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ABSTRACT 

Emergency alert systems that rely solely on auditory signals pose significant risks to the Deaf and Hard-

of-Hearing (DHH) community, especially in public   and crowded environments. In response to this  

accessibility gap, this project focuses on the design and implementation of a vibrotactile emergency alert bracelet 

that delivers non-auditory feedback using real-time environmental sound recognition. The bracelet integrates an 

Arduino Nano RP2040 Connect microcontroller, which features an onboard MP34DT06JTR MEMS microphone 

(Arduino, n.d.), and employs a mini vibration motor and OLED display to provide tactile and visual alerts. 

Emergency sound types, including fire alarms, sirens, and public announcements, are classified using machine 

learning models trained with Edge Impulse. The vibration feedback is controlled through Linear Resonant 

Actuators (LRAs), chosen for their efficient, low- power haptic performance in wearable devices. Feature 

extraction is performed using Mel-Frequency Cepstral Coefficients (MFCC), and classification models are 

evaluated based on accuracy, latency, and robustness to untrained samples. The system was validated through 

real-world testing, and results demonstrate high classification accuracy for tonal alerts and effective user 

recognition of vibration patterns. Limitations remain   in   detecting   speech-based announcements. Battery 

drains tests and user surveys confirm the system’s reliability for daily short-term usage. This project presents 

a cost-effective, wearable solution that enhances situational awareness and safety for the DHH community 

in emergency scenarios. 

Keywords: Vibrotactile alert system,   MEMS   microphone,   Arduino   RP2040 Connect, Emergency sound 

classification, Linear Resonant Actuator (LRA), Edge Impulse, Deaf and Hard-of-Hearing (DHH) 

INTRODUCTION 

Emergency alert systems play a critical role in ensuring public safety during situations such as fires, natural 

disasters, and security threats. However, conventional systems rely heavily on auditory signals such as sirens, 

fire alarms, and public announcements, which inherently exclude individuals who are Deaf or Hard-of-Hearing 

(DHH). This exclusion creates a significant safety gap, as the inability to perceive audio- based alerts delays 

response time and increases vulnerability during emergencies. Studies have shown that DHH individuals often 

rely on secondary cues like visual observation or crowd behavior to recognize danger (Basner et al., 2014), 

further placing them at risk in chaotic scenarios. 

Public infrastructures such as malls, offices, and transportation hubs often lack inclusive emergency 

communication mechanisms. While visual alert systems, such as flashing lights and digital notifications, are in 

use, their effectiveness is limited by the user’s line of sight and the requirement for constant visual attention. These 

constraints highlight the need for a more direct and accessible alert mechanism that functions independently of 

auditory or visual awareness (Berglund, Lindvall, & Schwela, 1999). 

Wearable vibrotactile technology presents a promising alternative for addressing this accessibility issue. By 

delivering emergency alerts through tactile feedback, such devices can provide immediate, intuitive notifications 

to DHH users without relying on sound or sight. Recent advancements in microcontroller hardware, particularly 

the Arduino Nano RP2040 Connect, and machine learning platforms like Edge Impulse, have enabled the 
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integration of real-time sound classification and vibration feedback in a compact, wearable form factor. 

This study focuses on the development of a vibrotactile emergency alert bracelet that detects specific emergency 

audio signals and converts them into vibration patterns recognizable to the user. The system utilizes MEMS-

based digital microphones for sound acquisition, Mel-Frequency Cepstral Coefficients (MFCCs) for audio 

feature extraction, and neural network classifiers for signal recognition. Upon classification, vibration motors 

driven by Linear Resonant Actuators (LRAs) are activated to deliver haptic feedback corresponding to the type 

of emergency. 

