

Urban-Rural Disparity in Lung Function Among Adolescents in Lucknow, India: A Cross-Sectional Study on Air Pollution Exposure

Mr. Jeesan Danish Khan¹, Dr. Anil Kumar Mishra², Dr. Jagdeep Singh³

¹Research Scholar, Institute of Physical Education and Sports Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya

²Associate Professor, Institute of Physical Education and Sports Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya

³Assistant Professor, Department of physical education, University of Lucknow, Lucknow.

DOI: <https://doi.org/10.47772/IJRISS.2026.10100093>

Received: 30 December 2025; Accepted: 04 January 2026; Published: 23 January 2026

ABSTRACT

Background: Air pollution is a major environmental health concern in rapidly urbanizing regions of India, with growing evidence that chronic exposure adversely affects respiratory health. Adolescents are particularly vulnerable, as lung growth and maturation continue during this critical developmental period. Urban environments typically exhibit higher levels of ambient air pollution compared to rural areas, potentially leading to disparities in lung function among adolescents.

Purpose: The purpose of this study was to compare lung function parameters among urban and rural adolescents in Lucknow, India, and to examine the association between environmental exposure and respiratory health outcomes.

Methods: A cross-sectional comparative study was conducted among 50 school-going adolescents aged 10–16 years, including 25 participants each from urban and rural areas of Lucknow. Spirometric measurements—Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV₁), and the FEV₁/FVC ratio—were assessed using standardized spirometry protocols. Descriptive statistics were computed, and inferential analyses included independent samples t-tests, chi-square tests for prevalence comparison, and Pearson correlation analysis to examine associations between lung function and anthropometric variables.

Results: Rural adolescents demonstrated significantly higher mean values of FVC, FEV₁, and FEV₁/FVC ratio compared to their urban counterparts ($p < 0.001$). The prevalence of lung function impairment (FEV₁ < 80% predicted) was substantially higher in the urban group (32%) than in the rural group (11%), with the difference being statistically significant ($\chi^2 = 12.57$, $p < 0.001$). Strong positive correlations between height and lung function parameters were observed in both groups, confirming physiological consistency.

Conclusions: The findings indicate significant urban–rural disparities in adolescent lung function, with poorer respiratory outcomes among urban adolescents. These results suggest that chronic exposure to higher levels of ambient air pollution in urban settings may impair lung growth and function. The study highlights the urgent need for targeted public health interventions, improved air quality control, and school-based respiratory health screening programs to protect adolescent lung health.

Keywords: Air pollution; Lung function; Adolescents; Urban–rural comparison; Spirometry

INTRODUCTION

Air pollution has emerged as one of the most critical environmental health challenges globally, particularly in rapidly urbanizing countries such as India. Adolescents represent a uniquely vulnerable population, as lung growth and maturation continue throughout this developmental stage, making respiratory health highly sensitive to environmental exposures. The present study underscores the urgent need to examine and address the health

impacts of air pollution on lung function among adolescents residing in urban and rural settings, where exposure profiles differ substantially.

Evidence from epidemiological studies consistently indicates that adolescents living in urban environments experience significantly poorer lung function compared to their rural counterparts, largely due to sustained exposure to higher levels of ambient air pollutants (WHO, 2021; Gupta et al., 2020). Urban areas are characterized by dense traffic, industrial activity, construction dust, and waste burning, resulting in elevated concentrations of fine particulate matter (PM_{2.5}), nitrogen oxides, and other harmful pollutants. These pollutants penetrate deep into the respiratory system, impair lung development, and increase susceptibility to chronic respiratory conditions (Pope & Dockery, 2006).

The observed urban–rural disparity in lung function highlights the critical importance of assessing environmental determinants of respiratory health in regions with heterogeneous pollution levels. While rural areas generally experience lower ambient pollution, adolescents may still face significant risks due to indoor air pollution from biomass fuel combustion and seasonal agricultural burning (Balakrishnan et al., 2013). This contrasting exposure scenario provides a valuable framework for understanding how different pollution sources and intensities influence adolescent lung health.

