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ABSTRACT  

The complexity and variability of large-scale global logistics networks demonstrate the inherent limits to the 

potential of both optimized centralization and automated rules based on the present state of knowledge. 

Logistics systems today function in decentralized, stochastic and partially observable environments, 

comprising autonomous, however, dependent upon each other, entities such as trucks, warehouses and 

transportation hubs. This paper provides an overall theoretical and architectural base for the application of 

Intelligent Multi-Agent Reinforcement Learning (MARL) as a platform for the development of autonomous 

logistics and the dynamic optimization of logistics networks in real time. Logistics operations are defined as 

decentralized decision-making processes and stochastic games, which allow agents to develop adaptive 

coordination policies, through decentralized execution of policies developed during centralized training. An 

additional layered MARL structure is described to separate perception, coordination, decision-making and 

optimization, to ensure the ability to scale, modularize and optimize logistics networks in a stable manner. 

Graph-based communication, message-passing mechanisms and bandwidth-efficient policy-sharing are used to 

coordinate the actions among agents; whereas, the stability of learning is addressed using value 

decomposition, structured credit assignment and reward shaping. Advanced learning strategies including actor-

critic methods, proximal policy optimization, meta-learning and continual learning are analyzed for multi-

objective optimization of logistics networks over time, cost, energy and carbon footprint constraints. In 

addition, this paper demonstrates how the proposed framework can be integrated with high-fidelity simulation 

and multiagent digital twins to safely train and validate policies under realistic disruptions, along with cloud-

edge infrastructure and distributed data pipelines to deploy these policies in real time. Additionally, the paper 

addresses the issues of interoperability between the proposed MARL framework and enterprise supply chain 

systems, as well as the governance issues related to transparency, accountability and regulatory compliance. 

Finally, the paper outlines future research directions, combining MARL with graph neural networks, 

generative models and predictive digital twins to enable scalable, resilient and self-optimizing logistics 

ecosystems.  

Keywords: Multi-Agent Reinforcement Learning, Autonomous Logistics Systems, Real-Time Network 

Optimization, Decentralized Control, Centralized Training Decentralized Execution, Graph-Based 

Coordination, Digital Twin Logistics, Federated Learning, Cloud-Edge AI Infrastructure  

Introduction to Intelligent Logistics Systems  

From Deterministic Logistics to Autonomous, Learning Driven Systems  Traditional logistics has evolved and 

developed as deterministic or weakly stochastic pipelines, which are governed centrally through a planning 

process and controlled hierarchically. Static representations of logistics networks were used in classical 

logistics optimization, where nodes represent warehouses or hubs, edges represent the transportation route, and 

optimization problems were solved off-line using Operations Research techniques (e.g., linear programming, 

mixed integer programming, network flow optimization, and vehicle routing heuristics) (Dantzig and Ramser, 

1959; Clarke and Wright, 1964; Laporte, 1992). However, these models have several assumptions: (i) the 

demand is stationary; (ii) the transit times are predictable; and (iii) the states of the system are fully 
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observable. Therefore, tractability was ensured but the response to real world variability was severely limited 

(Dror and Trudeau, 1989). As logistics networks have become larger and have gone global, the traditional 

centralized model has become less reliable. The dimensionality of the decision space increases exponentially 

with the number of vehicles, routes, warehouse locations and time slots (Laporte, 2007). For computational 

reasons, simplification was necessary to decouple optimization results from the operational realities. 

Furthermore, the time lag between the planning process and the actual execution resulted in outdated solutions 

when facing real-time disruptions like traffic jams, labor shortages, port delays, weather  

anomalies or sudden spikes in demand (Winkelhaus and Grosse, 2020; El Hamdi et al., 2022). The 

development towards intelligent logistics systems presents a radical new way of thinking about how 

optimization and control are integrated into logistics operations (Winkelhaus and Grosse, 2020). Instead of 

treating intelligence as an additional planning layer, intelligence is embedded into the operational units 

themselves. Vehicles, robots, warehouses and hubs are seen as autonomous decision making entities that 

interact with their environment in real time, perceive local states and adjust their actions through learning 

(Corvello et al., 2025). This development is part of the broader trend towards cyber-physical systems and 

distributed control, in which centralized command is substituted by decentralized autonomy, achieved through 

feedback and communication (Bernstein et al., 2002). Modern logistics systems are therefore not static 

networks that are optimized periodically but dynamic systems that evolve over time. Optimization is 

transformed from the search for a globally optimal solution to the learning of policies, and resilience is 

generated not by redundancy alone but by the ability of agents to dynamically reorganize their behavior under 

uncertain conditions (Ning et al., 2024).  