The goal of this research is to bridge the accessibility gap in emergency alerting systems by providing the DHH 

community with an inclusive, responsive, and cost-effective wearable solution. Through real-time processing, 

robust classification, and user-centric feedback, the system aims to enhance situational awareness and safety for 

individuals who are traditionally underserved by conventional emergency communication technologies 

METHODOLOGY 

Vibrotactile Bracelet Product Design 

The product was developed to be compact, ergonomic, and efficient in delivering haptic and visual alerts for 

individuals with hearing impairments or those operating in noisy environments. The design objective was to create 

a wearable solution capable of real-time sound classification and immediate feedback delivery through vibration 

and OLED display. The bracelet integrates an embedded system capable of recognizing emergency-related audio 

cues such as sirens, fire alarms, and public announcements. Upon detecting a specific sound, the device activates 

a vibration motor to notify the user and simultaneously displays the corresponding classification label on a 

compact OLED screen. Designed to be worn on the wrist, the system emphasizes portability, low power 

consumption, and intuitive operation. 

The key hardware components incorporated into the bracelet were selected based on size, power efficiency, 

compatibility with embedded ML deployment, and the ability to perform reliably in real-time applications. Table 

2.1 outlines the primary components used in the design. 

Table 2.1 Hardware Components Integrated into the Bracelet  

 

The physical enclosure for the bracelet was modeled in SolidWorks to ensure all components fit securely within 
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a compact, ergonomic form factor. The design accounted for the actual dimensions of each electronic part to 

prevent overcrowding and to maintain a low profile. Rounded edges and smooth surfaces were incorporated to 

enhance wearability and reduce discomfort during prolonged use. The enclosure includes precise cutouts for the 

OLED display, USB-C charging port, and a vent near the microphone area to prevent acoustic distortion. A 

visual overview of the enclosure design is presented in Figure 2.1. 

 

Figure 2.1 3D View of the Bracelet Enclosure Design 

The final design emphasizes modularity, allowing for easy disassembly for maintenance or upgrades. This 

ensures the device can be adapted for future improvements such as additional alert types, wireless communication 

features, or integration with smart home systems. Overall, the bracelet’s physical and functional design enables 

a practical, user-friendly, and inclusive solution for emergency awareness in daily life. 

Sound Dataset Collection and Preparation 

To train the emergency sound classification model, six distinct audio classes were selected during the initial 

development phase: ambulance siren, police siren, fire truck siren, background noise, fire alarm, and emergency 

announcement. These classes were chosen to represent commonly encountered emergency-related sounds with 

the intent of enabling the system to distinguish between them in real-world scenarios. The three siren types were 

deliberately treated as separate classes to assess the model’s ability to differentiate tonal patterns across 

emergency vehicles, supporting a more refined response mechanism. 

All samples were recorded using the built-in microphone of a laptop connected directly to Edge Impulse’s data 

acquisition platform, allowing real-time integration with the Arduino development environment. Data collection 

was conducted via the platform’s recording interface, and audio clips were visualized immediately to confirm 

signal quality and class distribution (Edge Impulse, n.d.), as shown in Figure 2.2. 

 

Figure 2.2 Collected Sensor Data Displayed in Edge Impulse Data Acquisition Tab 
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All audio samples used in this project were sourced from online platforms, primarily YouTube, to reflect realistic 

emergency sound environments. Audio clips containing sirens, fire alarms, public announcements, and ambient 

background noise were played and recorded in real time using the Arduino Nano RP2040 Connect's onboard 

MEMS microphone. The device was connected to Edge Impulse through the edge-impulse-daemon interface, 

allowing seamless integration between local hardware and the data acquisition platform. 

Each recording was standardized to a 4-second duration, with careful manual cropping to eliminate silent 

intervals and irrelevant background sounds. This ensured that each sample captured the most prominent and 

identifiable features of the target sound class. The use of a uniform recording method and consistent  device 

configuration across all sound categories contributed to high-quality, comparable data throughout the dataset, as 

shown in Figure 2.3. 

