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ABSTRACT

Healthcare-associated infections (HAIs) remain a huge concern in most healthcare facilities, mainly caused by
the inability to perform proper hand hygiene and poor compliance with established hand hygiene practices.
Behavioural lapses in hand hygiene significantly contribute to the transmission of pathogens and the persistence
of Healthcare-associated infections (HAIs) within clinical environments. HAIs remain a huge concern in most
healthcare facilities, mainly caused by the inability to perform proper hand hygiene. The study designs a
contactless hand sanitizer that incorporates an automated access control for ensuring proper hygiene and limiting
cross-contamination in areas that require high sterility, such as the Intensive Care Unit (ICU). The system, built
using Raspberry Pi 4 and components like ultrasonic sensors, IR sensors, a UV light, and the OV5647 camera,
dispenses sanitizer and verifies compliance before unlocking the door. A Convolution Neural Network (CNN),
MobileNetV2, was trained on ultraviolet (UV)-lit images of sanitized and unsanitized hands to detect the
presence of fluorescent residue. It analyses the presence of fluorescent liquid in hand sanitizer for compliance
before granting access. While the model demonstrated high accuracy during training, hardware limitations,
especially the camera’s low sensitivity under UV light, affected its real-time performance. Nevertheless, the
system provides an initial basis that exemplifies the potential of machine learning-integrated sanitary
enforcement as an initial point of further development in the direction of more comprehensive approaches to
reducing HAIs.

INTRODUCTION

Healthcare-associated infections (HAISs) are infections that can be transmitted while patients are receiving
healthcare, whether in a hospital, healthcare facility, or home care. HAIs can appear within the first 48 hours of
hospitalisation and within 30 days of receiving treatment [1] . According to the US Centers for Disease Control
and Prevention, one in 31 hospital patients in the United States has at least one HAI, with an estimated 1.7
million patients acquiring HAIs each year. This leads to approximately 99,000 deaths annually due to these
infections[2]. HAIs have been a significant global burden, with estimates indicating that for every 100 patients
admitted to acute-care, approximately 7 patients in high-income countries and up to 15 patients in low- and
middle-income countries acquire at least one HAI during their hospitalisation. The risk becomes even more
critical in intensive care units (ICUs), where up to 30% of patients may develop HAIs due to invasive procedures,
immunocompromised conditions, and frequent contact with healthcare personnel and equipment. It is noticeable
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that the incidence of HAIs in ICUs is two to twenty times higher in low- and middle-income countries than in
high-income countries, with neonates being the most vulnerable [3]

HAIs can spread via droplet, airborne, or contact transmission, with contact both direct and indirect being the
primary route. They can be transmitted through the hands of healthcare workers, other patients, or hospital
visitors. Recent qualitative research in ICU settings has identified multiple determinants of hand hygiene
compliance spanning individual knowledge, team norms, workload pressures, and organizational support
highlighting that hand hygiene behaviour is shaped by complex social and contextual factors rather than
availability of resources alone [4]. Contaminated hands are able to transfer pathogens to patients or surfaces,
leading to infections. Studies conducted in 2019 and 2022 indicate that approximately 50% of HAIs occur due
to inadequate hand hygiene practices among healthcare workers [5], [6]. The transmission chain can be
effectively disrupted by implementing proper hand hygiene protocols. In order to combat HAIs, healthcare
facility implemented various strategy to focus on prevention, education and surveillance. One of the ways is by
promoting hand hygiene among healthcare workers and visitors. A study indicates that proper hand hygiene
practice can reduce infection by 40% to 70% [2] This includes handwashing with soap and water or alcohol-
based hand sanitizers. Despite knowing the importance of hand hygiene, healthcare workers and visitor fail to
perform them correctly or frequently. The compliance rate among healthcare workers falls 40% on average, in
countries with limited resources, this figure can drop as low as 12.8% [7] This shows a gap in practice that needs
continuous monitor and standardize and stricter policies.