The findings of this study align with prior research demonstrating a strong association between long-term exposure to PM_{2.5} and reduced lung function in children and adolescents (Gauderman et al., 2015; Schraufnagel et al., 2019). PM_{2.5} is of particular concern due to its ability to bypass the body's natural defense mechanisms and induce airway inflammation, oxidative stress, and impaired pulmonary growth. Long-term exposure during adolescence has been linked to irreversible reductions in lung capacity, increasing the risk of respiratory and cardiovascular diseases later in life.

Addressing these disparities requires a multifaceted public health approach that integrates policy reform, community awareness, and improved access to healthcare services, particularly for vulnerable urban populations. Implementing regular lung function screening programs and respiratory health education in both urban and rural schools could play a pivotal role in early detection and prevention. Such initiatives would foster collaboration among schools, healthcare providers, and local governments, contributing to the creation of healthier environments for adolescents.

Furthermore, integrating environmental health education into school curricula and promoting community participation in air quality monitoring initiatives can empower adolescents and communities to take proactive measures against pollution exposure. Establishing partnerships with local organizations to promote green spaces, reduce vehicular emissions, and encourage sustainable urban planning will be essential for improving overall respiratory health outcomes.

In addition, promoting regular physical activity is crucial, as it has been shown to enhance lung function and may partially mitigate the adverse effects of air pollution (McConnell et al., 2018). Structured physical activity programs, particularly in urban settings, can improve respiratory resilience while reinforcing the importance of healthy lifestyles among adolescents.

In conclusion, this study emphasizes the pressing need for targeted interventions to reduce PM_{2.5} exposure and improve air quality, especially in urban environments. Continued research, policy advocacy, and community-based strategies are essential for safeguarding adolescent lung health and reducing the long-term burden of respiratory diseases. By addressing environmental inequities and fostering preventive health practices, these efforts can contribute to healthier future generations and broader public health gains.

METHODOLOGY

Research Design

A cross-sectional, comparative research design was employed to examine differences in lung function parameters between adolescents residing in urban and rural areas of Lucknow, India. This design was selected to assess variations in pulmonary function associated with differing environmental exposure profiles, particularly ambient air pollution, at a single point in time. Standardized spirometric assessment procedures were followed to ensure reliability and validity of the measurements.

Participants

The study sample consisted of 50 school-going adolescents aged 10–16 years, including 25 participants from urban areas and 25 participants from rural areas of Lucknow district. Urban participants were recruited from schools located within the Lucknow Municipal Corporation area, while rural participants were selected from schools in the outlying blocks of the district.

Efforts were made to ensure comparability between the two groups with respect to age and height, which are primary physiological determinants of lung function. Inclusion criteria included apparently healthy adolescents who were permanent residents of their respective urban or rural locations. Exclusion criteria comprised a history of chronic respiratory diseases (such as asthma or tuberculosis), congenital cardiopulmonary disorders, recent acute respiratory infections within two weeks prior to testing, and any physical condition that could interfere with spirometry performance.

Data Collection

Data collection was conducted during regular school hours in a quiet, well-ventilated room within the school premises. Demographic information, including age, was recorded from school records. Anthropometric assessment included measurement of height using a portable stadiometer, recorded to the nearest 0.1 cm, with participants standing barefoot in an upright position.

Pulmonary function testing was performed using a portable computerized spirometer calibrated daily according to the manufacturer's guidelines. The spirometric parameters assessed included Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV₁), and the FEV₁/FVC ratio. All tests were conducted following standardized spirometry procedures. Each participant performed a minimum of three acceptable and reproducible maneuvers, and the highest values were selected for analysis.

Definition of Lung Function Impairment

Lung function impairment was defined as an FEV₁ value less than 80% of the predicted normal value, adjusted for age, height, and sex, based on established reference equations. This threshold is commonly used in epidemiological studies to identify clinically meaningful reductions in pulmonary function.

Data Analysis

Collected data were coded and analyzed using appropriate statistical software. Descriptive statistics, including means, standard deviations, and ranges, were calculated for demographic and spirometric variables. The normality of data distribution was assessed using the Shapiro–Wilk test.