Logistics as Distributed Multi-Agent Decision System  

At its most basic level, modern logistics networks have all the characteristic properties of distributed 

multiagent systems. Each of the many and diverse entities (vehicles, warehouses, hubs) that make up the 

logistics network operate simultaneously with the goal of achieving their own local goals, they have only 

partial visibility of the system, and they have limited capacity to communicate with other entities (Beynier, 

2013; Bernstein et al., 2002). Vehicles optimize routes and travel speed subject to uncertainty in the traffic. 

Warehouses allocate labor, storage and picking resources subject to fluctuations in the volume of orders 

received. Hubs manage the synchronization of the incoming and outgoing material flows while minimizing 

congestion and meeting service-level agreements. Entities are interconnected and mutually dependent because 

they share common resources and/or are temporally linked. A decision regarding the routing of a vehicle 

affects the pattern of congestion experienced by all the other vehicles. The replenishment of stock at a node 

will affect the flow of goods through the network. Thus, decisions taken locally have a nonlocal influence, and 

create complex feedback loops that cannot be efficiently managed by separate optimization (Corvello et al., 

2025). Multi-Agent Reinforcement Learning is a systematic approach to modeling such systems (Ning et al., 

2024; Zhu et al., 2024). In MARL, each entity is defined by a policy that takes an observation and returns an 

action, and learning occurs through interaction with the same environment. The environment describes both 

the physical laws governing the system and the cumulative effect of the actions of all the other entities. More 

formally, distributed logistics systems can be viewed as decentralized partially observable Markov decision 

processes or stochastic games in which the global state is not directly visible to any single entity and the 

rewards reflect both local and systemic performance (Beynier, 2013; Bernstein et al., 2002). This formulation 

allows logistics to be formulated as a learning problem rather than an optimization problem. Entities 

continually update their policies through experience, and thus, the coordination strategies are discovered 

internally rather than being determined prior to the start of operation (Ning et al., 2024). Additionally, MARL 

permits the treatment of different learning dynamics for the various types of entities present in a logistics 

network (e.g., vehicles, warehouses, and hubs), and yet, achieves collectively optimal outcomes (Zhu et al., 

2024).  

Real-Time Network Optimization as Continuous Control  

Real-Time Network Optimization is a departure from traditional planning-based optimization towards 

continuous, feedback driven control (Corvello et al., 2025). Decisions are made at each decision point, based 

upon the current perception and the learned expectations of the future dynamics of the system. The goal of 

RTNO is not to determine a globally optimal plan, but to maintain near-optimal performance under 
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nonstationary conditions. Viewed from a control theory perspective, logistics networks behave as high 

dimensional, nonlinear stochastic systems with delayed feedback and coupled state transitions (Bernstein et 

al., 2002). Centralized controllers suffer from severe observability and latency constraints, while decentralized 

controllers may experience instability resulting from uncoordinated actions. To achieve effective real-time 

optimization, a balance between autonomy and coordination is required. MARL meets this requirement by 

incorporating coordination into the learning objective itself (Zhu et al., 2024). Agents learn policies that take 

into account the implications of their actions on the future state of the network and the behaviors of other 

agents. The overall objectives of the system (throughput, service reliability, etc.) are encoded in the reward 

structure of the system, and credit assignment mechanisms ensure that individual agents receive meaningful 

learning signals (Foerster et al., 2018). Coordination develops in multiple ways. Direct communication allows 

agents to exchange summaries of their local state or intent signals (Zhu et al., 2024). Indirect coordination 

develops through shared environmental feedback, where agents develop the ability to predict the impact of 

their actions on congestion, resource contention and cascading effects in the system. Ultimately, over time, the 

policies of the agents converge to stable equilibria that strike a balance between local optimization and global 

performance, and enable the network to regulate itself in real time (Ning et al., 2024).  

Centralized Training and Decentralized Execution in Logistics Environments  

A key architectural feature of MARL in logistics is centralized training with decentralized execution (Amato, 

2024). During training, agents have access to more information (including global representations of the system 

state and joint rewards), which facilitates learning algorithms to identify relationships and achieve stable 

convergence (Wang et al., 2022). During execution, each agent uses only local information and limited 

communication, which ensures scalability and robustness (Amato, 2024). Separating training from execution is 

especially important in logistics environments because it is impossible to execute in a centralized manner due 

to the latency and bandwidth limitations and due to organizational boundaries (Winkelhaus and Grosse, 2020). 

Vehicles cannot rely on continuous global coordination, and warehouses must function independently 

regardless of whether there is communication (Winkelhaus and Grosse, 2020). The CTDE architecture allows 

for the learning of shared value functions, factorized policies, or coordination priors that direct agent behavior 

during execution without needing real-time centralized control (Sunehag et al., 2017; Rashid et al., 2018). 