Visitor compliance is notably lower than healthcare workers with the baseline as low as 0.4%. However, by
relocating and making the hand sanitizer more visible, it can increase the visitor compliance by 19.7%. Due to
COVID-19, people have more awareness, hence higher rates have been observed[8]. Cross- contaminations, the
transfer of microorganisms between different surfaces or individuals, may lead to HAIs. This often happens in
healthcare environments, where pathogens spread via contaminated hands, surfaces or medical equipment. The
results of transmission of pathogens includes increased incidence of HAIs, spread of Multidrug-Resistant
Organisms (MDROs) and reduced patient safety and trust to the healthcare provider and facilities as a whole.
While current infection prevention strategies in hospitals heavily rely on handwashing and alcohol-based hand
rub dispensers, staff education and compliance audits, there are still remain a significant gap where there is no
practical, automated system to verify whether hand sanitization has been performed properly before entering
high-risks areas like ICUs and NICUs[9]. The existing systems depend largely on manual observation and trust-
based compliance, which can be risk in errors. This project proposes developing a contactless device that uses
verification and machine learning to check for proper hand sanitization before granting access. By automating
this verification process, the device aims to reduce the risk of cross-contamination.

METHODOLOGY

The research was categorized into four successive steps: requirement, development, implementation, and testing.
Each stage flows from the previous one, from defining system needs, developing hardware and software,
integrating the prototype, and finally evaluating system performance and verification of hand hygiene. In this
way, the particular approach was technically sound to guarantee functionality and also supported proper
compliance with hand hygiene in health institutions.

Phase 1: Researc h & Planning

Fig 1. The four phases involved in this project
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The study was conducted in four sequential phases, as depicted in the project flowchart in Fig. 1. The requirement
phase involved problem identification and a literature review to establish the significance of developing a device
that promotes proper hand hygiene, examines existing technologies, and informs component and model
selection, including the Convolutional Neural Network (CNN) MobileNetV2[9]. In the development phase,
hardware components such as Raspberry Pi 4, ultrasonic and infrared sensors, UV light, and OV5647 camera
were integrated with software, and the CNN model was trained on UV-illuminated images to detect fluorescent
residues, with each module developed and verified independently[10]. During the implementation phase, these
modules were assembled into a functional prototype, programmed to automate sanitizer dispensing and verify
hand hygiene compliance before granting access to restricted areas such as ICUs, ensuring seamless operation
between hardware and software[11]. The testing phase assessed system performance under real-time conditions,
including detection accuracy, response time, and overall functionality, while identifying limitations such as UV
camera sensitivity. Collectively, these phases provide an initial-stage foundation for further refinement and
development of a comprehensive machine learning assisted hygiene enforcement system[12]

Dataset Collection and Preparation

This step involved the collection of hand images under UV light to create a custom dataset for model training.
Images were captured under UV light using an iPhone XS Max for dataset collection purposes. The images were
categorized into fluorescent (properly sanitized hands) and non-fluorescent (unsanitized hands). A total of 124
fluorescent and 149 non-fluorescent images were collected. Both datasets are uploaded into Google Drive as
shown in Fig.2 and Fig.3 for the machine learning training that will be continued in Google Collab.

L™ L™ LR om0 - s LR Pom one L™

8 e L) B 2 B ns L L B nes L

Fig.2. Non-fluorescent dataset samples
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Fig.3. Fluorescent Dataset samples
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Model Architecture

A transfer learning approach was used by employing MobileNetV2. The top classification layers were removed,
and a custom classifier was added to reduce spatial dimensions, learn deeper features of the images, and help in
output binary prediction. . The base model layers were initially frozen to preserve pretrained weights and prevent
overfitting during early training, a strategy commonly adopted in CNN-based transfer learning frameworks [13]

Training Configuration

The model was compiled using Adam as an optimizer. The binary cross-entropy loss function was selected for
the binary nature of the classification task, and in order to evaluate the model’s performance during training and
validation, accuracy was chosen as the primary metric. To prevent overfitting, EarlyStopping was implemented
to monitor validation loss and restore the best weights if no improvement was seen after 3 epochs. The training
was conducted up to 10 epochs, with a batch size of 32, with training and validation generators flowing from the
directory.

Flow of Device

The proposed device is designed to ensure strict cleanliness and hygiene compliance before entry into the ICU.
The device integrates hand-sanitizing detection, image analysis for compliance verification, and a door locking
mechanism. The proposed device follows an operational flow, as detailed in Fig.4.
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Fig. 4 Flow of Device

Initially, all components remain on standby until activated. The system first monitors the sanitizer liquid level,
indicating low or critical levels, which shall be warned through LED alerts. Upon detecting a hand using an
ultrasonic sensor, the submersible pump activates and dispenses sanitizer. This is followed by the illumination
of UV light, and the OV5647 camera captures an image to analyze for fluorescent presence. If fluorescent residue
is detected, the door unlocks for 10 seconds to allow access. After 10 seconds, the door automatically locks, and
the device resets for the next user. Meanwhile, if fluorescent is not detected, access is denied, and the device
resets and returns to standby. This operational flow is consistent with prior automated hand hygiene enforcement
systems that combine proximity sensors for sanitizer dispensing, UV-fluorescent imaging for hygiene
verification, and vision-based decision logic to control access to restricted areas such as healthcare facilities [14].
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Hardware Development and Verifications