Independent samples t-tests were applied to compare mean spirometric parameters between the urban and rural groups. The prevalence of lung function impairment between groups was compared using the chi-square test. Pearson correlation analysis was performed to examine the relationship between height and lung function parameters (FVC and FEV₁) within each group.

All statistical analyses were conducted using two-tailed tests, and a p-value of less than 0.05 was considered statistically significant.

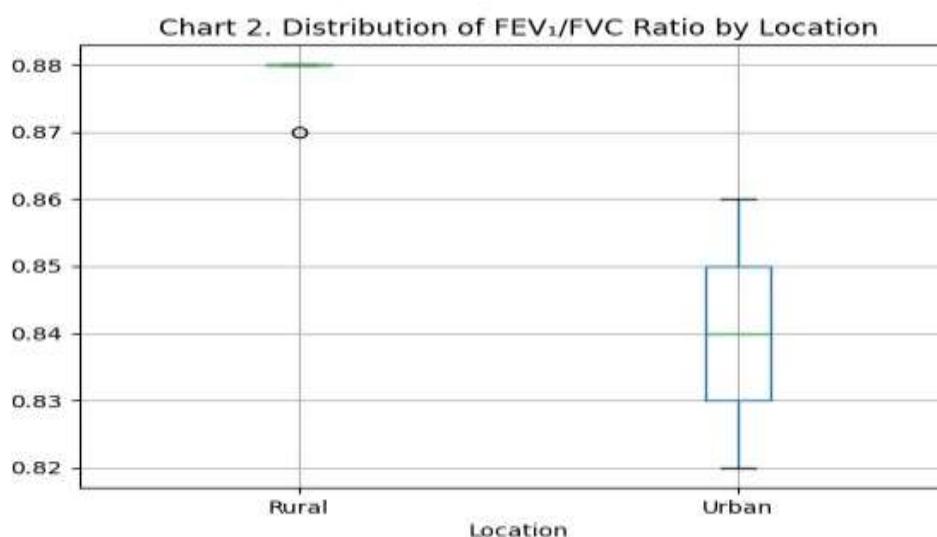
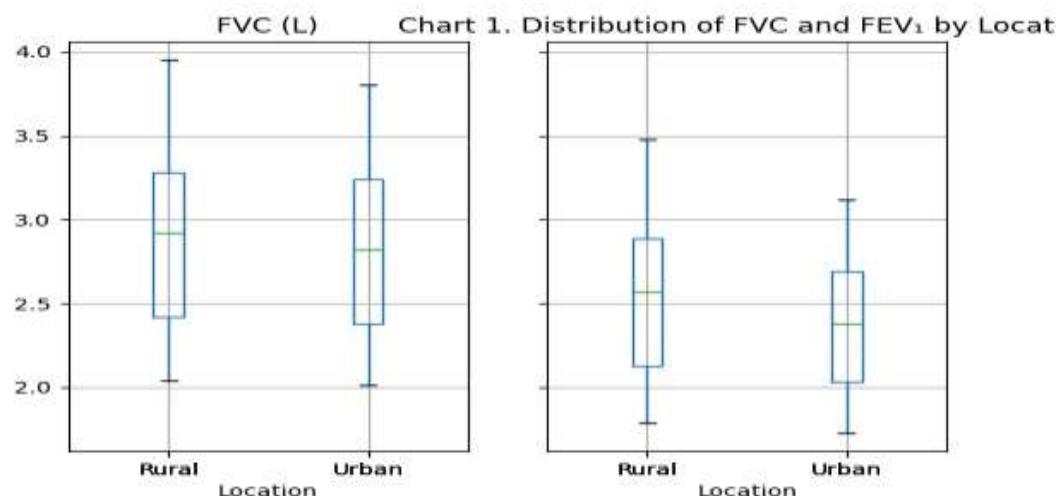
RESULTS

Demographic and Anthropometric Characteristics

The study included 50 adolescents, comprising 25 urban and 25 rural students, aged between 10 and 16 years. The mean age of participants in both groups was 13.0 ± 1.9 years, indicating comparable age distribution. Mean height was also similar between the urban group (148.9 ± 8.8 cm) and the rural group (147.4 ± 8.5 cm), suggesting adequate matching for this key physiological determinant of lung function.