CTDE also matches well with the constraints of logistics enterprises, which can use historical data and digital 

twins for training while executing at the operational edge (Abideen et al., 2021).  

Research Objective and Foundational Contributions  

This research aims to provide an adaptable, scalable and resilient architecturally solid base for intelligent 

logistics systems utilizing Multi-Agent Reinforcement Learning (Ning et al., 2024). Unlike previous works, 

which proposed new algorithms, this work treats MARL as a holistic system architecture that encompasses 

theoretical formulations, architectural designs, communication protocols, learning dynamics, infrastructure 

needs, and enterprise-wide integration (Zhu et al., 2024). This research targets some of the main challenges 

currently preventing the widespread adoption of MARL in logistics, including scaling to thousands of agents, 

maintaining stability under changing conditions, coordinating under limited communication, and matching 

with the existing systems and governance frameworks of logistics enterprises (Winkelhaus and Grosse, 2020; 

Corvello et al., 2025). By representing logistics as a living multi-agent ecosystem, as opposed to a static 

optimization problem, this work supports a conceptual shift to self-optimizing and continuously-learning 

supply networks (El Hamdi et al., 2022). This foundational contribution serves as a basis for the following 

sections that successively formulate the learning dynamics, architectural elements, algorithmic components, 

simulation environments, and real-time implementation aspects (Abideen et al., 2021).  
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Figure 1: Conceptual system level architecture for Intelligent Multi-Agent Reinforcement Learning.    

  

The layer-by-layer presentation of the system shown in figure 1 illustrates a layered control and learning 

architecture that supports multi agent reinforcement learning applied to autonomous logistics. Each layer is 

assigned a different role in the system and together they provide a way in which decentralized agents can 

operate autonomously yet be governed, coordinated, and learnable within the bounds of real-world constraints 

(Zhu et al., 2024). The architecture is represented in terms of formal blocks and flows rather than 

representational diagrams so that formal system behavior is emphasized over metaphorical representation. At 

the very top of the architecture is the environment layer, representing the global logistics network as a 

stochastic and partially observable system (Beynier, 2013). As a layer, the environment includes physical 

infrastructure (transportation links, warehouses and hubs), as well as external uncertainties due to factors such 

as weather and demand variability.  

Additionally, the layer represents internal coupling effects, where the action of one agent causes changes in the 

condition experienced by other agents via congestion propagation and/or resource contention (Corvello et al., 

2025). From a technical standpoint, the environment layer acts as the state transition function of a multi agent 

decision process, where joint actions cause a change in the global state of the network over time (Bernstein et 

al., 2002).  

Below the environment layer is the perception layer, responsible for acquiring states given information 

limitations. Agents receive local, noisy and incomplete observations from sensor, telematic and operational 

systems. The perception layer performs observation mapping, feature extraction and state compression to 

create agent-specific representations of state that can be used as inputs to policy. Importantly, the perception 

layer imposes partial observability on the agents, preventing them from accessing global state information in 

real-time (Beynier, 2013). This limits the learning problem to the actual information available to the agents in 

deployment scenarios and eliminates unrealistic coordination that would not be possible in the operational 

context. The coordination layer provides the architectural core of the system and facilitates interaction among 

agents without relying on centralized control (Zhu et al., 2024). The coordination layer describes multi agent 

coupling via graph-based communication and message passing structures, where agents exchange limited 

amounts of information with their immediate neighbors or within constrained communication graphs.  

Collective signals (e.g. congestion, demand imbalance, etc.) are encoded in shared latent representations. 

Coordination can also occur implicitly through learned value factorization or joint embedding (Sunehag et al., 
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2017; Rashid et al., 2018). Feedback from the environment to this layer indicates the continuous feedback loop 

between the evolving state of the system and agent coordination.  

To the right of the architecture, the decision layer is responsible for executing decentralized policies. Each 

agent possesses a policy that maps local observations and coordination signals to actions. Actions consist of 

routing decisions, scheduling, dispatching and resource allocations and are taken in real-time while adhering to 

latency, bandwidth and reliability constraints. This layer embodies decentralized execution, implying that 

agents take independent actions in real-time and do not rely on centralized decision-making, but their actions 

are indirectly coordinated through the learned structures (Wang et al., 2022). At the bottom center of the 

architecture resides the optimization layer, which is responsible for performing learning and control. This layer 

collects feedback from the perception, coordination and decision layers, including rewards, performance 

metrics and constraint violations. The layer supports reward shaping, multi-objective optimization, and credit 

assignment across agents, allowing for trade-offs between objectives such as cost-efficiency, delivery times, 

emission reductions and system resilience (Foerster et al., 2018). Through reinforcement learning updates, the 

layer generates improved policies that are provided back to the decision layer and close the learning loop.  