Simultaneously, the physical system was developed to enable the sanitization and access control. Since the
design was based on a modular approach, it allows each component to be developed and tested independently
before integrating it with the ML model. The system architecture was centered around the Raspberry Pi 4, which
is the main controller of this system. Fig. 5(a) shows the basic circuit designed in Fritzing software, illustrating
the connections of components used for the proposed device. Raspberry Pi 4, which acts as the main controller,
interfaces with several components to manage the device operations. A relay module is included to control the
submersible pump. The OV5647, UV light, and electronic door strike are not included in the circuit as the
components are not available in Fritzing. While these components are not included, they would be connected to
the Raspberry Pi 4 for image analysis and door lock control. Circuit design, writing, and GPIO pin mapping
were carefully planned to ensure safe operation without having any burnt components. Component connections
were all connected on a breadboard for easy assembly and disassembly. All components, such as the ultrasonic
sensor, submersible pump, and door strike, were tested independently to ensure functionality as in Fig. 5(b).
Once the software (fluorescent detection model) and hardware (sanitizer dispenser and access control) were
verified independently, they were integrated into one working system. For integrating the hardware and for the
components to work with the Raspberry Pi OS, Python scripts were used, as well as for the camera input, model
inference, and logic controls. A functionality test is performed to evaluate the device's overall performance. This
involves testing the device under real-life conditions and scenarios to ensure smooth operations and that the
device functions optimally. If no issue arises until this point in the project, the project concludes. This modular
design and testing approach is consistent with previous IoT and embedded system frameworks, where sensors
and actuators are verified independently before integration with machine learning models on Raspberry Pi
controllers for real-time applications [[15], [16]
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Fig. 5(a). Circuit designed on Fritzing Software; (b) Hardware and prototype

RESULTS AND DISCUSSION

Machine Learning Data Accuracy

The MobileNetV2 model was trained for 10 epochs using the custom-collected dataset of fluorescent and non-
fluorescent hand images. Fig. 6 shows the training and validation accuracy and loss values across each epoch.
Initially, the model had an accuracy of 58.96%, but the accuracy improved rapidly as the training progressed.
By epoch 10, the training accuracy reached 94.01%, and the validation accuracy reached 98.11%, indicating
strong generalization. As for validation loss, it started from 0.4978 in epoch 1 to 0.1094 in epoch 10. The steady
improvement in both training and validation accuracy, alongside the declining loss, indicates that the model did
not overfit and was able to learn the distinguishing features effectively, which is consistent with previous studies
reporting similar convergence behavior for MobileNetV2 trained on custom image datasets [17].
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3% /usr/local/lib/python3.11/dist-packages/keras/src/trainers/data_adapters/py dataset_adapter.py:121: UserWarning: Your PyD{
self. warn_if super_not_called()
Epoch 1/10
/usr/local/1lib/python3.11/dist-packages/keras/src/models/functional .py:237: UserWarning: The structure of “inputs’ doesn't
Expected: [‘keras_tensor_1250"]
Received: inputs=Tensor(shape=(None, 128, 128, 3))
warnings.warn(msg)
7/71 —————— 365 4s/step - accuracy: 0.5896 - loss: 0.8337 - val accuracy: 0.7358 - val loss: 0.4978
Epoch 2/10
7/1 ————————— 5s 668ms/step - accuracy: ©.7814 - loss: 0.4588 - val accuracy: 0.8868 - val loss: 0.3043
Epoch 3/10
7/7 ——————————— 75 949ms/step - accuracy: 0.8467 - loss: 0.3519 - val accuracy: 0.9245 - val loss: 0.2359
Epoch 4/10
7/7 ————— 5s 662ms/step - accuracy: ©.9656 - loss: 0.1935 - val accuracy: ©.9245 - val loss: 0.1966
Epoch 5/10
7/7 ————————————— 5s 701ms/step - accuracy: ©0.9116 - loss: @.2111 - val accuracy: 0.9434 - val loss: 0.1499
Epoch 6/10
7/7 ——————— 6s 827ms/step - accuracy: 0.9332 - loss: ©9.2009 - val accuracy: ©.9957 - val loss: 0.1668
Epoch 7/10
7/7 —————— 5s 653ms/step - accuracy: ©.9657 - loss: 0.1042 - val accuracy: ©.9434 - val loss: ©.1129
Epoch 8/10
7/7 ————————————— 7s 1s/step - accuracy: 0.9753 - loss: 0.1086 - val _accuracy: 0.9434 - val loss: 0.1134
Epoch 9/10
7/7 ————— 5s 681ms/step - accuracy: ©0.9301 - loss: 8.1576 - val accuracy: 0.9811 - val loss: 0.6794
Epoch 10/10
7/7 ————————— 5s 728ms/step - accuracy: 0.9401 - loss: ©.1702 - val accuracy: ©.9811 - val loss: ©.1093
<keras.src.callbacks.history.History at @x7d2a9dede610>