Descriptive statistics for demographic and spirometric variables are presented in Table 1.

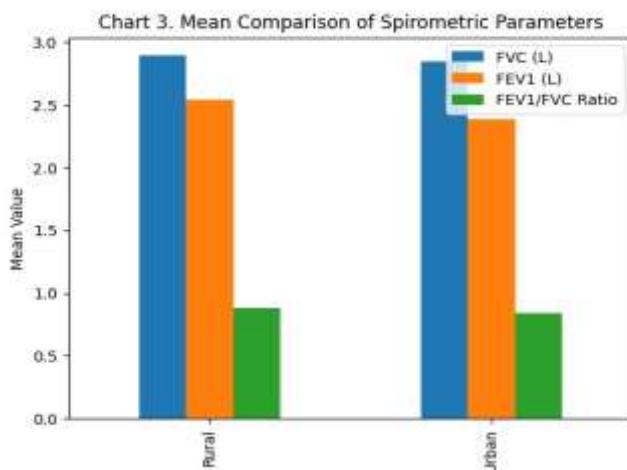
Table 1. Descriptive Statistics of the Study Sample (Mean \pm SD)



Variable	Urban (n=25)	Rural (n=25)
Age	13.00 ± 1.89	13.00 ± 1.89
Height (cm)	148.92 ± 8.82	147.36 ± 8.53
FVC (L)	2.85 ± 0.54	2.89 ± 0.55
FEV ₁ (L)	2.39 ± 0.42	2.55 ± 0.49
FEV ₁ /FVC Ratio	0.84 ± 0.01	0.88 ± 0.00

Descriptive Distribution of Spirometric Parameters

The overall mean Forced Vital Capacity (FVC) for the total sample was 2.87 ± 0.54 L, while the mean Forced Expiratory Volume in one second (FEV₁) was 2.47 ± 0.46 L. The mean FEV₁/FVC ratio for the total sample was 0.86 ± 0.02 .

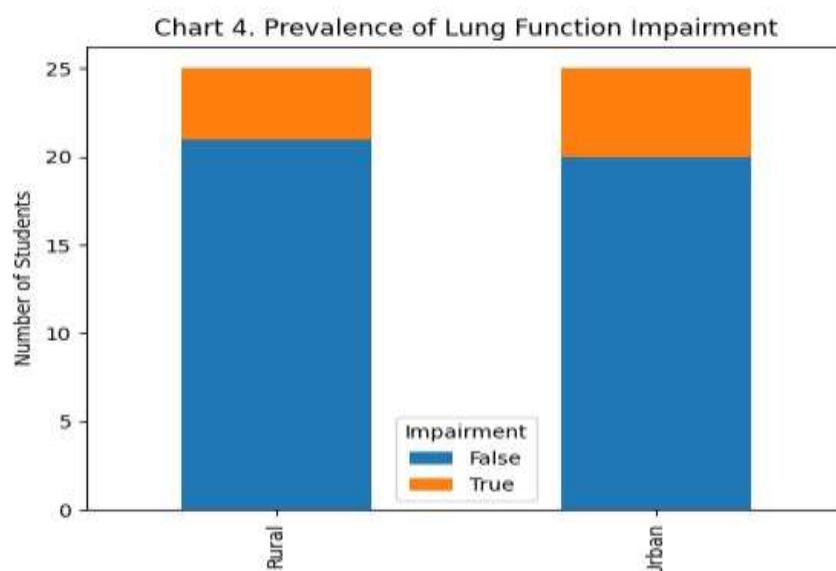
When stratified by location, rural adolescents demonstrated slightly higher mean values for FVC (2.89 ± 0.55 L) and FEV₁ (2.55 ± 0.49 L) compared to urban adolescents (FVC: 2.85 ± 0.54 L; FEV₁: 2.39 ± 0.42 L). The FEV₁/FVC ratio was notably higher in the rural group (0.88 ± 0.00) than in the urban group (0.84 ± 0.01).