 

Figure 2.3 Cropped Raw Sensor Data in Edge Impulse Studio 

The complete dataset consisted of 150 audio samples, each recorded at a duration of 4 seconds. These samples 

were evenly divided across six classes relevant to emergency alert scenarios, as shown in Table XX. The three 

siren-related classes: ambulance, police, and fire truck, were each represented by 15 samples, enabling early 

testing of the model’s ability to differentiate between tonal emergency vehicle signals. Two additional classes, 

fire alarm and emergency announcement, also included 15 samples each, simulating sounds typically 

encountered in public infrastructure such as offices, schools, and malls. 

Sound Class Number of Samples Sample Duration 

Ambulance Siren 15 4 seconds 

Police Siren 15 4 seconds 

Fire Truck Siren 15 4 seconds 

Background Noise 75 4 seconds 

Fire Alarm 15 4 seconds 

Emergency Announcement 15 4 seconds 

Total 150 samples ≈10 minutes 

Table 2.2 Sample Data Distribution by Class in Edge Impulse Project 

The background noise class contained 75 samples, intentionally overrepresented to enhance the model’s 

robustness against false alarms. These samples covered a wide range of environmental audio, including human 

conversation, indoor ambient noise, and outdoor traffic sounds. This imbalance was a deliberate design choice to 

ensure the model could reliably differentiate emergency cues from everyday sound environments. An overview 
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of the combined dataset is visualized in Table 2.2. 

Preprocessing was performed using Edge Impulse Studio’s built-in tools, which automatically standardized the 

duration and amplitude of all samples. Each 4-second clip was trimmed to remove silence and normalized to 

reduce amplitude variance across classes. The most important preprocessing step involved the transformation of 

raw audio into Mel- Frequency Cepstral Coefficients (MFCCs) during the Digital Signal Processing (DSP) phase 

(Davis & Mermelstein, 1980). MFCCs are widely used in sound classification tasks as they capture the 

frequency-based characteristics of audio in a compact, machine- readable format. 

This MFCC representation was further reduced into a set of numerical features, which served as the input to the 

neural network classifier. These features significantly reduced data dimensionality while retaining essential 

acoustic information, improving training efficiency and enhancing the model’s ability to generalize across 

various real- world acoustic conditions. 

Altogether, this structured and carefully curated dataset provided a reliable foundation for training a lightweight 

yet accurate classification model deployable on embedded hardware. 

Model Training and Deployment 

The sound classification model for the vibrotactile alert bracelet was developed using Edge Impulse’s neural 

network classifier, specifically optimized for deployment on embedded hardware with constrained memory and 

processing capacity (Zhang, Wang, & Zhao, 2022). The model architecture consisted of an input layer for MFCC 

features, followed by a fully connected dense layer with ReLU activation, and a softmax output layer to classify 

inputs into one of six predefined sound classes. The configuration is shown in Figure 2.4. 

 

Figure 2.4 Edge Impulse Neural Network Configuration for Audio Classification 

Edge Impulse’s AutoML feature provided an initial model structure, which was slightly modified to reduce 

RAM and Flash usage without compromising accuracy. No convolutional layers were included to maintain the 

lightweight nature of the model (Yin, You, & Cui, 2021), ensuring smooth real-time inference on the Arduino 

Nano RP2040 Connect. 

During training, the model achieved an overall accuracy of 96.55%, with excellent classification results across 

most sound classes. 
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Figure 2.5 Model Testing Accuracy Reading in Edge Impulse Studio 

As summarized in Figure 2.5, the model’s performance metrics were exceptionally high: 

 AUC (Area Under Curve): 1.00 

 Weighted Precision: 1.00 

 Weighted Recall: 1.00 

 Weighted F1 Score: 1.00 

The confusion matrix revealed that classes like siren, fire alarm, and background noise were classified with 

perfect accuracy, each reaching an F1 score of 1.00. However, the emergency announcement class showed 

occasional misclassification, with only 66.7% accuracy, partly due to similarities between speech tones and 

general ambient voice noise. Despite this minor limitation, the model maintained high reliability overall and was 

considered suitable for real-time deployment. 

