

${\bf ILEIID~2025~|~International~Journal~of~Research~and~Innovation~in~Social~Science~(IJRISS)}\\$

ISSN: 2454-6186 | DOI: 10.47772/IJRISS Special Issue | Volume IX Issue XXII October 2025

Unlocking the Potential of Learning Analytics in Digital Education: from Passive Reporting to Active Intervention

Sabiroh Md Sabri^{*}, Ismalaili Ismail, Nur Zainie Abd Hamid, Noor Azreen Mohd Khushairi, Mohd Imran Khusairi Shafee

Faculty of Business and Management, Universiti Teknologi MARA Cawangan Perlis, 02600 Arau, Perlis, Malaysia

*Corresponding Author

DOI: https://dx.doi.org/10.47772/IJRISS.2025.922ILEHD007

Received: 22 September 2025; Accepted: 30 September 2025; Published: 22 October 2025

ABSTRACT

Learning analytics (LA) has emerged as a powerful approach to improving student success, personalizing learning, and guiding institutional decision-making. Despite the availability of rich learner data from learning management systems (LMS) and digital platforms, the use of LA remains underdeveloped in higher education. Most institutions confine analytics to descriptive reporting - tracking logins, task completion, and grades, without advancing toward predictive, personalized, or intervention-oriented applications. This underutilization results in missed opportunities to identify at-risk learners early, support adaptive pathways, and continuously refine curriculum design. This concept paper adopts a qualitative and conceptual research design, drawing on recent literature and theoretical models such as the Technology Acceptance Model (TAM) and Diffusion of Innovations (DOI), to propose the Integrated Learning Analytics Adoption Framework (ILAAF). The framework emphasizes five strategic pillars - vision and governance, capacity building, technology integration, pedagogical alignment, and continuous evaluation, supported by an operational workflow that transforms raw data into actionable insights. The findings highlight that adopting ILAAF can shift LA from passive reporting to active, learner-centered practice. The paper recommends strategic institutional adoption, capacity development, and ethical governance to ensure LA becomes a dynamic driver of engagement, equity, and long-term student success.

Keywords: Learning Analytics, Educational Technology, Personalized Learning, Digital Education, Data-Driven Teaching

INTRODUCTION

The rapid digital transformation of higher education has fundamentally changed the way learning is delivered, experienced, and managed. With the widespread adoption of Learning Management Systems (LMS), online assessment platforms, and collaborative digital tools, institutions now have access to an unprecedented volume of learner-generated data. These data sources include login frequencies, time-on-task measures, participation in discussion forums, assessment performance, and patterns of resource use. The sheer breadth and depth of this data provide fertile ground for evidence-based interventions aimed at improving student engagement, retention, and achievement.

Learning analytics (LA) has emerged as a strategic approach to harnessing this wealth of information. Defined as the measurement, collection, analysis, and reporting of data about learners and their contexts, LA aims to understand and optimize learning processes and the environments in which they occur. By applying LA effectively, institutions can identify at-risk students early, deliver targeted support, and create adaptive learning pathways that cater to diverse needs. In addition, LA can inform instructional design by highlighting which

${\bf ILEIID~2025~|~International~Journal~of~Research~and~Innovation~in~Social~Science~(IJRISS)}\\$

ISSN: 2454-6186 | DOI: 10.47772/IJRISS

Special Issue | Volume IX Issue XXII October 2025

resources and activities are most effective in promoting learning, enabling continuous improvement of teaching practices and course structures.

Despite its transformative potential, evidence indicates that LA remains underutilized in many educational contexts. While basic descriptive reporting, such as tracking attendance or measuring completion rates, has become common practice, more sophisticated applications, such as predictive analytics, student-facing dashboards, and personalized learning interventions, are far less prevalent. As a result, valuable opportunities for proactive intervention and personalized support are missed, limiting LA's contribution to improving learning outcomes and advancing institutional effectiveness. This underuse highlights a pressing need to explore the barriers preventing full adoption and to develop strategies that move LA from passive reporting toward active, data-informed decision-making in higher education.