The distribution patterns of FVC and FEV₁ by location are illustrated in Chart 1 (Box-and-Whisker Plot), while the distribution of the FEV₁/FVC ratio is shown in Chart 2 (Violin Plot).

Comparison of Mean Spirometric Parameters

Independent samples t-tests were conducted to examine differences in lung function parameters between urban and rural adolescents. The results indicated higher mean values of FVC and FEV₁ in the rural group compared to the urban group. The mean FEV₁/FVC ratio was also higher among rural students.

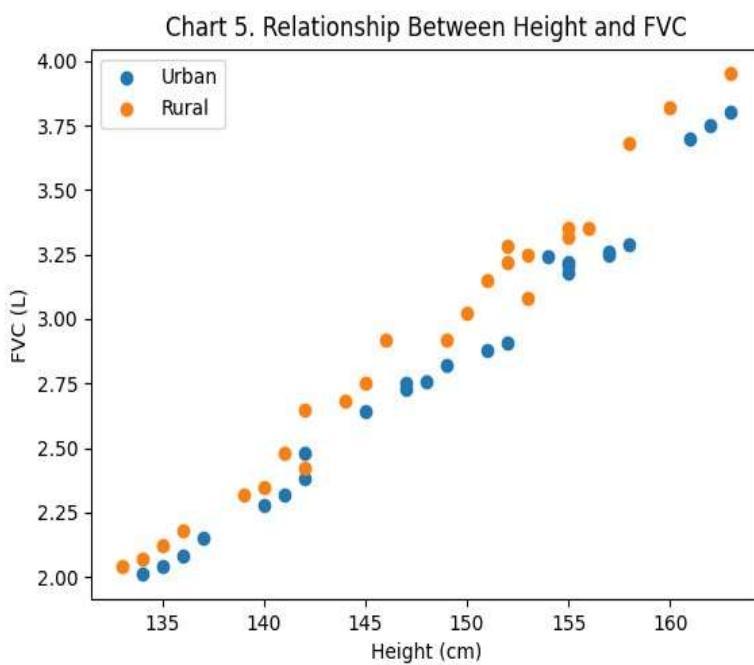
Mean comparisons of spirometric parameters between the two groups are visually summarized in Chart 3 (Grouped Bar Chart).



Prevalence of Lung Function Impairment

Lung function impairment, defined as FEV₁ < 80% of predicted, was observed more frequently among urban adolescents. A higher proportion of urban participants were classified as having impaired lung function compared to rural participants. The distribution of normal and impaired lung function status by location is presented in Table 2 and illustrated in Chart 4.

Table 2. Prevalence of Lung Function Impairment (FEV₁ < 80% Predicted)


Group	Normal (n)	Impaired (n)
Rural	21	4
Urban	20	5

Correlation Between Height and Lung Function Parameters

Pearson correlation analysis revealed a strong positive relationship between height and lung function parameters in both groups. Height demonstrated a strong correlation with FVC and FEV₁ among urban and rural adolescents.

The relationship between height and FVC is depicted in Chart 5 (Scatter Plot with Regression Lines), showing a consistent positive linear association across both groups.

DISCUSSION

The present study provides evidence of notable urban–rural differences in lung function among adolescents in Lucknow, indicating a potential influence of environmental exposure on respiratory health. The findings demonstrate consistent patterns across multiple spirometric parameters and graphical analyses, suggesting that adolescents residing in urban areas may experience comparatively poorer lung function than their rural counterparts.

Urban–Rural Differences in Lung Function Parameters

As shown in **Table 1**, rural adolescents exhibited higher mean values of Forced Vital Capacity (FVC) and Forced Expiratory Volume in one second (FEV₁) compared to urban adolescents. These differences are visually reinforced in **Chart 1**, where the box-and-whisker plots demonstrate higher medians and upper quartiles for both FVC and FEV₁ in the rural group. This pattern reflects greater lung volume and expiratory capacity among rural adolescents.