Following training, the final model was compiled into a custom firmware package for the Arduino Nano RP2040 

Connect via Edge Impulse’s deployment tools (Yang & Deb, 2009). The generated firmware included the 

inference engine and required libraries, allowing for standalone operation without dependence on internet 

connectivity or external servers. 

 

Figure 2.6 Deployment Configuration Settings in Edge Impulse Studio Deployment was executed through the 
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Arduino IDE, where the device was flashed with the .ino file containing the classification logic, as shown in 

Figure 2.6. 

RESULT AND DISCUSSION 

Sound Classification Results 

The initial model used a 4000 ms window size and six distinct classes, achieving 76.7% validation accuracy 

(Figure 3.1). It performed well on siren (100%) and background noise (92.9%), but struggled with fire alarms and 

emergency announcements, often confusing them with background noise due to overlapping speech or tonal 

features (Figure 3.2). 

 

Figure 3.1 Model Training Results in Edge Impulse Studio 

 

Figure 3.2 Visualization of Dataset in Edge Impulse Data Explorer 
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However, this model was too large to be deployed to the Arduino due to memory constraints. To address this, a 

2000 ms model was created with all siren types merged into a single “SIREN” class, significantly reducing model 

complexity. This updated model achieved 100% validation accuracy in Edge Impulse (Figure 3.3), with a cleaner 

confusion matrix and improved performance for fire alarms and background noise. Emergency announcements 

still showed some misclassification, indicating persistent acoustic overlap. 

 

Figure 3.3 Updated Training Result in Edge Impulse Data Explorer 

Inference Time (Latency) 

After deployment, latency tests were conducted on the Arduino using the serial monitor.  The system took an 

average of 2.7 seconds per classification, broken down into DSP time (~2685 ms) and inference time (~21.5 ms), 

as shown in Table 3.1. 

 

Figure 3.4 Inference Latency in Arduino IDE Serial Monitor 
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Run DSP Time (ms) Inference Time (ms) Total Latency (ms) 

1 2680 22 2702 

2 2682 21 2703 

3 2680 21 2701 

4 2696 22 2718 

5 2684 21 2705 

6 2683 22 2705 

7 2687 21 2708 

8 2689 22 2711 

9 2685 21 2706 

10 2681 22 2703 

Average 2684.7 21.5 2706.2 

Table 3.1 Sample Readings of DSP and Inference Latency from Real-Time Testing 

This delay, while noticeable, remains functional for awareness purposes, especially for users needing 

environmental cues rather than instant reaction (Podlubny, 1999). The latency was consistent across trials, 

supporting predictable performance. Future improvements may include shorter window sizes or more efficient 

models to reduce response time. 

Real-World Deployment Accuracy 

Controlled tests using 100 trials per class were conducted using YouTube audio. The model maintained good 

performance for tonal sounds, with 86% accuracy for sirens, 90% for fire alarms, and 98% for background noise 

(Table 3.2). However, emergency announcements were not detected at all (0%), as all samples were 

misclassified, primarily as background noise, due to the model’s limitations with speech-based inputs. 

Class Tested 

Samples 

                                     

Output

  

 Accuracy 

(%) 

 Siren Fire 

Alarm 

Background 

Noise 

Emergency 

Announcement 

Siren 100 86 10 4 0 86% 

Fire Alarm 100 6 90 4 0 90% 

Background Noise 100 0 0 98 2 98% 

Emergency Announcement 100 0 0 100 0 0% 

Table 3.2 Controlled Test Results with 100 Trials per Class 
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Figure 3.5 Heatmap of Classification Accuracy for Each Class from Controlled Tests 

 

Figure 3.6 Graphical Representation of Model Accuracy Across All Classes 

These results confirm that while the model is reliable for tonal emergency cues, it fails to handle verbal alerts, 

which are acoustically complex and often resemble ambient conversation. 