LITERATURE REVIEW

Introduction to Learning Analytics (LA)

Learning analytics (LA) has emerged as a rapidly growing field in educational technology, driven by the increased adoption of digital learning platforms and the availability of large datasets on learner behaviours. The Society for Learning Analytics Research (SoLAR) defines LA as "the measurement, collection, analysis, and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs" (SoLAR, 2022). The evolution of LA can be traced from early descriptive reporting within learning management systems (LMS) to more sophisticated predictive and prescriptive models that aim to provide real-time and personalized feedback (Márquez et al., 2024). In higher education, LA plays a strategic role in both academic and administrative decision-making, offering tools to enhance student retention, engagement, and performance while also improving curriculum design and institutional efficiency (Banihashem et al., 2022).

Benefits and Potential of Learning Analytics

1) Early Risk Detection

A core advantage of LA is its capacity to identify at-risk learners early in the academic cycle, enabling timely interventions that can prevent dropout or failure. Studies demonstrate that predictive models using variables such as login frequency, assessment performance, and interaction patterns can accurately forecast student success or attrition (Shen et al., 2023; Song et al., 2024). Institutions that implement early-warning systems based on such models have reported measurable improvements in retention rates and student satisfaction.

2) Personalized Learning and Adaptive Pathways

Another significant benefit of LA lies in its potential to support adaptive learning. By analyzing individual learning behaviours and performance data, LA systems can recommend tailored learning activities, resources, and pacing. This adaptive approach can be further enhanced through integration with microlearning strategies, delivering short, focused learning modules in response to identified gaps (Price et al., 2025). Personalized learning pathways increase engagement and motivation, particularly in online and blended environments where learner autonomy is critical.

3) Data-Informed Curriculum Design

LA also offers powerful insights for curriculum development. Analysis of aggregated learner data can highlight the effectiveness of specific resources, pinpoint challenging content areas, and reveal correlations between learning activities and assessment outcomes. This data-driven feedback loop enables continuous improvement in instructional design, supporting evidence-based teaching practices (Banihashem et al., 2022).

ISSN: 2454-6186 | DOI: 10.47772/IJRISS Special Issue | Volume IX Issue XXII October 2025

Current Limitations and Underutilization of LA

Despite its promise, LA is often underutilized in practice. Many institutions rely primarily on descriptive

analytics, such as reporting course completion rates or time-on-task, without progressing to predictive or prescriptive applications (Paulsen et al., 2024). This limited use means that valuable opportunities for proactive intervention are missed.

1) Skill and Capacity Gaps

A significant barrier to effective LA adoption is the limited data literacy among educators and decision-makers. Without adequate training, staff may struggle to interpret analytics outputs or translate them into actionable strategies (Márquez et al., 2024). Professional development and institutional support structures are essential to bridge this gap.

2) Ethical and Privacy Concerns

Ethical considerations around data privacy, consent, and transparency are another key limitation. Regulations such as Malaysia's Personal Data Protection Act (PDPA) and the European Union's General Data Protection Regulation (GDPR) require strict handling of personal information. Failure to address these concerns can erode trust among learners, reducing their willingness to engage with LA systems (Karimov et al., 2024; Misiejuk et al., 2025).

3) System Fragmentation and Integration Issues

In many institutions, LA tools are not seamlessly integrated into existing LMS or student information systems. This fragmentation can create inefficiencies and reduce the likelihood of consistent use. Interoperability standards and unified dashboards can help address these challenges.