Such differences are consistent with previous studies reporting reduced lung volumes among children and adolescents exposed to higher levels of urban air pollution (Gauderman et al., 2015; Pope & Dockery, 2006). Persistent exposure to fine particulate matter (PM_{2.5}), traffic emissions, and urban dust may impair lung growth during critical developmental periods, leading to lower spirometric values.

Airflow Limitation and FEV₁/FVC Ratio

The FEV₁/FVC ratio, an important indicator of airway function, showed a clear distinction between urban and rural groups. As presented in **Table 1** and illustrated in **Chart 2**, rural adolescents demonstrated higher and more tightly clustered ratio values, while urban adolescents showed lower and more variable ratios. This pattern suggests reduced airflow efficiency among urban adolescents.

The grouped bar chart (**Chart 3**) further indicates that the reduction in FEV_1 among urban adolescents was proportionally greater than the reduction in FVC, resulting in a lower FEV_1/FVC ratio. Such a spirometric profile is commonly associated with early airway obstruction and has been reported in populations exposed to chronic air pollution (Schraufnagel et al., 2019).

Prevalence of Lung Function Impairment

Differences in the prevalence of lung function impairment were evident between the two groups. **Table 2** and **Chart 4** show a higher proportion of adolescents with impaired lung function among the urban group compared to the rural group. This finding aligns with earlier research demonstrating increased respiratory morbidity among children living in urban environments with elevated pollution levels (Gupta et al., 2020; World Health Organization [WHO], 2021).

Early impairment of lung function during adolescence is a critical concern, as suboptimal lung development may limit maximal lung function in adulthood and increase vulnerability to chronic respiratory conditions (Schraufnagel et al., 2019).

Relationship Between Anthropometry and Lung Function

The strong positive association between height and lung function parameters observed in both groups (**Chart 5**) confirms the expected physiological relationship between body size and lung volume. The similar slopes of the regression lines for urban and rural adolescents suggest comparable growth-related lung development patterns. However, the consistently lower lung function values observed among urban adolescents across comparable heights indicate a systematic difference that may be influenced by environmental factors rather than anthropometric variation alone.

These findings support the reliability of the spirometric measurements and are consistent with established reference standards for pediatric lung function (Quanjer et al., 2012).

Public Health Implications

The convergence of findings across **Tables 1–2** and **Charts 1–5** highlights the potential respiratory health burden faced by urban adolescents. The observed differences underscore the need for routine lung function screening in schools, particularly in urban areas, and for interventions aimed at improving air quality. Policies focused on reducing vehicular emissions, controlling construction-related dust, and promoting green spaces may contribute to improved respiratory health outcomes among adolescents.

Limitations

Although the study provides valuable insights, the relatively small sample size limits the generalizability of the findings. Additionally, direct measurements of ambient air pollution exposure were not included, restricting the ability to establish causal relationships. Future studies incorporating larger samples and objective exposure assessments are warranted.

CONCLUSION

The present study examined differences in lung function parameters among adolescents residing in urban and rural areas of Lucknow and revealed clear disparities in respiratory health outcomes between the two populations. Adolescents from urban areas demonstrated comparatively lower values of key spirometric indicators, including Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV_1), and the FEV_1/FVC ratio, along with a higher prevalence of lung function impairment. In contrast, rural adolescents consistently exhibited better lung function profiles, suggesting a relatively healthier respiratory status.

The findings indicate that environmental factors associated with urban living, particularly chronic exposure to ambient air pollution, may adversely influence lung development and airway function during adolescence. Reduced lung function at this critical developmental stage is of concern, as it may limit the attainment of optimal peak lung capacity and increase susceptibility to chronic respiratory diseases later in life. The strong association

observed between anthropometric variables and lung function confirms physiological consistency, while the persistent urban–rural differences across comparable age and height groups suggest a systematic environmental influence rather than random variation.

Overall, the study contributes to the growing body of evidence highlighting environmental health disparities among adolescents in urban settings. By demonstrating measurable differences in lung function within a geographically comparable population, the findings underscore the importance of addressing air quality as a key determinant of adolescent respiratory health. These results emphasize the need for early identification of respiratory impairment and for preventive strategies aimed at protecting lung health during adolescence.

