

Exploring Motivation and Demotivation Factors for Learning

*¹Nurul Nadiah Dewi Faizul Ganapathy, ²Izlin Mohamad Ghazali, ³Mohd Hafriz Abdul Hamid,
⁴Norazean Sulaiman, ⁵Nurul Syahida Abu Bakar, ⁶Noor Hanim Rahmat

^{1,2,6}Akademi Pengajian Bahasa, Universiti Teknologi MARA, Shah Alam, Malaysia

³Fakulti Pendidikan, Universiti Teknologi MARA, Puncak Alam, Malaysia

⁴Akademi Pengajian Bahasa, Universiti Teknologi MARA Cawangan Terengganu, Terengganu, Malaysia

⁵STEM Foundation Center, Universiti Malaysia Terengganu, Terengganu, Malaysia

*Corresponding Author

DOI: <https://dx.doi.org/10.47772/IJRISS.2025.924ILEIID00115>

Received: 14 October 2025; Accepted: 21 October 2025; Published: 03 November 2025

ABSTRACT

This study explored learners' motivation and demotivation factors in learning, focusing on their relationship and interaction. Motivation was assessed using Pintrich and DeGroot's (1990) framework, while burnout was measured via exhaustion and disengagement based on Campos et al.'s (2011) model. Intrinsic motivation was most strongly linked to students' interest in understanding course content, whereas extrinsic motivation was mainly associated with achieving high grades and demonstrating academic performance to family and peers. Respondents acknowledged the usefulness and importance of the course materials and reported moderate confidence in their ability to succeed (self-efficacy). They also believed that consistent effort and appropriate study strategies would enable them to master the course content (control beliefs). While most students valued the subject matter, some reported concerns about performing worse than their peers, reflecting a moderate level of task-related anxiety. Burnout findings indicated moderate to high physical and emotional fatigue, with many learners requiring extended recovery after classes. Some learners remained engaged through interest and challenge, while others participated mechanically and displayed detachment. Mean scores showed higher motivation than demotivation, suggesting general motivation despite persisting demotivational factors. Correlation analysis revealed a significant moderate positive relationship, highlighting the coexistence of motivational and demotivational influences. These findings underscore the need for interventions that enhance self-regulation, sustain engagement, and address demotivational triggers.

Keywords: motivation in learning, demotivation factors, academic burnout, intrinsic and extrinsic motivation, motivation theory, exhaustion and disengagement

INTRODUCTION

Research on motivation in learning has received extensive attention, reflecting its critical and multifaceted role in ensuring effective learning experiences. Alongside motivation, demotivation has also gained recognition as a significant factor influencing learners' engagement and achievement. Although the field of motivation and demotivation research is well-developed, ongoing studies continue to introduce novel methods and perspectives to measure these constructs more precisely. Recent research indicates that students today exhibit unique patterns of engagement and burnout, with many reporting feelings of emotional exhaustion and stress due to ongoing academic pressures (Salmela-Aro & Upadyaya, 2020). Consequently, studies highlight the complex relationship between student motivation, demotivation, and academic burnout in modern education (Syed Husain et al., 2025; Wan Mohd et al., 2024; Zolkapli et al., 2023).

Motivation is defined as "the processes that initiate and sustain goal-directed activity" (Schunk & DiBenedetto, 2020, p. 1) and involves both the direction and intensity of behavior (Dörnyei & Ushioda, 2011).

It explains why individuals commit to an activity, how long they persist, and the effort they invest. Conversely, demotivation refers to a decline or loss of this drive, triggered by various internal or external factors that disrupt learning (Gao & Liu, 2022; Qiu, 2024). Academic burnout, closely linked to demotivation, manifests as emotional exhaustion, cynicism, and reduced accomplishment (Campos et al., 2011), and serves as a useful framework for understanding demotivational factors such as exhaustion and disengagement.

Recent studies among Malaysian pre-university and undergraduate students (Syed Husain et al., 2025; Wan Mohd et al., 2024; Zolkapli et al., 2023) have shed light on the interplay between motivation and demotivation. Their findings reveal nuanced patterns that merit further examination. These studies found significant and positive relationships between motivational and demotivational factors, suggesting that these elements can coexist and fluctuate together in complex ways.

LITERATURE REVIEW

Motivation Theory in Learning

Motivation is a critical driver of students' academic engagement and success. Foundational theories offer different but complementary perspectives on how motivation is formed and sustained. Maslow's (1943) Hierarchy of Needs situates learning within the broader framework of human needs, suggesting that higher-order learning goals can only be pursued once basic physiological and psychological needs are met. Deci and Ryan's (1985) Self-Determination Theory distinguishes between intrinsic motivation driven by personal interest and enjoyment and extrinsic motivation shaped by rewards, recognition, or external pressures. Bandura's (1977) concept of self-efficacy highlights learners' beliefs in their ability to perform successfully, which strongly influences persistence and resilience in the face of challenges.

Pintrich and De Groot (1990) provide an integrative model that conceptualizes motivation in three interrelated components:

- Expectancy – learners' beliefs about their capacity to succeed, incorporating self-efficacy and control beliefs.
- Value – both intrinsic and extrinsic goal orientations, reflecting the perceived importance and usefulness of learning tasks.
- Affective – emotional responses that can enhance or inhibit learning, such as enjoyment, anxiety, or boredom.

Empirical evidence supports the relevance of these components. González-Arias et al. (2025) found that satisfying basic psychological needs promotes intrinsic motivation, which in turn improves academic performance. Burke et al. (2024) reported that intrinsic goal orientations, including a love of learning and experiencing "flow," were strongly linked to achievement, while extrinsic drivers such as grades and family support also played a role. Wang et al. (2024) showed that interest in course content and supportive learning environments enhance both expectancy and value beliefs, influencing achievement outcomes.

The affective dimension has also been recognized as integral to motivation. Hamzah et al. (2022) observed that supportive teacher and peer relationships can foster engagement, whereas negative interactions may diminish it. Similarly, González-Arias et al. (2025) found that positive emotions enhance motivation, while negative emotions impede learning. Collectively, these studies indicate that motivation is shaped not only by cognitive beliefs and goal orientations but also by the learner's emotional experiences and surrounding context.

Burnout Sources among Students

Burnout, originally conceptualized in occupational settings, has been adapted to education to describe the psychological exhaustion students experience from sustained academic demands (Maslach & Jackson, 1981). Models commonly used in educational contexts include the Maslach Burnout Inventory (MBI), which assesses emotional exhaustion, cynicism, and reduced accomplishment; the School Burnout Inventory (SBI), which measures exhaustion, cynicism toward school, and feelings of inadequacy (Salmela-Aro et al., 2009);

Schaufeli et al.'s (2002) model, which emphasizes study-related exhaustion, cynicism, and inefficacy; and the Copenhagen Burnout Inventory (CBI), which identifies personal, study-related, and interaction-related burnout (Kristensen et al., 2005).

Research consistently identifies several contributing factors: excessive workload, time pressure, lack of autonomy, insufficient recognition, poor peer or teacher relationships, perceived unfairness in assessment, and emotional fatigue (Maslach & Leiter, 1997; Jacobs & Dodd, 2003; Pines & Aronson, 1988). While burnout is often associated with disengagement, it can also occur alongside high motivation, especially in high-pressure academic environments. This coexistence of motivation and demotivation suggests the need for an integrated approach to studying both phenomena.