Robustness Against Untrained Audio Samples 

To test generalization, 50 untrained samples per class were evaluated using unfamiliar sirens, alarms, and 

ambient noise (Table 3.3). Results showed a 15–20% accuracy drop for siren and fire alarm classes due to new 

sound patterns, but background noise remained strong at 93% accuracy. Emergency announcements again failed 

with 0% accuracy, reinforcing the model’s poor handling of speech-based content. 

Class Tested 

Samples 

                                     

Output

  

 Accuracy 

(%) 

 Siren Fire 

Alarm 

Background 

Noise 

Emergency 

Announcemen

t 

Siren 50 35 10 5 0 70% 

Fire Alarm 50 7 36 7 0 72% 

Background Noise 50 1 2 47 0 93% 

Emergency Announcement 50 0 0 50 0 0% 
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Table 3.3 Robustness Test Using 50 Untrained Samples per Class Under Realistic Conditions 

 

Figure 3.7 Bar Chart Showing Model Robustness Across Untrained Audio Sources 

 

Figure 3.8 Robustness Evaluation Heatmap with 50 Untrained Samples per Class 

Despite these limitations, the system remains effective for tone-based emergency alert detection in wearable 

applications. For improved speech recognition, future iterations should incorporate dedicated speech detection 

models or separate processing strategies to isolate announcements from conversational noise. 

Vibration Pattern Effectiveness 

To provide intuitive, non-auditory alerts, the system implemented distinct vibration patterns for each classified 

sound category (Precision Microdrives, n.d.). These patterns were designed based on the urgency and acoustic 

profile of the respective sound (Dahiya et al., 2010). As shown in Table 3.4, the siren class used a moderate pulsing 

loop to emulate its rising-falling tone, while fire alarms triggered continuous vibration to indicate persistent danger. 

Background noise had no vibration output, helping to avoid unnecessary alerts. Emergency announcements were 

assigned a unique two-pulse pattern to mimic speech cadence, although this was not consistently activated in 

real testing due to model limitations. 

Sound Class Vibration Pattern Description Purpose / Justification 
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Siren Moderate pulsing 500 ms ON, 500 ms OFF in 

cycles 

Emulates the wailing rhythm of sirens to 

convey urgency 

Fire Alarm Continuous vibration ON as long as alarm is 

detected 

Indicates a critical and ongoing 

emergency 

Background Noise No vibration Avoids unnecessary feedback for non-

emergency sounds 

Emergency 

Announcement 

Patterned sequence two short 200 ms pulses 

separated by a 100 ms pause, followed by a 500 

ms pause 

Mimics speech rhythm for voice-based 

alerts, offers uniqueness 

Table 3.4 Haptic Feedback Patterns Corresponding to Detected Sound Classes 

This design allowed users to interpret the nature of the detected sound through haptic feedback alone. Each 

pattern served a functional purpose: communicating urgency, presence, or the absence of danger, tailored to suit 

DHH users or those in noisy environments. 

In terms of response time, the system exhibited an average latency of approximately 2.7 seconds, primarily from 

feature extraction (DSP ~2680 ms) and inference (~22 ms). Once classification was complete, the vibration 

motor was triggered immediately, resulting in virtually zero added delay between sound recognition and 

feedback. 

User feedback was collected through a small-scale evaluation involving 10 participants, all wearing noise-

canceling headphones to simulate deaf or acoustically isolated environments. Participants were exposed to the 

vibration patterns corresponding to each class and asked to identify the intended alert type. The results, 

summarized in Table 3.5, showed: 

 100% accuracy for fire alarm and background noise, confirming the effectiveness of these patterns. 

 80% accuracy for siren, with some confusion between the siren and announcement patterns due to similar 

rhythmic structures. 

 0% accuracy for emergency announcements, as the model failed to trigger any vibration due to persistent 

misclassification. Users therefore assumed the absence of feedback meant background noise. 