Fig. 6 ModelNetV2 Model Training and Validation Accuracy/Loss Over 10 Epochs
Image Classification Model

To illustrate the visual difference between sanitized and unsensitized hands under UV light, refer Fig. 8. These
images provide a clear contrast between the presence and absence of fluorescent residue, which acts as an
indicator for proper hand hygiene. In Fig 7 (a), the hands have been thoroughly sanitized with a fluorescent-
mixed hand sanitizer, resulting in a visible glow under UV light illumination. This bright green fluorescent is
noticeable on the palm’s creases, fingers, and in between the fingers. The even distribution of glow indicates
proper coverage and application, aligning with effective hygiene practices. In contrast to Fig.7 (b) displays that
there is no visible fluorescent residue under the same UV lighting conditions. The absence of glow highlights
how areas remain unsanitized and potentially contaminated. This comparison highlights the system’s ability to
distinguish between sanitized and unsanitized hands. This observation is consistent with previous studies that
used UV-fluorescent tracers to objectively assess hand hygiene quality, where visible fluorescence under UV
illumination indicated areas with sanitizer coverage, while the absence of fluorescence highlighted missed or
unsanitized regions [9], [18], [19].

(a) (b)

Fig. 7 (a) Fluorescent Residue Under UV Light; (b) Non-Fluorescent Residue Under UV Light
Performance Limitations

Despite the successful integration of the machine learning model and the hardware components, certain hardware
limitations were encountered during prototyping and testing, particularly in the image capture process. The
OV5647 camera module was not able to capture the fluorescent residue on the hand under UV light. This affected
the accuracy of the model to represent the training data. While the conceptual design is practical, its
implementation lacks key components such as the camera module, UV lighting, and the physical enclosure. One
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of'the critical hardware limitations was the underperformance of the Raspberry Pi Camera Module (OV5647) in
detecting fluorescent residue under UV light. Although OV5647 was a cost-effective choice, its image quality
was insufficient to capture low-intensity fluorescence. The high exposure levels and lack of detail in low-light
settings resulted in poor contrast between sanitized and non-sanitized areas, leading to misclassification by
MobileNetV2. As shown in Fig. 8(a) and Fig. 8(b), there are noticeable differences between images captured
using an iPhone XS Max and OV5647 camera module. As a result, the model could not operate optimally in
real-world conditions due to poor image input. This highlights a crucial hardware bottleneck that needs to be
addressed to ensure system reliability. The limitations observed with the OV5647 camera module align with
previous studies showing that low-resolution or low-light images significantly degrade CNN performance,
especially when detecting subtle features such as fluorescent residues [[20], [21], [22]

(a) (b)

Fig. 8(a) Image Taken by iPhone XS Max; (b) Image Taken by Raspberry P1 OV5647 Camera Module
Enclosure Design, Component Positioning and Limitation Discussion

The structure of the enclosure had ergonomic and detection challenges that affected both usability and image
quality. As can be seen in Figure 4.5, there was an issue with the distance between the camera and the user’s
hand. Due to limited space, the Raspberry Pi camera was mounted very low and close to the target area, which
resulted in images being captured only of the palm and parts of the fingers, instead of both hands. This might
vary due to different people’s hand sizes. This framing limitation had hindered the model’s ability to analyze
full hand sanitization, especially for those who did not apply sanitizer evenly. Moreover, the camera module had
a fixed lens, making it impossible to adjust the field of view to accommodate larger hand areas. There was also
an inconsistent hand placement, since there were no alignment guides on the enclosure, which caused partial and
skewed image captures. This inconsistency affected the detection, since the model was not able to generalize the
images.