Past Studies on Relationship between Motivation and Burnout Causes

International research suggests that intrinsic motivation often correlates with higher academic satisfaction despite stress and workload. For instance, Felaza et al. (2020) found that intrinsic motivation in medical undergraduates was linked with a stronger sense of personal accomplishment.

Local Malaysian studies reflect similar dynamics. Syed Husain et al. (2025) investigated the relationship between student motivation and burnout, showing that while students were motivated by both intrinsic and extrinsic factors, they frequently experienced physical and emotional exhaustion. Wan Mohd et al. (2024) reported that low self-esteem and poor learning environments demotivated learners, contributing to stress and burnout, especially under exam pressure.

Several studies on learning English as a second language (ESL) in Malaysia further illuminate this interplay. Azhari et al. (2023) identified a moderate positive correlation between motivation and burnout—motivated learners still showed signs of exhaustion and disengagement under high academic pressure. Zolkapli et al. (2024) extended this finding by quantifying moderate to strong correlations between burnout and motivational subcomponents—value ($r = 0.333$), expectancy ($r = 0.341$), and affective ($r = 0.855$)—highlighting test anxiety and maladaptive perfectionism as key risk factors.

Bandura's (1997) theory of self-efficacy offers a foundational lens: strong belief in one's capabilities supports persistence and manages stress. Honicke & Broadbent (2016) and Schunk & DiBenedetto (2020) reinforce that self-efficacy is a crucial predictor of academic performance and long-term engagement.

On extrinsic motivations, Koenka et al. (2021) and de Bruin et al. (2024) found that performance-oriented goals—like GPA and recognition—fuel short-term persistence but can lead to superficial learning if intrinsic motivation is absent. Rahman et al. (2024) similarly noted that Malaysian students often equate academic success with GPA and external validation.

Task value beliefs—where learners perceive content as useful, enjoyable, and relevant—have also been shown to encourage deeper engagement. Lauermann et al. (2023), Shehzad et al. (2024), and Phan et al. (2025) all found that higher task value supports persistence, although Eccles & Wigfield (2020) and Hulleman & Harackiewicz (2021) caution that value must be supported by competence and suitable educational contexts.

Affective factors like anxiety and cognitive interference have been strongly linked to learning setbacks. Rahmat (2024), Amaruddin et al. (2023), and Khaira et al. (2024) documented the emotional and physiological toll of test anxiety. Conversely, Barattucci et al. (2022) and Ismail et al. (2023) showed that mindfulness and emotional regulation interventions significantly reduce anxiety and improve performance.

Burnout and exhaustion are recurring themes. Rahmat (2023) and Ibrahim et al. (2024) observed students grappling with chronic fatigue and limited recovery time, echoing the burnout models of Schaufeli et al. (2002) and Salmela-Aro & Upadyaya (2014), which link sustained pressure to engagement decline. Li et al. (2021), along with Barattucci et al. (2022) and Ismail et al. (2023), affirm that resilience-building and coping strategies can buffer burnout's impact.

Lastly, the co-occurrence of motivation and demotivation—evident in mechanical attendance or negative talk despite high engagement—has been framed by Schaufeli et al. (2002), Salmela-Aro et al. (2016), and

Upadyaya & Salmela-Aro (2020), who emphasize the protective role of peer support, mindfulness, and reflection in sustaining motivation.

Research Gap and Questions

The reviewed literature highlights several gaps. First, motivation and demotivation are often studied separately, limiting understanding of how they coexist in learners' experiences. Second, few studies directly compare the average levels of motivation and demotivation in the same population, which could reveal whether one predominates or whether both are present at high levels. Third, in the Malaysian context, studies have examined motivation and burnout individually but have seldom measured them together using the same framework. Finally, while the affective component of motivation is acknowledged, its interaction with expectancy and value beliefs in shaping demotivation has received limited attention.

This study addresses these gaps by examining motivation and demotivation together among Malaysian undergraduates, using validated measures to allow both comparison of their mean levels and analysis of their interrelationship. The study also investigates how emotional factors interact with expectancy and value beliefs to influence both engagement and disengagement.

Conceptual Framework of the Study

In higher institutions, for many students staying motivated is important. Among some reasons why students stay motivated is that they feel confident with the learning tasks and they gain satisfaction in the learning outcome (Rahmat et al., 2021). Pintrich and DeGroot (1990) listed three main components for motivation. The first type is value components and this refers to learners' intrinsic and extrinsic goal orientation. It also refers to the learners' task value beliefs. Next, expectancy components refer to the students' perception of self-efficacy and also control beliefs for learning.

When it comes to learning motivation, even the most motivated students may sometimes get demotivated. According to Campos et al. (2011), students sometimes get overwhelmed with learning tasks and become exhausted. At the same time, some students who face non-academic related problems may be stressed out with classes. Some may strive for academic excellence and end up being over-worked and also feel disengaged. These are the main sources of burnout among students. Figure 1 shows the conceptual framework of the study. This study explores factors for motivation and burnout. In addition to that, this study also investigates if there is a relationship between motivation and demotivation among learners.

Figure 1-Conceptual Framework of the Study

Motivation and Demotivation Factors for Learners

METHODOLOGY

This quantitative study is done to explore motivation and demotivation factors for learning. A convenient sample of 114 participants responded to the survey. The instrument used is a 5 Likert-scale survey. Table 1

below shows the categories used for the Likert scale; 1 is for Never, 2 is for Rarely, 3 is for Sometimes, 4 is for Very Often and 5 is for Always.

Table 1- Likert Scale Use

1	Never
2	Rarely
3	Sometimes
4	Very Often
5	Always

Table 2 shows the distribution of items in the survey. This study is replicated from Pintrich and DeGroot (1990) for motivation and Campos et al., (2011) for burnout to reveal the variables in table below. Section B has 24 items on motivation and Section carries 16 items on demotivation.

Table 2- Distribution of Items in the Survey

SECT	CATEGORY	CONSTRUCT	SUB-CATEGORY	No Of Items		Cronbach Alpha
B	MOTIVATION	(i) VALUE COMPONENT	(i) Intrinsic Goal Orientation	4	24	.901
			(ii) Extrinsic Goal Orientation	3		
			(iii) Task Value Beliefs	5		
		(ii) EXPECTANCY COMPONENT	(i) Students' Perception of Self- Efficacy	5		
			(ii) Control Beliefs for Learning	2		
		(iii) AFFECTIVE COMPONENTS				
C	DE MOTIVATION	(i) BURNOUT- EXHAUSTION		8	16	.703
		(ii) BURNOUT- DISENGAGEMENT		8		
TOTAL NO OF ITEMS						.881

Table 2 also shows the reliability of the survey. The analysis shows a Cronbach alpha of .901 for motivation and .703 for demotivation. The overall Cronbach alpha for all 16 items is .881 and this shows a good reliability of the instrument chosen (Jackson, 2015). Further analysis using SPSS is done to present findings to answer the research questions for this study.