The optimization layer is supported by the centralized training component, which operates in either simulation 

or offline modes (Abideen et al., 2021). The centralized training component has access to the global state, joint 

rewards and historical data that are inaccessible during execution. Centralized training stabilizes learning in 

the non-stationary multi-agent environments by providing synchronized policy updates and explorations in 

digital twins or controlled simulations (Abideen et al., 2021). The centralized training component allows the 

system to learn about global structure and cooperative strategies that would be unachievable or unstable using 

solely decentralized learning (Ning et al., 2024). Conversely, the decentralized execution component enforces 

the deployment constraints in the production environments. While operating in execution mode, agents will 

utilize only their local observations and learned coordination mechanisms to make decisions, and will not have 

access to centralized control or global state (Amato, 2024). The decoupling of these two components ensures 

scalability, fault-tolerance to communication failures, and operational feasibility in large-scale logistics 

networks. Decentralized execution ensures that policies developed using centralized training can be reliably 

executed under real-world conditions (Wang et al., 2022).  

Collectively, the architecture establishes a closed-loop system where autonomous agents operate in accordance 

with a structured learning and control framework. The environment generates state transitions, perception 

constrains information, coordination enables collective behavior, decision executes autonomy, optimization 

improves performance, centralized training stabilizes learning, and decentralized execution ensures scalability. 

Therefore, the architecture formally defines autonomous logistics as an engineered multi-agent control system, 

as opposed to an ad-hoc combination of intelligent components, thereby enabling rigorous theoretical study 

and practical deployment (Zhu et al., 2024).  

Theoretical Foundations of Multi Agent Reinforcement Learning  

Key Principles of Reinforcement Learning   

Environment Policy Reward and Exploration Exploitation Trade-off Reinforcement learning theory starts with 

defining the decision-making process that produces experience. An RL environment is not only a simulation 

environment, it is also a stochastic dynamic system that describes how actions affect the environment (Sutton, 

1988; Watkins & Dayan, 1992). For single-agent environments, an MDP model is typically utilized. The MDP 

model is described by the tuple ⟨𝒮, 𝒜, 𝒫, r, γ⟩, which represents the state space 𝒮 containing the hidden 

variables describing the state of the system at a particular decision epoch; the action space 𝒜, containing all 

possible actions that can be taken; the transition probabilities  

𝒫(s′|s,a), indicating how the environment transitions between states following the execution of action a in state 

s; the reward function r(s,a,s′) representing instantaneous utility and providing a mapping between the 

operational objective of the agent and the learnable signal; and the discount factor γ, which is used to provide a 

weight to future outcomes relative to present outcomes, with a higher discount factor indicating longer-term 

optimization (Sutton et al., 2009).  
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Each of these components will have significant meanings in logistics. The state must be capable of 

representing the complex network conditions, including vehicle locations, queue sizes, inventory levels, 

backorders, link travel times, and service level agreements. The transition kernel includes the physical aspects 

of the system, including the build-up and dissipation of traffic congestion, the loading and unloading rates, and 

stochastic arrival processes of orders. The reward function captures the objectives of the system, including on 

time delivery, cost, energy usage, CO2 emissions, and resilience to disruptions. If the Markovian assumption is 

violated because of unobservable latent factors or delayed effects, the environment should be viewed as 

partially observable, and the agent must use its history of observations or belief states to estimate the 

Markovian structure of the environment (Bernstein et al., 2002). Policy learning aims to find the policy that 

maximizes the expected discounted return:  

𝐽  𝛾𝑡 𝑟𝑡]  

𝑡=0 

Policy is the primary mathematical construct that governs control and learning. The policy π(a|s) is a 

probability distribution over actions given the state. Stochastic policies are generally needed in logistics 

problems due to the presence of stochasticity and the need for exploration. Therefore, stochastic policies are 

used both for learning stability and for learning robustness (Williams, 1992). Tabular policy parameterizations 

are typically sufficient for small systems; however, in most logistics problems, function approximations are 

necessary for the policy πθ, and neural networks are used for this purpose, as they operate on structured inputs, 

including graphs, time-series data, and multimodal sensor data (Mnih et al., 2015). The goal of policy learning 

is to find the policy that maximizes the expected return J(π), where the expected return is the expectation of 

the discounted cumulative reward. The value function Vπ(s) is defined as the expected return starting from 

state s and following policy π, and the action-value function Qπ(s,a) is defined as the expected return starting 

from state s, taking action a, and then following policy π (Watkins & Dayan, 1992). These two functions allow 

learning algorithms to map long-term utility to short-term actions and are essential for both value-based and 

policy-gradient learning methods.  