Theoretical Underpinning

The adoption and effective use of LA can be understood through established technology adoption theories. The Technology Acceptance Model (TAM) posits that perceived usefulness and perceived ease of use are primary determinants of technology adoption (Davis, 1989; Almaiah et al., 2022). In the LA context, educators are more likely to engage with analytics tools if they believe these tools will improve teaching effectiveness and are straightforward to operate. Complementing TAM, the Diffusion of Innovations (DOI) theory explains adoption at the organizational level. DOI highlights five key attributes influencing adoption: relative advantage, compatibility, complexity, trialability, and observability (Rogers, 2003). For LA, relative advantage is demonstrated when analytics lead to tangible improvements in learning outcomes; compatibility is reflected in alignment with existing pedagogical practices; and trialability is supported by pilot programs before full-scale implementation.

An integrated TAM–DOI perspective allows for a holistic understanding of LA adoption by addressing both individual user acceptance and broader institutional readiness. Recent studies have applied combined frameworks to identify factors influencing LA adoption in higher education, noting that supportive leadership, adequate training, and alignment with teaching goals are critical to success (Mukred et al., 2024).

Research Gaps

While the literature affirms the benefits of LA, there remains a clear gap in systematic strategies for shifting from passive reporting to active, intervention-oriented use. Few studies have examined the integration of LA with microlearning, multimodal analytics, and structured early-warning protocols in a cohesive framework. Additionally, limited research exists on the contextualization of LA adoption within Malaysian higher education, particularly in aligning ethical governance with capacity building and pedagogical integration.

ISSN: 2454-6186 | DOI: 10.47772/IJRISS

Special Issue | Volume IX Issue XXII October 2025

Addressing these gaps presents an opportunity to develop a context-specific framework that can maximize the impact of LA on student engagement, equity, and success.

RESULTS AND DISCUSSION

Despite the increasing availability of learning analytics (LA) tools, many institutions fail to leverage their full

potential. While digital platforms and LMS environments generate vast amounts of learner data, much of this information remains underused, serving primarily as static reports rather than catalysts for meaningful educational change. In many cases, analytics functions are limited to tracking basic activity metrics, without progressing to more sophisticated applications such as predictive modeling, real-time intervention, or adaptive learning pathways. This gap between capability and practice not only reduces the return on investment in educational technology but also limits opportunities to improve student engagement, equity, and learning outcomes. Key missed opportunities include:

- 1. **Early Intervention:** Predictive models, when integrated into early-warning systems, can identify at-risk learners well before critical assessments. This allows for timely outreach, academic support, and tailored interventions that improve retention (Shen et al., 2023; Song et al., 2024). Without such proactive systems, students who might have been helped often remain unnoticed until it is too late.
- 2. **Personalized Learning Paths:** Adaptive learning environments informed by analytics can adjust content, pace, and difficulty based on individual learner needs. However, these remain rare in practice due to technological, pedagogical, and resource-related constraints.
- 3. **Continuous Course Improvement:** LA can highlight patterns such as low engagement with specific learning resources, bottlenecks in course progression, or persistent misconceptions. These insights can inform course redesign, making learning more efficient and impactful.
- 4. **Learner Empowerment:** Student-facing dashboards, when designed with a pedagogical focus, can enhance self-monitoring and self-regulated learning. Unfortunately, many dashboards are designed primarily for administrators or instructors, limiting their impact on learners.

Why It Happens The underutilization of LA stems from a combination of technical, cultural, and policy-related challenges:

- 1. **Skill and Capacity Gaps**: Educators often lack the data literacy required to interpret analytics and translate insights into effective teaching strategies (Márquez et al., 2024).
- 2. **Ethical and Privacy Concerns**: Issues of data ownership, consent, and transparency create hesitancy in implementing advanced analytics systems (Karimov et al., 2024; Misiejuk et al., 2025).
- 3. **Poor System Integration**: Many LA tools are not seamlessly embedded into LMS or other institutional systems, leading to fragmented workflows.
- 4. **Resource** Constraints: Smaller or less technologically advanced institutions may lack the infrastructure or personnel to implement LA at scale.
- 5. **Unclear Intervention Protocols**: Even when risk is identified, many institutions lack defined processes for who intervenes, how, and when.

