2014). Critical culturally sustaining/revitalizing pedagogy and Indigenous education sovereignty. Harvard Educational Review, 84(1), 101-124.
- 30. McKinley, E. (2005). Locating the global: Culture, language and science education for Indigenous students. International Journal of Science Education, 27(2), 227-241.
- 31. Merriam, S. B. (2009). Qualitative Research: A Guide to Design and Implementation. Jossey-Bass.
- 32. Mosimege, M. (2017). The incorporation of indigenous knowledge in the teaching and learning of mathematics. Pythagoras, 38(1), 1-9.
- 33. Munroe, E., Borden, L., Orr, A., Toney, D., & Meader, J. (2013). Decolonizing Aboriginal education in the 21st century. McGill Journal of Education, 48(2), 317-337.
- 34. Munyazikwiye, F., & Harris, G. (2022). Indigenous knowledge systems and mathematics education in Rwanda. African Journal of Research in Mathematics, Science and Technology Education, 26(2), 123-138.
- 35. Naidoo, J. (2021). Integrating indigenous knowledge and culturally based activities in South African mathematics classrooms. African Journal of Teacher Education, 10(2), 17-36.
- 36. Nkopodi, N., & Mosimege, M. (2022). Incorporating indigenous knowledge in the teaching of mathematics: A case study in South Africa. International Journal of Science and Mathematics Education, 20(3), 575-593.
- 37. Owuor, J. (2008). Integrating African indigenous knowledge in Kenya's formal education system: The potential for sustainable development. Journal of Contemporary Issues in Education, 2(2).
- 38. Pangestuti, S. (2024). Unlocking mathematical marvels: Exploring number patterns in the Rangku Alu traditional game. Jurnal Elemen, 10(2), 441-458.
- 39. Papic, M., Mulligan, J., Highfield, K., McKay-Tempest, J., & Garrett, D. (2015). The impact of a patterns and early algebra program on children in transition to school in Australian Indigenous communities. In Research in Mathematics Education in Australasia 2012-2015 (pp. 217-236).
- 40. Russo, J., Bragg, L., & Russo, T. (2021). How primary teachers use games to support their teaching of mathematics. International Electronic Journal of Elementary Education, 13(4), 407-419.
- 41. Semali, L., & Kincheloe, J. (1999). What is Indigenous Knowledge? Voices from the Academy. Falmer Press.
- 42. Setati, M., & Adler, J. (2000). Between languages and discourses: Language practices in primary multilingual mathematics classrooms in South Africa. Educational Studies in Mathematics, 43(3), 243-269
- 43. Smith, G. A. (2011). Place-based education: Learning to be where we are. Phi Delta Kappan, 83(8), 584-594.
- 44. Stavrou, S. (2021). A narrative inquiry into indigenizing school mathematics through miyō-pimōhtēwin and kamskénow. Frontiers in Education, 6.
- 45. Subedi, A. (2021). Studies in mathematics education: Curriculum analysis from indigenous knowledge and gender perspective. Interdisciplinary Research in Education, 6(1), 99-114.
- 46. Trochim, W. M., & Donnelly, J. P. (2008). The Research Methods Knowledge Base. Cengage Learning.
- 47. Trumbull, E., & Nelson-Barber, S. (2019). The ongoing quest for culturally-responsive assessment for indigenous students in the U.S. Frontiers in Education, 4.
- 48. Warren, E., & Miller, J. (2013). Young Australian Indigenous students' effective engagement in mathematics: The role of language, patterns, and structure. Mathematics Education Research Journal, 25(1), 151-171.
- 49. Warren, E., & Young, J. (2008). Oral language, representations and mathematical understanding: Indigenous Australian students. The Australian Journal of Indigenous Education, 37(1), 130-137.



ISSN No. 2454-6186 | DOI: 10.47772/JJRISS | Volume IX Issue X October 2025

- 50. Wotherspoon, T., & Milne, E. (2020). What do Indigenous education policy frameworks reveal about commitments to reconciliation in Canadian school systems? International Indigenous Policy Journal, 11(1).
- 51. Yumiati, Y. (2023). Enhancing the ability of 'spatial nets' through outdoor learning based on traditional game 'Baju Simi'. JTAM (Jurnal Teori Dan Aplikasi Matematika, 7(4), 1054.
- 52. Zambia Ministry of General Education. (2023). National Examination Performance Report.
- 53. Zaslavsky, C. (1999). Africa Counts: Number and Pattern in African Culture. Chicago Review Press.