An exploration-exploitation trade-off is not simply a generic heuristic; it is a technical restriction that controls 

the statistical quality of the learning process. Exploitation selects actions that are believed to produce the 

highest estimated value, while exploration selects actions that decrease the uncertainty associated with the 

value landscape (Auer et al., 2002). In stochastic control terms, exploration is an information-gathering control 

policy that provides immediate performance to obtain reduced posterior uncertainty. In logistics, there is a 

structural constraint on this trade-off because exploratory actions can generate real operational costs, including 

missing delivery windows, increased fuel consumption, or customer dissatisfaction. Thus, exploration must 

frequently be risk-aware and constrained. Mechanisms for implementing these include using entropy 

regularization in policy gradients, adding parameter noise to value methods, optimistic initialization for value 

methods, posterior sampling, and safe exploration constraints that limit actions to the feasibility envelopes 

(Schulman et al., 2017; Achiam et al., 2017). In multi-agent environments, exploration is coupled because one 

agent's exploratory actions can change the data distribution experienced by other agents. Consequently, 

coordination among the agents for exploration or structured exploration policies, where the exploration is 

conducted in a way that maintains compatibility with system-level constraints, is required (Busoniu et al., 

2008).  

Another problem in logistics is that the reward is often sparse, delayed, and noisy. For example, the 

consequences of a routing decision may be the increase in congestion and subsequent costs to other parts of the 

supply chain hours later. Similarly, repositioning inventory may positively impact service levels days later.  

These temporal delays make credit assignment difficult and amplify the variance in estimating returns. 

Discounting, selection, reward shaping, and auxiliary prediction tasks become critical theoretical tools for 

transforming delayed operational objectives into signals that can be learned efficiently without distorting the 

optimal policy (Sutton et al., 2009; Bellemare et al., 2017).  
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Figure 2: Reinforcement Learning Loop.  

  

This is depicted graphically and demonstrates the stochastic decision-making process of autonomous logistics 

in a form of a stochastic decision process with both delayed and incomplete feedback (i.e., with partial 

observability). In the autonomous logistics environment at each decision point, there exists a current latent 

state describing the current logistics environment state (e.g., network conditions (i.e., congestions), inventory 

levels, positions of the fleets) that follows a stochastic transition probability based on the agents' actions, but 

that agents do not have direct access to. Instead of observing this latent state directly, the agents obtain a noisy, 

partial observation of the latent state through an observation function and pass it to a parameterized stochastic 

policy to generate an action (e.g., route, dispatch, adjust inventory). This action is then executed within the 

logistics environment to induce a new state and create a reward signal that reflects multiple objectives of 

logistics performance metrics (e.g., delivery utility, costs, emissions). Many logistics phenomena are delayed 

and therefore rewards will be accumulated and propagated back to the learner through discounted returns. The 

optimization part uses the delayed rewards to modify the policy parameters to improve the decisions on future 

actions. From a technical standpoint, the diagram illustrates all the major components of a partially observable 

MDP with function approximation and highlights the interaction between state transitions, observation noise, 

policy execution, and delayed reward feedback to allow for learning in complex, stochastic logistics systems.  

Types of Multi Agent Reinforcement Learning: Cooperative Competitive and Mixed Mode Learning  

Multi-agent reinforcement learning extends single-agent control through the introduction of multiple 

decisionmakers interacting simultaneously in a shared environment (Busoniu et al., 2008; Shoham et al., 

2007). A basic theoretical differentiation among MARL problem types exists regarding how agent utilities 

coincide. Cooperative Multi-Agent Reinforcement Learning (MARL) assumes all agents have the same 

objective and seek to maximize a single overall reward. This is commonly expressed as a Decentralized 

Partially Observable Markov Decision Process (DEC-POMDP), wherein the environment has a global state, 

but each individual agent receives a local observation. Each agent makes decisions solely based upon their 

own local knowledge of the environment and the global state is updated according to the collective actions 

taken by all agents. Rewards are provided to agents to represent system performance and the reward is shared 

by all agents. This is an example of a single enterprise attempting to optimize total end-to-end service level 

and cost with subsystems (vehicles, warehouses, hubs, etc.) which must work together versus competitively.  