Sound Class Actual Vibration 

Pattern 

Sample 

Size 

Perceived Classification by Users Accuracy 

(%) 

  Siren Fire 

Alarm 

Backgroun

d Noise 

 

Siren Pulsing loop 10 8 - - 80% 

Fire Alarm Continuous buzzing 10 - 10 - 80% 

Background Noise No vibration 10 - - 10 100% 

Emergency 

Announcement 

Two short buzzes + 

pause cycle 

10 - - 10 0% 

Table 3.5 User Feedback on Accuracy of Vibration Pattern Recognition for Each Sound Class 

While the feedback system itself performed well, the failure of the model to detect announcements undermined 
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its effectiveness. This limitation lies in the model’s classification capability rather than the haptic design. Future 

improvements should focus on enhancing speech-based detection, ensuring that critical verbal alerts reliably 

activate their corresponding tactile response. 

Battery Life Battery Performance 

A battery drain test was conducted using the 3.7V, 500mAh Li-Po battery under mixed-usage conditions, where 

the device remained on and alternated between idle monitoring and active alert states. As shown in Table 3.6, the 

system operated continuously for approximately 6 hours, with intermittent activation of the vibration motor and 

OLED display. This duration reflects a realistic usage scenario, balancing background standby time with 

occasional emergency detections. 

Operating Mode Battery 

Capacity 

Duration Until 

Shutdown 

Remarks 

Mixed (Idle + 

Alerts) 

3.7V, 500mAh ~6 hours Occasional alerts triggered vibration and 

OLED output 

Table 3.6 Battery Drain Test Under Mixed-Usage Conditions 

The charging test using the TP4056 USB-C module indicated a full recharge time of approximately 1 hour 30 

minutes at ~1A current (TP4056, n.d.). The module’s indicator LED transitioned from red to blue once charging 

was complete (Table 3.7), enabling convenient reuse within short turnaround times. 

Charger Module Charging 

Current 

Full Charging Time (from 0% 

to 100%) 

Indicator Behavior 

TP4056 (via USB-C) ~1A ~1 hour 30 minutes Red (charging) → Blue (full) 

Table 3.7 Charging Duration to Full Using TP4056 USB-C Module 

Although 6 hours may be modest, the result is reasonable given the device's compact form and the energy demands 

of the vibration motor and OLED display. For extended deployment, future improvements may include 

implementing power-saving modes, optimize component efficiency, or use higher-capacity batteries (Wang, 

Duan, & Yu, 2012). 

OLED Display Output Evaluation 

The OLED display functions as the primary visual feedback mechanism of the wearable device, showing real-

time classification results after sound detection. Upon model inference, the display is updated instantly, typically 

within ~1 millisecond (Adafruit, n.d.), with text labels such as “SIREN DETECTED” or “FIRE ALARM 

DETECTED”, ensuring no perceptible delay for the user. Display performance is summarized in Table 3.8. 

Detected Sound Class OLED Display Output Text Photo of OLED Output Speed 

Siren SIREN DETECTED 

 

~1ms 
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Fire Alarm FIRE ALARM DETECTED 

 

~1ms 

Background Noise Peaceful Sound 

 

~1ms 

Emergency 

Announcement 

EMERGENCY 

ANNOUNCEMENT DETECTED 

NO PHOTO SINCE 

EMERGENCY 

- 

Table 3.8 Real-Time OLED Display Output Showing Classified Sound Labels 

To minimize memory usage and preserve processing efficiency, the output is purely text-based, no icons or 

graphics were used. The display remains off during idle periods and activates only when a classification occurs, 

conserving battery power. The only exception was emergency announcements, which failed to appear due to the 

model’s inability to recognize that class during real-time inference. 

Overall, the OLED display provided fast, clear, and contextually relevant feedback, making it suitable for wearable 

assistive applications. Future improvements could include implementing adaptive brightness control, multi-

language support, or low-power display modes to extend operational life without compromising usability. 

Integration and System Functionality 

This section evaluates the overall integration and operational stability of the wearable emergency alert system, 

comprising the Arduino Nano RP2040 Connect, OLED display, vibration motor, Li-Po battery, and Edge 

Impulse-deployed sound classification model. 