Findings

Demographic Analysis

Table 3- Percentage for Demographic Profile

Question	Demographic Profile	Categories	Percentage (%)
1	Gender	Male	36%
		Female	64%
2	Age Group	18-29 years old	78%
		20-39 years old	17%
		40-49 years old	5%
3	Level	Diploma	23%
		Degree	77%
4	Mode of Learning	Full-time	45%
		Part time	55%

The results depict that most participants were female (64%), with males making up 36%. Most were between 18 and 29 years old (78%), followed by 17% aged 30–39, and only 5% aged 40–49. The majority were degree students (77%), while 23% were diploma students. Slightly more participants studied part-time (55%) compared to full-time (45%). Overall, the group was mostly young, female, and degree-level, with an even split between part-time and full-time learners.

Descriptive Statistics

Findings for Motivation

This section presents data addressing the first research question: How do learners perceive their motivation for learning? In the context of this study, motivation is measured by (i) Value Components, (ii) Expectancy Components, and (iii) Affective Components.

(i) VALUE COMPONENT

In the context of this study, value components are measured by (a) intrinsic goal orientation, (b) extrinsic goal orientation and (c) task value beliefs.

a) INTRINSIC GOAL ORIENTATION (4 items)

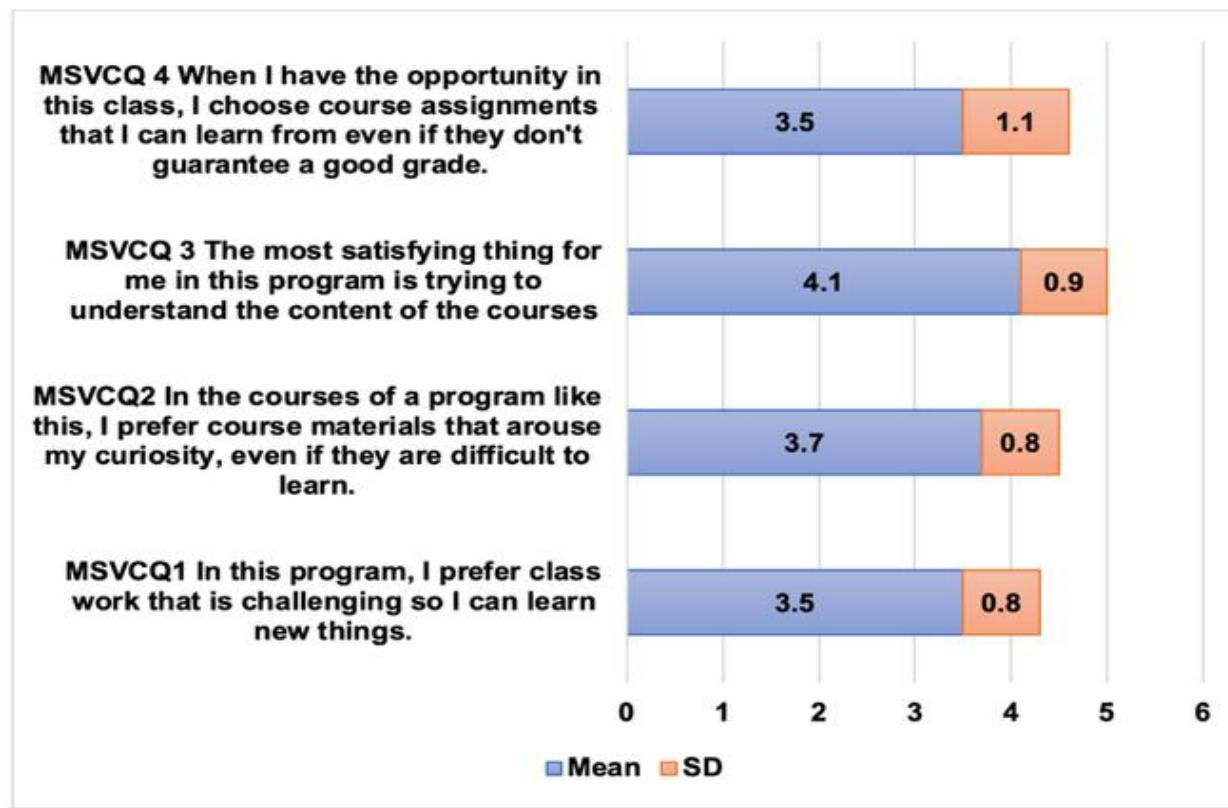


Figure 2: Mean for Intrinsic Goal orientation

Based on Figure 2, four items were utilised to determine the mean scores for the respondents' intrinsic goal orientation. The highest mean score was recorded for Item 3 which states that the students' most satisfying outcome is the ability to understand the content of the courses ($M = 4.1$, $SD = 0.9$). The second highest mean score was linked to Item 2 ($M = 3.7$, $SD = 0.8$) which highlights the students' preference for course materials that arouse curiosity, even if they are difficult to learn. Meanwhile, two items shared the same lowest mean score of 3.5. The first, Item 1 ($M = 3.5$, $SD = 0.8$), reflects the students' preference for challenging classwork that allows them to learn new things. Likewise, Item 4 ($M = 3.5$, $SD = 1.1$), presents that the students recognise that choosing course assignments to enhance their learning is important, even if those assignments do not always lead to high grades.

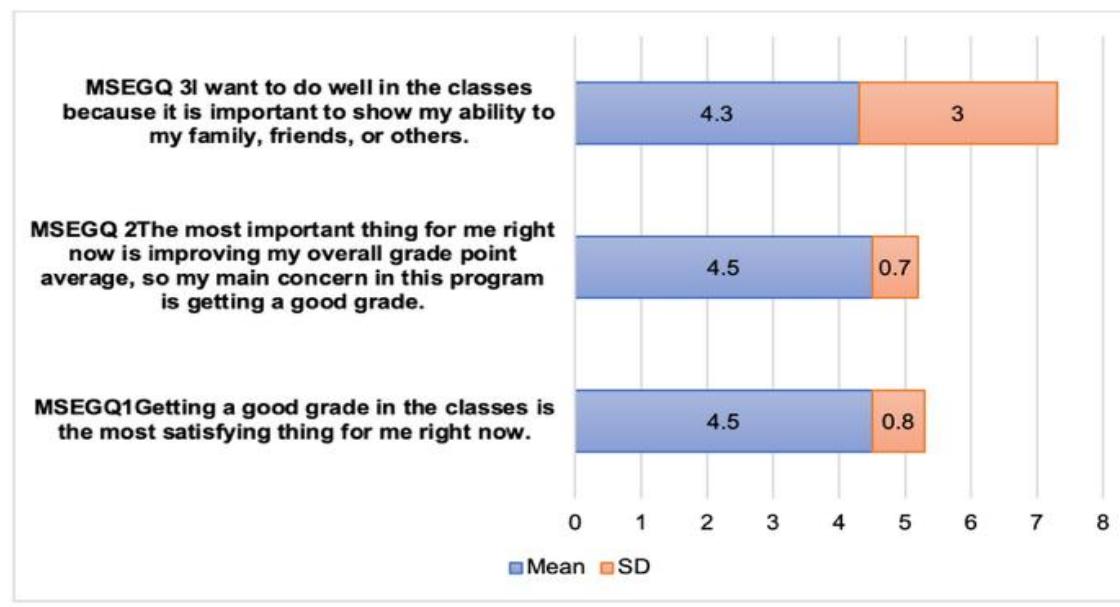

b) EXTRINSIC GOAL ORIENTATION (3 items)

Figure 3: Mean for Extrinsic Goal orientation

Figure 3 illustrates three items measuring the respondents' extrinsic goal orientation. Two items recorded the highest mean scores of 4.5. The first item, Item 1 ($M = 4.5$, $SD = 0.8$), indicates the students' perception that obtaining good grades in class is the most satisfying outcome. Similarly, Item 2 ($M = 4.5$, $SD = 0.7$) highlights the students' recognition of the importance of scoring a good grade to improve their overall grade point average. Finally, Item 3 ($M = 4.2$, $SD = 0.9$) which has the second highest mean score, emphasises the students' motivation to perform academically in order to demonstrate their academic ability to family, friends and others.