A major difficulty in cooperative MARL is the growth rate of the joint action space as the number of agents 

increases resulting in exponential complexity in the computation required for solving the problem (Bernstein 

et al., 2002). Consequently, learning the value function as a function of joint actions Q(s,a1…aN) is 

computationally intractable for large-scale networks and thus a motivation for employing factorization-based 



INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue I January 2026 

 

Page 2673 
www.rsisinternational.org 

  

       

 

assumptions as well as coordination mechanisms such as Centralized Training Decentralized Execution 

(CTDE) (Sunehag et al., 2017; Rashid et al., 2018). CTDE employs global knowledge during training to 

enable structured critics or decomposed value functions to be learned while allowing for independent action 

selection by agents at run-time. Furthermore, cooperative learning must address coordination failures which 

occur when agents converge to locally optimal yet globally suboptimal behaviors (i.e. conventions). Examples 

of this include vehicles selecting route alternatives to avoid local traffic congestion while creating congestion 

at other locations throughout the network; and/or warehouses individually optimizing their local throughput 

while starving downstream nodes.  

In contrast, competitive MARL models agents with competing goals, which are generally represented using 

either zero-sum or generalized sum stochastic games. Zero-sum games are those in which an agent's gain is 

equal to the loss experienced by another agent and the solution concept is minimax optimality. Competitive 

formulations arise in logistics when multiple carriers are competing for limited hub capacity or when 

autonomous vehicle fleets, which may be owned by different firms, use the same road infrastructure and 

strategically react to each other (Roughgarden & Tardos, 2002). For competitive MARL, it is necessary to 

employ learning mechanisms that account for the behavior of opponents, and equilibrium-seeking algorithms 

are typically employed. Theoretically, convergence to Nash Equilibrium may be established under specific 

restrictive conditions, e.g. two-player zero-sum games (Lowe et al., 2017).  

Finally, mixed-mode MARL represents hybrid configurations where some subset of agents cooperate with 

each other while others compete with additional groups of agents. This is likely the most accurate 

representation of logistics multi-stakeholder ecosystems (Tuyls & Weiss, 2012). Mixed-mode learning 

introduces mechanism design concerns because the structure of rewards and incentives will ultimately 

determine if cooperative behavior will emerge or collapse into self-interested strategies. More formally, mixed 

mode systems may be modeled as generalized sum stochastic games with coalition structures or hierarchical 

reward compositions. To balance the local and global objectives of each agent, the reward received by each 

agent i is represented by:  

𝑟𝑖 = 𝛼𝑟local + (1 − 𝛼)system  

Where α determines the weights assigned to the local and system-wide objectives, respectively, and influences 

the equilibrium properties, fairness, and stability (Shoham et al., 2007). From a learning perspective, the 

differing requirements for information-sharing between cooperative, competitive, and mixed-mode 

environments necessitates the development of federated and privacy-preserving learning architectures (Ning et 

al., 2024).  

Figure 3: Canonical MARL interaction structures diagram  

  



INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue I January 2026 

 

 

Page 2674 
www.rsisinternational.org 

 

       

 

In Figure 3, we see three types of standard forms in multi-agent reinforcement learning which have been 

identified based on the way that agents' incentives are connected with their rewards (incentives). The first 

form, the cooperative type, has all agents acting in the same environment and all agents get the same, global, 

reward. Therefore, the incentive for individual learning is based on overall system performance and not on 

individual success. The focus is on coordination between agents as the individual actions of agents contribute 

to a common outcome and less-than-optimal local decision making could negatively affect the overall 

performance of the system. The second form, the competitive type, also has agents acting in the same 

environment and producing joint actions, but each agent gets its own reward that may be in opposition to the 

other agents' rewards. Agents therefore need to learn about opponents and achieve an equilibrium. An example 

of this would be where an increase in performance for one agent occurs at the cost of another; in this case the 

performance of the two agents is a zero sum or general sum relationship. The third form, the mixed mode type, 

has agents grouped into coalitions that produce group rewards while they are also competing with other 

coalitions or agents using individual reward components. The mixed mode structure provides a good 

representation of many real world multi-stakeholder environments where there is partial cooperation among 

parties operating under some contractural or organizational agreement but there is competition among the 

different groups. Overall, the three panels provide examples of how differences in the coupling of the 

incentives of agents directly impacts the dynamics of learning, the amount of information exchanged, and the 

stability of multi-agent reinforcement learning systems.  

Game Theory and Nash Equilibrium Applications in Agent Coordination  

Game theory offers a formal framework for examining multi-agent strategic behavior (Shoham et al., 2007). In 

MARL the game is defined by the environment and reward functions used; each agent chooses a policy; the 

resultant joint policy determines the distribution of trajectories' possible outcomes. The Nash Equilibrium (NE) 

is a fundamental solution concept in game theory; it is a joint policy profile where no agent can improve its 

expected returns through unilateral action if all other agents maintain their policies unchanged (Zhang et al., 

2021). Because MARL algorithms are likely to learn towards fixed points that are often interpretable as 

equilibria (even though they may be solving an objective function that is not NE), understanding NE is 

important for understanding how MARL systems will behave.  