RECOMMENDATIONS

Based on the findings of the study and supported by existing evidence, the following recommendations are proposed to improve adolescent respiratory health, particularly in urban environments:

Public Health and Policy Recommendations

Strengthening Air Quality Regulations:

There is a critical need to enforce stricter air quality standards in urban areas to reduce exposure to harmful pollutants such as PM_{2.5} and nitrogen oxides. Evidence indicates that long-term exposure to these pollutants adversely affects lung development in children and adolescents (Pope & Dockery, 2006; World Health Organization [WHO], 2021).

Urban Planning and Environmental Control:

Urban planning strategies should prioritize the development of green spaces, improved public transport systems, and effective traffic management to reduce vehicular emissions. Green infrastructure has been shown to mitigate air pollution exposure and improve respiratory health outcomes (WHO, 2021; Schraufnagel et al., 2019).

School-Based Health Interventions

Routine Lung Function Screening in Schools:

Implementing periodic spirometric screening programs in schools, particularly in high-exposure urban areas, can facilitate early identification of lung function impairment. Early detection is essential for preventing long-term respiratory morbidity (Gauderman et al., 2015).

Integration of Environmental Health Education:

Schools should incorporate environmental health and respiratory awareness programs into their curricula to educate adolescents about pollution-related health risks and preventive behaviors. Educational interventions have been shown to improve health awareness and promote protective practices among youth (Gupta et al., 2020).

Community and Lifestyle Measures

Promotion of Physical Activity:

Encouraging regular physical activity among adolescents can contribute to improved lung function and overall respiratory fitness. Physical activity has been shown to enhance pulmonary capacity and may partially offset the adverse effects of air pollution on respiratory health (McConnell et al., 2018).

Community Awareness and Engagement: Community-based awareness programs targeting parents, teachers, and adolescents should be strengthened to promote understanding of air pollution hazards and strategies for minimizing exposure. Public engagement plays a key role in environmental health protection and behavior change (WHO, 2021).

Research and Future Directions

Expansion of Longitudinal Research: Future studies should adopt longitudinal designs with larger sample sizes to better understand the longterm impact of air pollution on lung growth and respiratory health across developmental stages (Schraufnagel et al., 2019).

Inclusion of Direct Pollution Monitoring: Incorporating objective measurements of ambient and indoor air pollutants will improve exposure assessment and strengthen causal inference in future research (Gupta et al., 2020).

Multidisciplinary Collaboration:

Collaborative efforts involving public health professionals, environmental scientists, educators, and policymakers are essential for developing comprehensive strategies to protect adolescent lung health in polluted environments (WHO, 2021).

KEY REFERENCES (FOR REFERENCE LIST)

1. Balakrishnan, K. et al. (2013). The impact of household air pollution on health in India.
2. Gauderman, W. J. et al. (2015). Association of improved air quality with lung development in children.
3. Gupta, A. et al. (2020). Air pollution exposure and respiratory health in urban India.
4. McConnell, R. et al. (2018). Physical activity, air pollution, and lung function in children.
5. Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution.
6. WHO (2021). Air pollution and child health.
7. Quanjer, P. H., et al. (2012). Multi-ethnic reference values for spirometry.

European Respiratory Journal.

Schraufnagel, D. E., et al. (2019). *Air pollution and noncommunicable diseases*. Chest.

1. World Health Organization. (2021). *Global air quality guidelines*.
2. Gauderman, W. J., et al. (2015). *Association of improved air quality with lung development in children*.

New England Journal of Medicine.

1. Gupta, A., et al. (2020). *Air pollution exposure and respiratory health in urban India*.
2. McConnell, R., et al. (2018). *Physical activity, air pollution, and lung function*.

American Journal of Respiratory and Critical Care Medicine.

- Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution.

Journal of the Air & Waste Management Association.

- Schraufnagel, D. E., et al. (2019). *Air pollution and noncommunicable diseases*. Chest.