Proposed Framework for Learning Analytics Adoption

To address these issues, this paper proposes the Integrated Learning Analytics Adoption Framework (ILAAF), which positions five strategic pillars as the foundational enablers of successful LA implementation. These pillars are: Vision and Governance, which establishes a clear institutional direction and ethical standards; Capacity Building, which develops educator and administrator skills in LA interpretation and application; Technology Integration, which ensures interoperability and user-friendly access; Pedagogical Alignment,

ISSN: 2454-6186 | DOI: 10.47772/IJRISS

which embeds LA insights into course design and interventions; and Evaluation and Continuous Improvement, which uses feedback loops to refine tools, data quality, and teaching practices.

Supporting these pillars is an operational workflow that ensures LA moves beyond static reporting into actionable practice. This workflow follows a five-step sequence: Data Collection from multiple learning sources; Analytics Processing to organize and model the data; Insight Generation to identify patterns and opportunities; Action Planning to design targeted interventions; and Impact Review to evaluate effectiveness and inform iterative improvements.

The ILAAF integrates these two elements by aligning the operational workflow with the strategic pillars, ensuring that every stage of the analytics process is reinforced by institutional vision, educator capability, technological readiness, pedagogical relevance, and continuous evaluation. The benefits of this integrated approach include:

- 1. Transforming LA from a passive reporting mechanism into an active decision-support system.
- 2. Enabling timely, data-informed interventions that improve student engagement and retention.
- 3. Ensuring ethical and transparent use of learner data, fostering trust among stakeholders.
- 4. Promoting institution-wide adoption through alignment of technology, policy, and pedagogy.
- 5. Supporting continuous improvement by embedding evaluation into every cycle of the process.

Through this framework, institutions can leverage learning analytics not only as a tool for monitoring learning activity but also as a mechanism for actively enhancing the teaching and learning process. By integrating strategic pillars such as vision, governance, capacity building, and pedagogical alignment with an operational workflow that transforms raw data into actionable insights, the framework empowers educators to design timely interventions and evidence-based strategies that directly benefit students. This proactive use of analytics creates opportunities to personalize learning pathways, identify at-risk learners before challenges escalate, and continuously refine instructional practices. Ultimately, the framework enables institutions to move beyond passive data reporting, fostering a more responsive, equitable, and impactful educational environment that supports engagement, retention, and long-term student success. Figure 1 illustrates the proposed ILAAF framework.

Figure 1 Proposed Integrated Learning Analytics Adoption Framework

${\bf ILEIID~2025~|~International~Journal~of~Research~and~Innovation~in~Social~Science~(IJRISS)}\\$

ISSN: 2454-6186 | DOI: 10.47772/IJRISS

CONCLUSION

Learning analytics (LA) holds significant promise for transforming teaching, learning, and institutional decision-making in higher education. However, its potential remains underutilized due to fragmented adoption, limited educator capacity, technological silos, and the absence of structured frameworks guiding implementation. This paper addressed these gaps by proposing the Integrated Learning Analytics Adoption Framework (ILAAF), which combines five strategic pillars - Vision and Governance, Capacity Building, Technology Integration, Pedagogical Alignment, and Evaluation and Continuous Improvement, with a five-step operational workflow of Data Collection, Analytics Processing, Insight Generation, Action Planning, and Impact Review.

By integrating foundational enablers with a clear process cycle, ILAAF moves LA adoption beyond static, descriptive reporting toward dynamic, learner-centered practices that directly influence engagement, equity, and academic success. The framework ensures that analytics use is both technically robust and pedagogically relevant, while upholding ethical standards and fostering trust among stakeholders. Its significance lies in its ability to provide a comprehensive, actionable roadmap for institutions seeking to embed LA into teaching and learning, support evidence-based interventions that can reduce dropout rates and improve learning outcomes and encourage a culture of continuous improvement by linking analytics to feedback loops and curriculum refinement. Moreover, it bridges the gap between technology adoption and pedagogical impact, ensuring that digital transformation efforts translate into measurable student benefits.