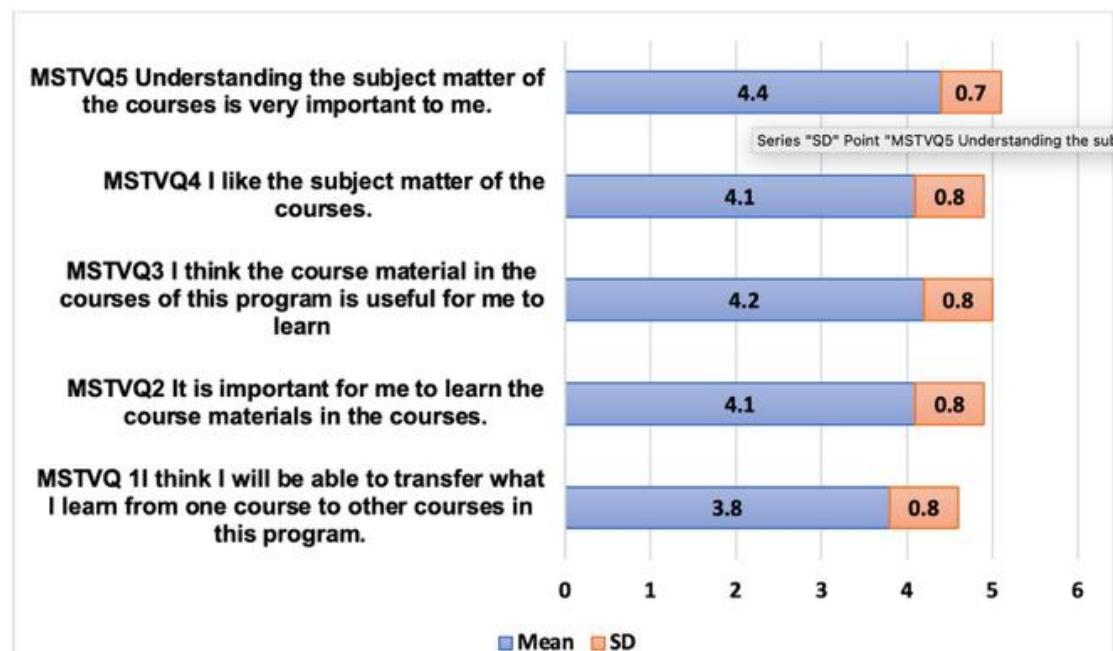

b. TASK VALUE BELIEFS (5 items)

Figure 4- Mean for Task Value Beliefs

Figure 4 presents mean scores for five items under the task value beliefs based on respondents' perceptions. The highest mean score was recorded for the respondents' belief that understanding the subject matter of the courses is very important ($M = 4.4$, $SD = 0.7$). This is closely followed by the perception that the course

material is useful for learning ($M = 4.2$, $SD = 0.8$). Meanwhile, similar mean scores are observed for the importance of learning the course materials and liking the subject matter ($M = 4.1$, $SD = 0.8$). Finally, the lowest mean value is evident regarding the ability to transfer learning between different courses in the same programme ($M = 3.8$, $SD = 0.8$).

(ii) EXPECTANCY

In the context, expectancy is measured by (a) students' perception of self-efficacy, and (b) control beliefs for learning.

(a) STUDENTS 'PERCEPTION OF SELF-EFFICACY (5 items)

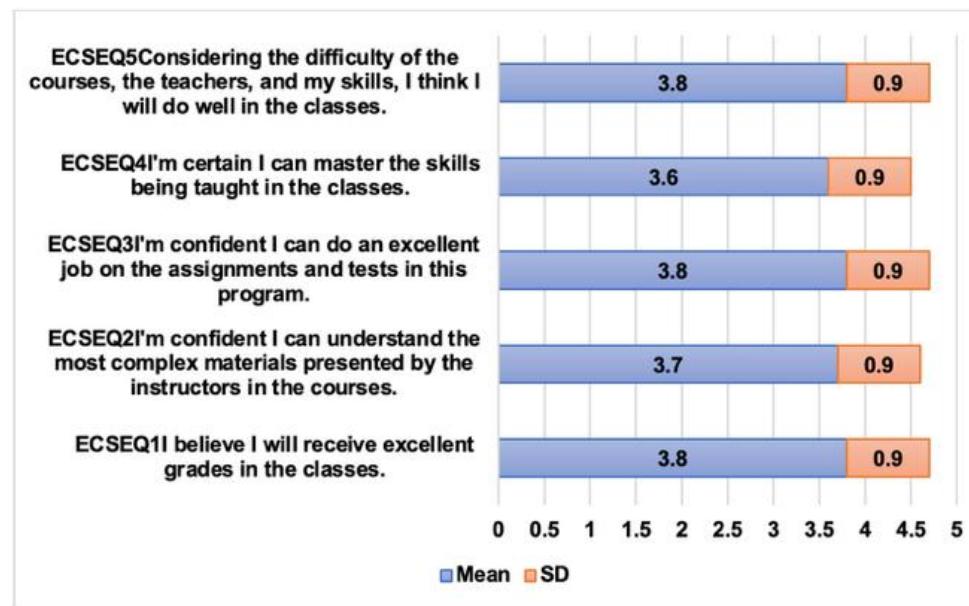


Figure 5- Mean for Students' Perception of Self-Efficacy

Based on the findings shown in Figure 5, there are five items under students' perception of self-efficacy. Three highest mean scores are associated with the belief to receive excellent grades in class, the confidence to perform an excellent job on the assignments and tests related to the programme, and the belief to do well in class despite the difficulty of the course, teacher and individual skills ($M = 3.8$, $SD = 0.9$). The next item shows the second highest mean score which is the confidence to understand the most complex materials shared by course instructors ($M = 3.7$, $SD = 0.9$). Finally, the respondents' certainty to master skills taught in classes is observed to record the lowest mean score ($M = 3.6$, $SD = 0.9$).