On the hardware part, the wiring was based on jumper cables and a breadboard layout. While it is suitable for
prototyping, it is more prone to disconnections, contact noises, and wear over time. As the jumper wires are not
secure and easily break, there were multiple disconnections before testing. To address the limitations observed
during the testing, several practical improvements are recommended for future versions of the device. One of
the most critical upgrades would be to replace the camera module with a higher resolution camera, such as the
Raspberry Pi HQ Camera, it is recommended for its suitability for low-light conditions. This could significantly
improve the accuracy of fluorescent residue detection under UV light.

Another important recommendation involves standardizing the fluorescent solution. Since the chemical
composition was not thoroughly studied in this study, it is recommended to analyze its compatibility with
alcohol-based sanitizers and confirm that it is biocompatible for regular skin contact. As for the enclosure, it
could benefit from a redesign, with guides that would help users consistently align their hands for image capture.
As for the hardware, replacing the breadboard with a donut-board and soldering the wires would increase the
system's durability and reduce the chances of disconnections. Lastly, add filters or the ability to auto-adjust for
clearer contrast between fluorescent and non-fluorescent regions of the hand. These changes would possibly
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make the system readier for real-world deployment in hospitals. These limitations align with prior studies
demonstrating that camera placement, field of view, and user alignment critically affect CNN-based hand
hygiene detection [23] Prototype hardware using breadboards and jumper wires is prone to disconnections and
wear, necessitating soldered connections for long-term reliability [16] Furthermore, standardization of
fluorescent tracers and camera settings is essential to ensure accurate detection and user safety [21]

CONCLUSION

Developing the contactless hand sanitizer, integrated with image analysis and door lock control, is a significant
step toward reducing HAIs and encouraging proper hand hygiene for healthcare providers, patients, and visitors.
By combining a fluorescent-based detection approach with a machine learning classification model and an
embedded control system, the prototype demonstrates the potential to improve compliance and reduce HAIs,
offering immediate visual feedback to users. Unlike traditional systems that rely on manual observation or
assumption-based compliance, this approach supports existing hospital SOPs and aligns with WHO and CDC
hygiene guidelines.

Furthermore, the low-cost, modular design using Raspberry Pi and open-source frameworks makes the system
scalable, adaptable to different clinical settings, and sustainable for hospitals with limited resources. The
framework also serves as an educational and training tool, providing real-time visual feedback on hand hygiene
technique. The technical knowledge gained through dataset preparation, image processing, and hardware-
software integration provides a foundation for future research, enabling further innovations in smart infection-
control systems and healthcare safety technologies.

Future Works

Several key areas require further development to enhance system performance and reliability. A critical
improvement involves replacing the current camera module with a more suitable alternative that is capable of
capturing clear fluorescent residue under UV light. Enhancing the image quality will allow the ML model to
perform with greater accuracy in real-world conditions. In addition to hardware refinement, converting the
MobileNetV2 model into a TensorFlow Lite version would be recommended. This would optimize the model
for faster inference on devices like Raspberry Pi.

Expanding the dataset would also be necessary to improve model robustness and accuracy. Varying the images
would also help, such as varied skin tones and hand sizes, to generalize better and reduce false predictions. From
a broader perspective, future studies may also examine user interaction, acceptance, and behavioural response
to automated hygiene verification systems, enabling further refinement of the system as a supportive tool for
sustainable hand hygiene practices in healthcare social environments.

ACKNOWLEDGEMENT

The authors would like to thank the supervisors from Universiti Teknologi Malaysia (UTM) for their guidance
and support throughout this project. Appreciation is also extended to all individuals and institutions who
contributed, directly or indirectly, to the successful completion of this work.

REFERENCES

1. M. Haque, M. Sartelli, J. McKimm, and M. A. Bakar, “Health care-associated infections — An overview,”
2018, Dove Medical Press Ltd. doi: 10.2147/IDR.S177247.

2. M. Haque et al., “Strategies to prevent healthcare-associated infections: A narrative overview,” 2020,
Dove Medical Press Ltd. doi: 10.2147/RMHP.S269315.

3. L. K. Murni, T. Duke, S. Kinney, A. J. Daley, M. T. Wirawan, and Y. Soenarto, “Risk factors for
healthcare-associated infection among children in a low-and middle-income country,” BMC Infect Dis,
vol. 22, no. 1, Dec. 2022, doi: 10.1186/s12879-022-07387-2.