The ILAAF also contributes to scholarly discourse by offering a theoretically grounded, practice-oriented model that can be adapted to different educational contexts. In doing so, it offers a scalable and sustainable approach to LA adoption that addresses both the strategic and operational dimensions of implementation. Looking ahead, future work should focus on piloting and validating this framework in diverse higher education settings, incorporating longitudinal studies to assess its impact on student success, and exploring integration with emerging technologies such as artificial intelligence, adaptive learning systems, and multimodal analytics. Further research should also examine how the framework can be adapted to specific cultural and institutional contexts, particularly in developing countries, to ensure that LA contributes meaningfully to inclusive and equitable education. By applying and refining this framework, higher education institutions can better harness the power of data to create responsive, inclusive, and high-impact learning environments that foster long-term student success.

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to University Technology MARA (UiTM) Cawangan Perlis for providing continuous support and a conducive academic environment that has enabled the completion of this study. Appreciation is also extended to colleagues and peers who have contributed valuable insights during the development of this work.

REFERENCES

- 1. Aljawarneh, S., & Al-Omari, A. A. (2023). Learning analytics and educational data mining for improving learning outcomes: A systematic review. Education and Information Technologies, 28(4), 4873–4896. https://doi.org/10.1007/s10639-022-11575-y
- 2. Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2020). Learning analytics methods, benefits, and challenges in higher education: A systematic literature review. Online Learning, 24(3), 85–118. https://doi.org/10.24059/olj.v24i3.2107
- 3. Ferguson, R., Clow, D., Macfadyen, L. P., Tynan, B., Alexander, S., & Dawson, S. (2022). Learning analytics: Avoiding hype and exploring best practice. Journal of Learning Analytics, 9(3), 1–14. https://doi.org/10.18608/jla.2022.7422

ISSN: 2454-6186 | DOI: 10.47772/IJRISS

Special Issue | Volume IX Issue XXII October 2025

- 4. Ifenthaler, D., & Yau, J. Y. K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. British Journal of Educational Technology, 51(4), 1045–1068. https://doi.org/10.1111/bjet.12839
- 5. Joksimović, S., Gašević, D., & Siemens, G. (2022). The future of learning analytics in higher education: Addressing ethical and pedagogical challenges. Computers & Education, 182, 104463. https://doi.org/10.1016/j.compedu.2022.104463
- 6. Khalil, M., & Ebner, M. (2020). Learning analytics: Principles and constraints. Handbook of Learning Analytics (2nd ed., pp. 49–57). Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/hla20.004
- 7. Lee, D., & Recker, M. (2021). Integrating learning analytics into instructional practice: Educators' perspectives and design considerations. Educational Technology Research and Development, 69(6), 3241–3265. https://doi.org/10.1007/s11423-021-10042-w
- 8. Papamitsiou, Z., & Economides, A. A. (2022). Learning analytics adoption in higher education: A cross-institutional study on readiness and maturity. The Internet and Higher Education, 55, 100865. https://doi.org/10.1016/j.iheduc.2022.100865
- 9. Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk, A., Prieto, L. P., Boroujeni, M. S., Holzer, A., & Dillenbourg, P. (2021). Perceiving learning at a glance: A systematic literature review of learning dashboard research. IEEE Transactions on Learning Technologies, 14(2), 162–182. https://doi.org/10.1109/TLT.2020.3013125
- 10. Tsai, Y. S., Poquet, O., Gašević, D., Dawson, S., & Pardo, A. (2020). Complexity leadership in learning analytics: Drivers, challenges, and opportunities. British Journal of Educational Technology, 51(6), 2541–2558. https://doi.org/10.1111/bjet.12946