(b) CONTROL BELIEFS FOR LEARNING (2 items)

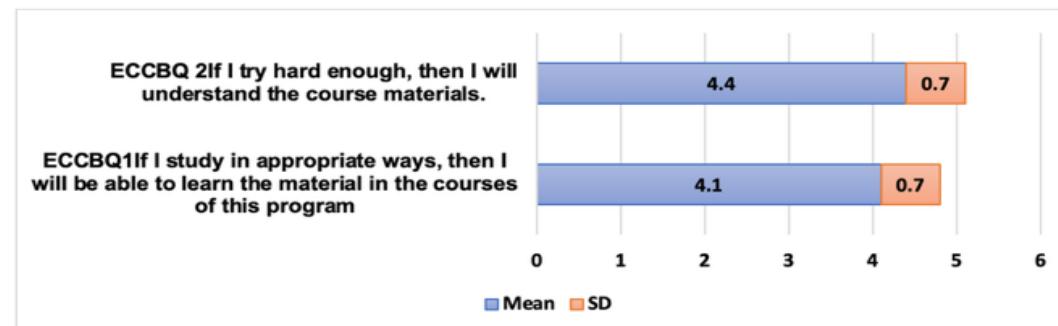


Figure 6- Mean for Control Beliefs for Learning

Figure 6 shows the mean for control beliefs for learning. The higher mean is item 2 (mean=4.4, SD=0.7) which states that when the learners try hard enough, they can understand the course materials. Next is item 1 (mean=

4.1, $SD=0.7$) that reports that if the students studied in appropriate ways, they would be able to learn the materials in the course.

(iii) AFFECTIVE

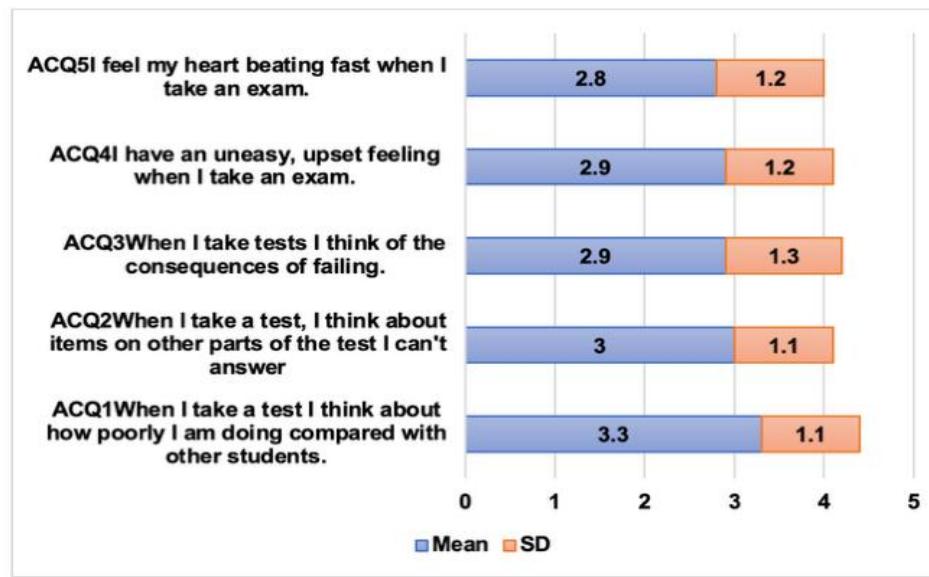


Figure 7- Mean for Affective Components

Figure 7 displays that the most prominent concern during tests was comparing performance with others ($M = 3.3$), indicating notable social-comparison anxiety. Worry about unanswered items ($M = 3.0$) and fear of failure ($M = 2.9$) were also evident. Overall, the results point to moderate test anxiety, with cognitive factors more pronounced than emotional or physiological symptoms.

Findings for demotivation

This section presents data to answer research question 2- How do learners perceive demotivation factors in their learning. In the context of this study, demotivation is measured by two aspects of burnout and they are (i) Exhaustion and (ii) Disengagement.

(i) Exhaustion

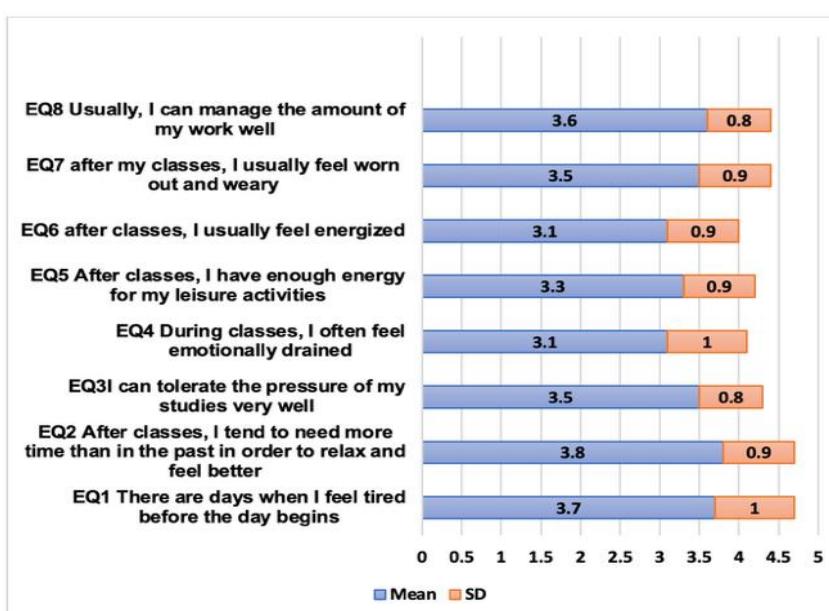


Figure 8- Mean for Exhaustion

Figure 8 indicates that students most frequently reported needing more time than before to recover after classes ($M = 3.8$, $SD = 0.9$) and feeling tired before the day begins ($M = 3.7$, $SD = 1.0$), pointing to persistent fatigue. Although many felt able to manage their workload ($M = 3.6$, $SD = 0.8$), post-class exhaustion remained common. These results highlight moderate to high burnout, with physical fatigue as the dominant symptom.

(ii) Disengagement

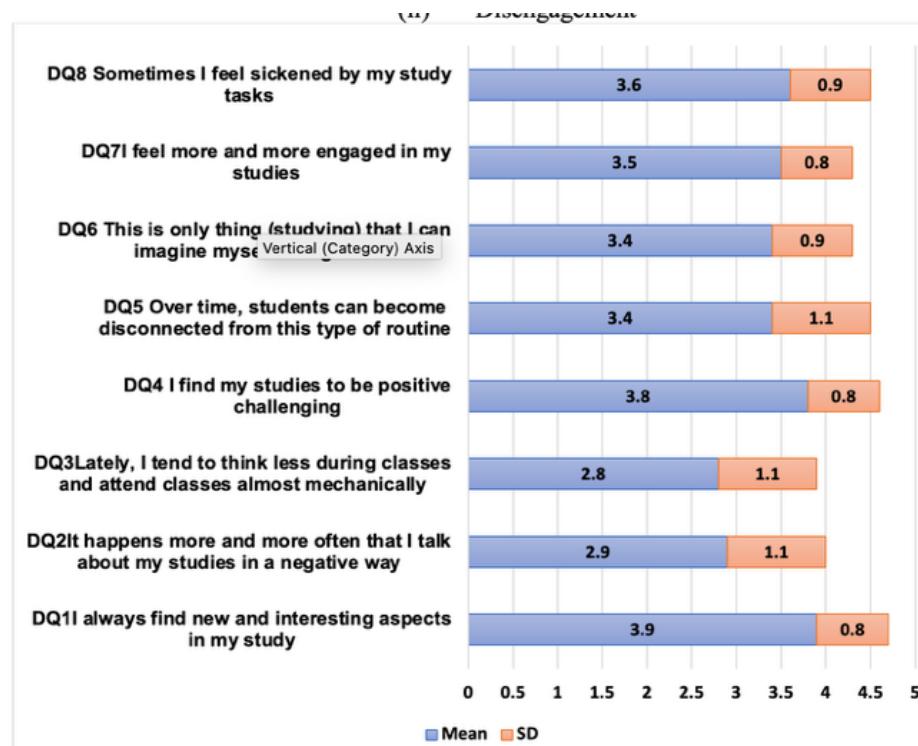


Figure 9- Mean for Disengagement

Figure 9 reveals that students most strongly agreed with finding new and engaging aspects in their studies ($M = 3.9$, $SD = 0.8$) and perceiving their academic tasks as positively challenging ($M = 3.8$, $SD = 0.8$). The lowest score was for attending classes mechanically ($M = 2.8$, $SD = 1.1$), indicating that disengagement of this kind was relatively uncommon. Overall, the results suggest that students generally experience their studies as stimulating and intellectually rewarding.