The reason why Nash Equilibrium is relevant to cooperative logistics is due to the fact that when there is 

decentralized implementation of logistics decisions, agents make decisions based upon local objectives or 

estimates of local values. Therefore, poor design of the learning system may cause agents to reach stable 

conventions (equilibria) that optimize unilateral objectives with respect to local knowledge while failing to 

achieve optimal global objectives. This is an example of a coordination equilibrium problem where there are 

multiple equilibria and the learning system needs to choose from them those that maximize social welfare.  

Furthermore, in competitive or mixed mode logistics, Nash Equilibrium is an even more explicit part of the 

analysis. For instance, competing carriers allocating trucks to shared delivery zones can be viewed as a 

stochastic game where the equilibrium represents the stable allocation patterns of vehicles in the delivery zone. 

Additionally, efficiency analysis relies on concepts such as Price of Anarchy which measures the difference 

between equilibrium outcomes and the optimal outcomes that would have been achieved had a single entity 

planned the entire logistics system (Roughgarden & Tardos, 2002).  

An additional aspect of MARL systems is that many MARL techniques can be thought of as being 

approximate equilibrium solvers. Policy Gradient Ascent can be seen as an approximation of gradient play; 

and in certain environments this method may converge; however, in general sum games, this method may 

cycle (Bowling & Veloso, 2002). Actor Critic methods with a centralized actor critic will stabilize the 

gradients; however, these methods do not provide any guarantees about achieving equilibrium (Foerster et al.,  

2018). Furthermore, Nash Equilibrium analysis in logistics coordination problems intersect with Network 

Flow Theory through the concept of Wardrop Equilibrium in traffic networks; and MARL generalizes Wardrop 

Equilibrium under uncertainty and learning (Yau et al., 2017).  
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Figure 4: Game Theory and Nash Equilibrium in Agent Coordination  

   

In figure 4 we show the development of a game theoretic structure, through the interaction of the decentralized 

nature of policies, shared system state and equilibrium conditions, from Multi Agent Reinforcement Learning 

(MARL). Multiple independent agents select policies; each agent has a strategic decision-making process 

regarding how to operate within the same shared environment. These individual agent's policy decisions result 

in a common network state (i.e., delay, congestion, resource utilization, etc.) and due to the fact that each 

agent's return is influenced by both their own policy and the policies of all other agents; the learning problem 

becomes a stochastic game. The Nash Equilibrium is located at the center of the diagram and represents the 

stable fixed point where no single agent can increase their expected return by making a unilateral deviation in 

their current policy as long as all other agents maintain their current policies. The Nash Equilibrium develops 

as a result of the feedback loop between joint outcome, system wide cost/delay and agent policy updates. In 

addition to the Nash Equilibrium the diagram highlights two significant theoretical issues; first, equilibrium 

selection, with respect to multiple equilibria existing and potential for the convergence of learning dynamics to 

efficient but unstable solutions. Secondly, efficiency analysis through measures such as the "price of anarchy," 

which measures the difference between equilibrium performance and the globally optimal performance of a 

centralized solution. Together the diagram illustrates how the learning dynamics of MARL, strategic 

interaction and network effects are combined to create stable yet potentially suboptimal coordination in large-

scale logistics systems.  

Credit Assignment Reward Sharing and Stability Challenges  

Learning Credit Assignment in Multi-Agent Systems  

Credit assignment is the problem of identifying how an agent's actions affect overall outcomes (Busoniu et al., 

2008). Reward sharing among cooperative multi-agent reinforcement learning (MARL) logistics systems is 

typical since the primary goal of these systems is to achieve system-level performance. A shared global reward 

can create a very large variance learning signal because an agent experiences fluctuations in observed rewards 

due to both the actions of other agents and exogenous noise. The variance of this learning signal can increase 

with the number of agents and make learning unstable (Henderson et al., 2018).  

Reward Shaping: Intermediate rewards are introduced through reward shaping to generate denser learning 

signals that may support the same optimal policy as unshaped rewards (potential-based shaping conditions). 
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However, shaping can modify the topology of the equilibrium landscape, and thus careful design is necessary 

(Foerster et al., 2018).  

Difference Rewards: A difference reward provides a principled method of determining the marginal 

contribution of each agent's actions toward achieving a particular global state, but it requires estimating 

counterfactuals, which is computationally expensive (Foerster et al., 2018).  