After deployment, the system was tested under typical usage scenarios to assess whether all components worked 

cohesively. As shown in Figure 3.9, the full hardware and software stack was integrated into a compact wearable 

form. 

 

Figure 3.9 Full System Integration of Hardware and Software Components 
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Test Parameter Details Result Remarks 

Power-On Tests Number of times the device was 

manually powered on 

20 attempts Simulates daily user 

interaction 

Successful Startups Device initialized correctly and 

entered monitoring mode 

19 / 20(95%) One instance required manual 

reset due to boot delay 

System Readiness 

Time 

Time taken for OLED to display 

and classification model to activate 

1–2 seconds No significant delay observed 

during boot-up 

Peripheral 

Initialization 

OLED, vibration motor, 

microphone functionality on startup 

100% 

functional 

All modules initialized without 

error 

Overall Startup Status Reliability of system initialization 

over multiple trials 

Stable Minor issue occurred once; 

otherwise consistently reliable 

Table 3.9 Functional Evaluation of Integrated Wearable Emergency Alert System 

Across 20 power-on trials, the system successfully initialized in 95% of cases, consistently entering monitoring 

mode within 1–2 seconds. A single startup failure was observed, likely due to a low battery or unstable USB 

connection, which was resolved via manual reset. Peripheral modules, including the OLED, vibration motor, and 

microphone, initialized correctly in all trials, confirming reliable startup routines. 

During operation, classification events consistently triggered the appropriate OLED output and vibration 

feedback, validating the correct functioning of the communication and control logic. No crashes, freezes, or 

unexpected behavior were observed even during repeated detection cycles, demonstrating the firmware’s 

robustness and the stability of the embedded workflow (Cogan, 2008). 

Overall, the system proved to be reliable and well-integrated, offering stable performance under normal 

operating conditions. While rare startup delays may occur under specific conditions (e.g., low voltage), the 

platform remains functionally sound for short-term, real- world wearable applications. 

CONCLUSION 

The development of the vibrotactile emergency alert bracelet successfully achieved its core objective: creating a 

compact, wearable device capable of detecting emergency sounds and notifying users through vibration and 

OLED display feedback. Built around the Arduino Nano RP2040 Connect, the device leveraged its built-in 

microphone and onboard processing to run real-time inference without requiring constant internet connectivity. 

A total of 150 audio samples across six classes—including sirens, fire alarms, emergency announcements, and 

background noise—were collected, primarily from YouTube, and processed via Edge Impulse. Feature 

extraction using MFCCs and automated preprocessing enabled consistent and efficient model training. The final 

classifier achieved 96.55% accuracy during testing, with near-perfect precision, recall, and AUC scores. 

In real-world deployment, the system performed well with trained sounds, achieving 86% accuracy for sirens, 

90% for fire alarms, and 98% for background noise,but completely failed to detect emergency announcements 

due to overlapping speech features and insufficient training diversity. For unfamiliar (untrained) audio, accuracy 

dropped by 15–20%, highlighting limited generalization. 

Inference latency averaged 2.7 seconds, which is acceptable for general awareness but may not suffice for urgent, 

high-speed scenarios (Jayaraman & Sun, 2017). The vibration motor and OLED display delivered effective 

feedback, with custom vibration patterns assigned to each class. User testing showed high recognition rates for 

tonal alerts but confusion for announcement feedback, tied to detection failures. 

http://www.rsisinternational.org/
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Battery testing with a 3.7V 500mAh Li-Po showed around 6 hours of continuous use, and full charging took 2.5 

hours. The system’s boot success rate of 98% demonstrated stable operation. 

Overall, the bracelet provides reliable offline emergency alerting for tonal sounds and lays a solid foundation for 

future improvement. Key areas for enhancement include expanding the dataset, improving speech-based 

detection, reducing inference delay, and extending battery life. This project contributes a practical solution for 

enhancing safety and accessibility for the Deaf and Hard-of-Hearing community in everyday environments 
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