Findings for Motivation vs Demotivation

This section presents data to answer research question 3- How do the means differ for motivation and demotivation?

Table 4-Comparison of Mean for Motivation and Demotivation

CONSTRUCT	TOTAL MEAN
Motivation	3.8
Demotivation	3.4

Based on Table 4, the comparison of means for motivation and demotivation shows that students reported a higher overall level of motivation ($M = 3.8$) compared to demotivation ($M = 3.4$). This indicates that, on average, students are more driven and positively inclined towards their studies than they are discouraged or disengaged. Although the difference between the two constructs is moderate, the higher motivation mean suggests that positive attitudes and enthusiasm for learning are more dominant among the participants than feelings of disinterest or lack of drive.

Exploratory Statistics

Findings for Relationship between motivation and demotivation in learning

This section presents data to answer research question 4, “Is there a relationship between motivation and demotivation in learning?”

To determine if there is a significant association in the mean scores between motivation and demotivation in learning, data is analysed using SPSS for correlations. Results are presented separately in table 5 below.

Table 5- Correlation between Motivation and Demotivation in Learning

		MOTIVATION	DEMOTIVATION
MOTIVATION	Pearson (Correlation)	1	.338**
	Sig (2-tailed)		.000
	N	114	114
DEMOTIVATION	Pearson (Correlation)	.338**	1
	Sig (2-tailed)	.000	
	N	114	114

**Correlation is significant at the level 0.01(2-tailed)

Table 5 shows there is an association between motivation and demotivation factors in learning. Correlation analysis shows that there is a high significant association between motivation and demotivation factors in learning ($r=.338^{**}$) and ($p=.000$). According to Jackson (2015), coefficient is significant at the .05 level and positive correlation is measured on a 0.1 to 1.0 scale. Weak positive correlation would be in the range of 0.1 to 0.3, moderate positive correlation from 0.3 to 0.5, and strong positive correlation from 0.5 to 1.0. This means that there is also a strong positive relationship between motivation and demotivation factors in learning.

CONCLUSION

Summary of Findings and Discussions

This study explored learners' motivation and burnout, focusing on the relationship between motivational and demotivational factors in learning.

Intrinsic Motivation

Learners reported high satisfaction when engaging with challenging content that stimulates curiosity (Syed Husain et al., 2025; Wan Mohd et al., 2024), consistent with findings that intrinsic motivation enhances personal accomplishment (Felaza et al., 2020). They valued activities encouraging discovery and assignments that enhance understanding, even without guaranteed high grades. These findings align with research showing intrinsic motivation predicts academic achievement through deep learning strategies (Li & Wu, 2025). However, even motivated learners can burn out under pressure—especially when anxiety and perfectionism are present (Azhari et al., 2023; Zolkapli et al., 2024).

Extrinsic Motivation

High grades, GPA improvement, and social recognition were key motivators (Syed Husain et al., 2025; Wan Mohd et al., 2024; Koenka et al., 2021). Performance-oriented goals drive persistence but may encourage surface learning if intrinsic engagement is lacking (Ryan & Deci, 2020; Koenka et al., 2021; de Bruin et al., 2024). Malaysian students often equate success with GPA and family/peer validation (Rahman et al., 2024). These findings highlight that extrinsic incentives support short-term achievement but require intrinsic engagement for meaningful learning.

Task Value Beliefs

Learners valued content that is relevant, enjoyable, and transferable. Perceived utility fosters persistence and deep learning (Wan Mohd et al., 2024; Shehzad et al., 2024; Lauermann et al., 2023). However, task value

alone is insufficient for sustained engagement; competence support and conducive learning conditions are essential (Hulleman & Harackiewicz, 2021; Eccles & Wigfield, 2020).

Expectancy Components

Strong self-efficacy was observed for completing tasks, understanding materials, and achieving high grades. Confidence promotes persistence and achievement but is moderated by anxiety, task value, and self-regulation (Bandura, 1997; Schunk & DiBenedetto, 2020; Honicke & Broadbent, 2016; Putwain et al., 2021). Control beliefs also positively influenced engagement, particularly when coupled with high task value and low anxiety, though their effectiveness decreases under limited support or undervalued tasks (Li et al., 2023; Putwain et al., 2021; Liem et al., 2021).

Affective Component – Motivation vs. Demotivation

Social anxiety and cognitive interference were common, undermining performance and confidence. Test anxiety manifested emotionally and physiologically, confirming that preparedness alone does not prevent stress (Rahmat, 2024; Amaruddin et al., 2023; Khaira et al., 2024). Interventions such as emotional regulation training and mindfulness effectively reduce anxiety and improve outcomes (Barattucci et al., 2022; Ismail et al., 2023).

Burnout and Exhaustion

Students experienced substantial physical and emotional exhaustion, with chronic fatigue and limited recovery post-class. Burnout reduces engagement and performance despite workload management (Schaufeli et al., 2002; Salmela-Aro & Upadyaya, 2014; Ibrahim et al., 2024; Rahmat, 2023). Resilience, coping strategies, and mindfulness-based interventions can buffer these effects (Li et al., 2021; Ismail et al., 2023; Barattucci et al., 2022).

Motivation–Demotivation Interaction and Disengagement

Learners reported high engagement and intellectual stimulation but showed early signs of disengagement, including mechanical attendance or negative talk about studies. This gradual disengagement aligns with burnout frameworks (Schaufeli et al., 2002; Salmela-Aro et al., 2016). Preventive strategies such as peer support, mindfulness, and reflective practices help maintain academic commitment (Upadyaya & Salmela-Aro, 2020; Ismail et al., 2023).

Summary

Overall, learners demonstrate strong intrinsic and extrinsic motivation, high self-efficacy, and task value recognition. Yet, affective challenges such as social anxiety, test stress, and burnout coexist, subtly affecting engagement. These findings underscore the need for interventions supporting psychological well-being, competence, and resilience to sustain meaningful learning.

Implications and Suggestions for Future Research

Theoretical and Conceptual Implications

This study adopted Pintrich and De Groot's (1990) framework to examine motivation through expectancy (self-efficacy and control beliefs), value (intrinsic and extrinsic goal orientation), and affective (emotional responses to learning) components, alongside Campos et al.'s (2011) two central demotivation constructs which are cognitive disengagement and emotional exhaustion. These models proved appropriate for capturing both the positive and negative forces shaping students' engagement, as the data revealed that motivation and demotivation co-existed in the same learners.