Page 1419 www.rsisinternational.org


http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)
ISSN No. 2454-6186 | DOI: 10.47772/1IJRISS | Volume IX Issue XII December 2025

4.

10.

1.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

S. Alshagrawi and N. Alhodaithy, “Determinants of hand hygiene compliance among healthcare workers
in intensive care units: a qualitative study,” BMC Public Health, vol. 24, no. 1, Dec. 2024, doi:
10.1186/512889-024-19461-2.

M. H. Abd Rahim and M. 1. Ibrahim, “Hand hygiene knowledge, perception, and self-reported
performance among nurses in Kelantan, Malaysia: a cross-sectional study,” BMC Nurs, vol. 21, no. 1,
Dec. 2022, doi: 10.1186/s12912-022-00820-6.

G. T. Engdaw, M. Gebrehiwot, and Z. Andualem, “Hand hygiene compliance and associated factors
among health care providers in Central Gondar zone public primary hospitals, Northwest Ethiopia,”
Antimicrob Resist Infect Control, vol. 8, no. 1, Nov. 2019, doi: 10.1186/s13756-019-0634-z.

S. Hugonnet and D. Pittet, “Hand hygieneDbeliefs or science?”

P. G. Hansen et al., “Nudging hand hygiene compliance: a large-scale field experiment on hospital
visitors.”

A. Singh et al., “Automatic detection of hand hygiene using computer vision technology,” Journal of the
American Medical Informatics Association, vol. 27, no. 8, pp. 1316-1320, Aug. 2020, doi:
10.1093/jamia/ocaalls.

A. Nagar, M. A. Kumar, and N. K. Vaegae, “Hand hygiene monitoring and compliance system using
convolution neural networks,” Multimed Tools Appl, vol. 81, no. 30, pp. 44431-44444, Dec. 2022, doi:
10.1007/s11042-022-11926-z.

W. Huang, J. Huang, G. Wang, H. Lu, M. He, and W. Wang, “A Pilot Study of Deep Learning Models
for Camera based Hand Hygiene Monitoring in ICU,” in 2023 45th Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC), Jul. 2023, pp. 1-5. doi:
10.1109/EMBC40787.2023.10341146.

“38083035”.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and
Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun.
2018, pp. 4510-4520. doi: 10.1109/CVPR.2018.00474.

“View of Automated Hand Sanitizer Dispensing System Based on Arduino for Kanisius Ungaran
Elementary School”.

D. Moniz, J. Pedro, and J. Pires, “Design and Operation Strategies for Optical Transport Networks with
Reduced Margins Service-Provisioning,” in 2020 Optical Fiber Communications Conference and
Exhibition (OFC), 2020, pp. 1-3.

[16] N.Liu, G. Liu, and H. Sun, “Real-time detection on SPAD Value of potato plant using an in-field
spectral imaging sensor system,” Sensors (Switzerland), vol. 20, no. 12, pp. 1-18, Jun. 2020, doi:
10.3390/520123430.

J. Turihohabwe, Ssembatya Richard, and Wasswa William, “Exploring Strategies for Optimizing
Mobilenetv2 Performance in Classification Tasks Through Transfer Learning and Hyperparameter
Tuning with A Local Dataset from Kigezi, Uganda.,” The Indonesian Journal of Computer Science, vol.
14, no. 1, Feb. 2025, doi: 10.33022/ijcs.v14i1.4436.

Lehotsky, L. Szilagyi, S. Bansaghi, P. Szerémy, G. Wéber, and T. Haidegger, “Towards objective hand
hygiene technique assessment: validation of the ultraviolet-dye-based hand-rubbing quality assessment
procedure,” Journal of Hospital Infection, vol. 97, no. 1, pp. 26-29, Sep. 2017, doi:
10.1016/J.JHIN.2017.05.022.

S. C. Pan et al., “Assessing the thoroughness of hand hygiene: ‘Seeing is believing,”” Am J Infect
Control, vol. 42, no. 7, pp. 799801, Jul. 2014, doi: 10.1016/J.AJIC.2014.03.003.

A. G. Howard et al.,, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications,” Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.04861

“31212034”.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural
networks,” Commun ACM, vol. 60, no. 6, pp. 84-90, Jun. 2017, doi: 10.1145/3065386.

A. G. Howard et al.,, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications,” Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.04861

Page 1420

www.rsisinternational.org


http://www.rsisinternational.org/