In line with the framework, intrinsic motivation in this study was strongly tied to students' desire to understand course content and apply it meaningfully, while extrinsic motivation centred on achieving high grades and meeting family or peer expectations. Expectancy beliefs were reflected in students' moderate confidence (self-efficacy) and belief that effective study strategies would lead to mastery (control beliefs). However, the affective component highlighted a notable presence of anxiety, particularly about performing worse than peers, showing the value of including emotional responses within the model.

Campos et al.'s (2011) demotivation dimensions aligned well with the burnout findings. Emotional exhaustion emerged as the most salient demotivator, with students reporting physical and mental fatigue that required extended recovery time. Cognitive disengagement was evident in mechanical participation and detachment from learning tasks, although some students maintained interest and challenge-seeking despite fatigue.

The coexistence of high motivation and notable demotivation underscores the need for teaching strategies that address both simultaneously. From the SRL perspective embedded in Pintrich's model, interventions should develop goal-setting, time management, and sustained focus strategies to help learners maintain performance despite fatigue. Emotion regulation support is equally important to mitigate the anxiety and exhaustion revealed in this study. Technology—particularly mobile platforms with planning and reflection prompts—can strengthen self-regulatory habits, but long-term integration is needed to build lasting skills.

Overall, the theoretical framework was suitable for capturing the interplay between motivation and demotivation, allowing this study to address the four research questions comprehensively. However, the findings suggest that future adaptations of the framework should give more balanced weight to the affective dimension, as emotional states appeared to influence both motivational and demotivational processes more strongly than anticipated.

Suggestions for Future Research

Longitudinal designs are needed to track changes in SRL, motivation, and burnout across semesters. Most current studies are cross-sectional, offering only a snapshot of learners' experiences (Trautner & Pinquart, 2025). Following the same learners over time can show when changes occur, how these processes influence each other, and when interventions will have the most impact.

Technology-based supports should also be tested over longer periods. Mobile SRL supports are effective and easy to use but should be tested over time for their impact on reducing demotivation and fatigue (Alshammari & Alkhabara, 2025).

Pedagogical agents, or virtual characters in digital learning environments that guide, support, and interact with learners, can increase self-efficacy and interest. However, shifting intrinsic motivation may require meaningful, ongoing use supported by strong design (Gladstone et al., 2025). Research can explore how to integrate these agents more effectively.

The affective dimension should be expanded. Emotion regulation, grit, and self-compassion are linked to lower demotivation and better learning experiences (Zhang, 2025). Future studies can test these skills in different subjects, delivery modes, and cultural contexts, and examine how they interact with SRL training to reduce burnout.

Overall, research should explore not only the short-term effects of these strategies but also their long-term impact across learner profiles and contexts. This will help identify approaches that build lasting self-regulation and motivation.

ACKNOWLEDGEMENTS

This paper represents a joint effort of all authors, and we gratefully acknowledge each other's contributions to the development, analysis, and writing of this work. We also thank the reviewers for their constructive feedback, which helped improve the final version of the paper.

REFERENCES

1. Alshammari, S. H., & Alkhabra, S. (2025). Modelling the effects of self-regulation, perceived usefulness, confirmation and satisfaction on the continuous intention to utilise mobile learning applications. *Frontiers in Education*, 10. <https://doi.org/10.3389/feduc.2025.1506185>
2. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. *Psychological Review*, 84(2), 191–215. <https://doi.org/10.1037/0033-295X.84.2.191>
3. Barattucci, M., Pagliaro, S., & Giannella, V. A. (2022). Mindfulness and emotional regulation: Effects on academic stress and performance. *Frontiers in Psychology*, 13, 856432. <https://doi.org/10.3389/fpsyg.2022.856432>
4. Burke, C. M., Montross, L. P., & Dianova, V. G. (2024). Beyond the classroom: An analysis of internal and external factors related to students' love of learning and educational outcomes. *Data*, 9(6), 81. <https://doi.org/10.3390/data9060081>
5. Campos, J.A.D.B., Zucoloto, M.L., Bonafé, F.S.S., Jordani, P.C. and Maroco, J. (2011) Reliability and Validity of Self-Reported Burnout in College Students: A Cross Randomized Comparison of Paper-and-Pencil vs. Online Administration. *Computers in Human Behavior*, 27, 1875-1883. <https://doi.org/10.1016/j.chb.2011.04.011>
6. Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Springer Science & Business Media.
7. Dörnyei, Z., & Ushioda, E. (2011). *Teaching and researching motivation* (2nd ed.). Pearson.
8. Dörnyei, Z., & Ushioda, E. (2021). *Teaching and researching motivation* (4th ed.). Routledge.
9. Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. *Contemporary Educational Psychology*, 61, 101859. <https://doi.org/10.1016/j.cedpsych.2020.101859>
10. Felaza, E., Findyartini, A., Setyorini, D., & Mustika, R. (2020). How motivation correlates with academic burnout: Study conducted in undergraduate medical students. *Education in Medicine Journal*, 12(1). <https://doi.org/10.21315/eimj2020.12.1.5>
11. González-Arias, M., Dibona, P., Soto-Flores, B., Rojas-Puelles, A., Amato, M., Álvarez-Trigo, D., & Castillo, R. (2025). Academic performance, self-reported motivation, and affect in higher education: The role of basic psychological need satisfaction. *Frontiers in Psychology*, 16, Article 1519454. <https://doi.org/10.3389/fpsyg.2025.1519454>
12. Gladstone, J. R., Schroeder, N. L., Heidig, S., Zhang, S., Palaguachi, C., & Pitera, M. (2025). Do pedagogical agents enhance student motivation? Unraveling the evidence through meta-analysis. *Educational Psychology Review*, 37, Article 72. <https://doi.org/10.1007/s10648-025-10050-2>
13. Hamzah, L. M., Sueb, R., Alias, N. F., Syed Mustafa, S. M., & Mohd Yusof, M. M. (2022). Motivation in learning: A case study of young adult learners in Kuala Selangor, Malaysia. *Asian Journal of University Education*, 18(2), 470–476. <https://doi.org/10.24191/ajue.v18i2.17999>
14. Harun, N. F. A., Azami, N., Ab Rahim, R., & Ramli, F. (2024). Exploring motivating and demotivating factors for learning. *International Journal of Academic Research in Business and Social Sciences*, 14(7), 1011–1025. <http://dx.doi.org/10.6007/IJARBSS/v14-i7/21957>
15. Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. *Educational Research Review*, 17, 63–84. <https://doi.org/10.1016/j.edurev.2015.11.002>
16. Hulleman, C. S., & Harackiewicz, J. M. (2021). The importance of interest: The role of task value in promoting motivation and engagement. *Educational Psychologist*, 56(3), 165–180. <https://doi.org/10.1080/00461520.2021.1914351>
17. Jackson, S.L. (2015) *Research methods and Statistics-A Critical Thinking Approach* (5th Edition) Boston, USA:: Cengage Learning.
18. Jacobs, S. R., & Dodd, D. K. (2003). Student burnout as a function of personality, social support, and workload. *Journal of College Student Development*, 44(3), 291–303. <https://doi.org/10.1353/csd.2003.0028>
19. Kamberi, M. (2025). The types of intrinsic motivation as predictors of academic achievement: The mediating role of deep learning strategy. *Educational Psychology & Counselling*. <https://www.researchgate.net/publication/390146666>

20. Kristensen, T. S., Borritz, M., Villadsen, E., & Christensen, K. B. (2005). The Copenhagen Burnout Inventory: A new tool for the assessment of burnout. *Work & Stress*, 19(3), 192–207. <https://doi.org/10.1080/02678370500297720>

21. Li, Y., Hew, K. F., & Du, J. (2024). Gamification enhances student intrinsic motivation, perceptions of autonomy and relatedness, but minimal impact on competency: A meta-analysis and systematic review. *Educational Research Review*, 31, 100439. <https://doi.org/10.1016/j.edurev.2020.100439>

22. Liu, X., Ma, Y., & Chen, Z. (2024). The impacts of learning motivation, emotional engagement and psychological capital on academic performance in a blended learning university course. *Frontiers in Psychology*. <https://doi.org/10.3389/fpsyg.2024.1357936>

23. Lourenço, A., Paiva, M. O., & Valente, S. (2025). Strategies That Transform: Self-Regulation and Volitional Control as Keys to Academic Achievement. *Social Sciences*, 14(5), 285. <https://doi.org/10.3390/socsci14050285>

24. Maslach, C., & Jackson, S. E. (1981). The measurement of experienced burnout. *Journal of Occupational Behavior*, 2(2), 99–113. <https://doi.org/10.1002/job.4030020205>

25. Maslach, C., & Leiter, M. P. (1997). The truth about burnout: How organizations cause personal stress and what to do about it. *Jossey-Bass*.

26. Maslow, A. H. (1943). A theory of human motivation. *Psychological Review*, 50(4), 370–396. <https://doi.org/10.1037/h0054346>

27. Mayer, J. D., Faber, M. A., & Xu, X. (2007). Seventy-five years of motivation measures (1930–2005): A descriptive analysis. *Motivation and Emotion*, 31, 83–103.

28. Pines, A., & Aronson, E. (1988). *Career burnout: Causes and cures*. Free Press.

29. Pintrich, P. R., & De Groot E. V. (1990). Motivational and self-regulated learning Components of classroom academic performance. *Journal of Educational Psychology*, 82(1), 33–40. Retrieved from <https://psycnet.apa.org/doi/10.1037/0022-0663.82.1.33>

30. Putwain, D. W., Sander, P., & Larkin, D. (2021). Academic self-efficacy in study-related skills and behaviours: Relations with learning-related emotions and academic success. *Educational Psychology*, 41(6), 573–589. <https://doi.org/10.1080/01443410.2020.1855633>

31. Qiu, F. (2024). Exploring the linkage between self-construal and student learning process with moderation of demotivation and disengagement drawing on TRA. *SAGE Open*, 14(2), 1–13. <https://doi.org/10.1177/21582440241249536>

32. Rahmat, N. H. ., Sukimin, I. S. ., Sim, M. S. ., Anuar, M. ., & Mohandas, E. S. (2021). Online Learning Motivation and Satisfaction: A Case Study of Undergraduates vs Postgraduates. *International Journal of Asian Social Science*, 11(2), 88–97. <https://doi.org/10.18488/journal.1.2021.112.88.97>

33. Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. *Contemporary Educational Psychology*, 61, 101860. <https://doi.org/10.1016/j.cedpsych.2020.101860>

34. Sailer, M., & Homner, L. (2024). The gamification of learning: A meta-analysis. *Educational Psychology Review*, 36(2), 1–26. <https://doi.org/10.1007/s10648-019-09498-w>

35. Salmela-Aro, K., Savolainen, H., & Holopainen, L. (2009). Depressive symptoms and school burnout during adolescence: Evidence from two cross-lagged longitudinal studies. *Journal of Youth and Adolescence*, 38(10), 1316–1327. <https://doi.org/10.1007/s10964-008-9334-3>

36. Salmela-Aro, K., & Upadyaya, K. (2014). School burnout and engagement in the context of demands–resources model. *British Journal of Educational Psychology*, 84(1), 137–151. <https://doi.org/10.1111/bjep.12018>

37. Salmela-Aro, K., & Upadyaya, K. (2020). School engagement and school burnout profiles during high school – The role of socio-emotional skills. *European Journal of Developmental Psychology*, 17(6), 943–964. <https://doi.org/10.1080/17405629.2020.1785860>

38. Schaufeli, W. B., Martínez, I. M., Pinto, A. M., Salanova, M., & Bakker, A. B. (2002). Burnout and engagement in university students: A cross-national study. *Journal of Cross-Cultural Psychology*, 33(5), 464–481.

39. Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive theory. *Contemporary Educational Psychology*, 60, 101832. <https://doi.org/10.1016/j.cedpsych.2019.101832>

40. Syed Husain, S. S., Mohd Rathi, N. A., Zubir, Z., Munchar, J., Megat Khalid, P. Z., & Rahmat, N. H. (2025). Students' motivation to learn and burnout: How do they relate? *International Journal of Research and Innovation in Social Science (IJRISS)*, 9(3), 2619. <https://doi.org/10.47772/IJRISS.2025.90300205>
41. Trautner, M., & Pinquart, M. (2025). Development of motivational self-regulation in childhood—An integrative review. *Frontiers in Psychology*, 16, Article 1533625. <https://doi.org/10.3389/fpsyg.2025.1533625>
42. Upadyaya, K., & Salmela-Aro, K. (2020). Developmental dynamics between task value, self-concept, and school engagement among adolescents. *Frontiers in Psychology*, 11, 1365. <https://doi.org/10.3389/fpsyg.2020.01365>
43. Wan Mohd, W. N. H., Abd Rahman, M., Mohd Rick, A. M., Mokhtar, R., & Rahmat, N. H. (2024). Motivating and demotivating factors in learning: How do they relate to each other? *International Journal of Academic Research in Business and Social Sciences*, 14(1), 568–584. <http://dx.doi.org/10.6007/IJARBSS/v14-i1/18497>
44. Wang, X., Dai, M., & Short, K. M. (2024). One size doesn't fit all: how different types of learning motivations influence engineering undergraduate students' success outcomes. *International Journal of STEM Education*, 11, Article 41. <https://doi.org/10.1186/s40594-024-00502-6>
45. Yusof, R., Harith, N. H. M., Lokman, A., Abd Batau, M. F., & Zain, Z. M. (2024). Student's Perception of Motivation and Burnout. *Environment-Behaviour Proceedings Journal*, 9(SI22), 143-150. <https://doi.org/10.21834/e-bpj.v9iSI22.5822>
46. Zhang, S. (2025). AI-assisted learning environments in China: Exploring the intersections of emotion regulation strategies, grit tendencies, self-compassion, L2 learning experiences, and academic demotivation. *British Educational Research Journal*. Advance online publication. <https://doi.org/10.1002/berj.4158>
47. Zolkapli, R. B. M., Kenali, S. F. M., Hadi, N. F. A., Basiron, M. K., Iqbal, M., Latif, M. N. L. A., & Rahmat, N. H. (2023). Exploring motivation and demotivation factors for learning communication skills. *International Journal of Academic Research in Business and Social Sciences*, 13(7), 1501–1520. <http://dx.doi.org/10.6007/IJARBSS/v13-i7/17871>