Value Decomposition Methods: Value decomposition methods decompose the joint value function into 

individual value functions corresponding to each agent's perspective, and do so subject to constraints that 

ensure that the resulting policies are decentralized and greedy (Sunehag et al., 2017; Rashid et al., 2018). The 

stability challenge associated with value decomposition arises due to the fact that each agent's learning affects 

the learning environment of every other agent. In logistics applications, this manifests as oscillatory routing or 

rescheduling patterns. To stabilize learning in such systems, one must use centralized critics, slow target 

updates, entropy regularization, and constrain policy updates, as well as structured communication protocols 

(Schulman et al., 2017; Achiam et al., 2017).  

Another stability challenge is the existence of multiple equilibria, and convergence to suboptimal conventions. 

Curriculum learning, staged training, and explicit coordination mechanisms have been proposed to mitigate 

these challenges (Gronauer & Diepold, 2022). Finally, stability must be considered over both fast operational 

and slow learning time scales. Therefore production-grade multi-agent reinforcement learning systems 

typically decouple learning from execution through the use of shadow evaluation, canary deployment, and 

safety-constrained updates, to maintain operational stability (Henderson et al., 2018).  

Architecture of Intelligent Multi-Agent Reinforcement Learning Systems  

Architectural Foundations of Intelligent MARL Systems in Logistics  

An architecture of an intelligent multi-agent reinforcement learning system represents the structural 

implementation of theoretical principles of autonomous decision-making, strategic interactions, and adaptive 

controls in decentralized systems. Architecture in logistics environments is not simply an engineering 

consideration, it is one of the primary determinants of the feasibility, scalability, and learning stability of a 

system. Unlike a central pipeline for optimization which assumes complete system observability and fixed 

models, MARL architectures must directly support partial observability, delayed feedback, non-stationary 

environments, and heterogeneous capabilities of individual agents (Busoniu et al., 2008; Hernández Leal et al., 

2019; Gronauer & Diepold, 2022; Zhang et al., 2021). Therefore, the architecture establishes how abstract 

concepts such as policies, value functions, coordination equilibria, and learning processes are implemented in 

realistic environments, particularly those that are cyber-physical where computational decisions are executed 

using physical resources with dynamic characteristics that cannot be abstracted (Lee, 2008; Rajkumar et al., 

2010). Logistics systems are paradigmatic examples of cyber-physical systems due to tight coupling of 

sensing, computation, communication, and actuation. Failures in timing, accuracy, and coordination cause 

cascading failures in services, safety risks, and economic losses (Lee, 2008; Rajkumar et al., 2010).  

From the perspective of control theory, a MARL architecture describes how authority, information, and 

adaptation are distributed throughout a system. Assets in logistics networks operate under rigid latency and 

reliability constraints. Local decisions have global implications through shared infrastructure, demand 

coupling, and congestion effects. The architecture therefore reconciles decentralization with coordination by 

establishing explicit interfaces between perception, communication, action execution, and learning while 

satisfying the hard real-time distributed computing constraints that are inherent in cyber-physical systems 

(Lee, 2008; Rajkumar et al., 2010). The separation of concerns within the layered architecture allows for 

modular analysis of stability, convergence, and scalability while maintaining end-to-end consistency. 

Theoretically, MARL architectures can be viewed as structured approximations of decentralized stochastic 

games where each layer of the architecture introduces inductive biases that limit the number of possible 

policies and coordination schemes (Shoham et al., 2007; Tuyls & Weiss, 2012; Zhang et al., 2021). These 

biases are not arbitrary. They capture structural aspects of logistics systems including locality of interaction, 

hierarchical organization, and temporal separation between control and learning. An effective architecture 

matches the inductive biases introduced by the architecture with the structural properties of the problem, 
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resulting in improved sample efficiency, convergence properties, and robustness (Busoniu et al., 2008; 

Hernández Leal et al., 2019; Gronauer & Diepold, 2022).  

Organizational and enterprise constraints in logistics also require consideration of architectural design. 

Integration with existing operational systems, compliance with regulations, and incremental deployments 

require architectures that support hybrid operation between learning-enabled agents and rule-based systems as 

well as humans. Explainability and auditable decision traces should be treated as architectural requirements 

rather than afterthoughts (Doshi Velez & Kim, 2017). Furthermore, layered/hierarchical architectures provide a 

means of enforcing governance and operational stability when sensing, coordination, decision-making, and 

optimization responsibilities are clearly delineated and validated at their interfaces.  

Theoretical, the architecture maps the abstract MARL objective to its operational realization. The global 

learning objective can be represented as the maximization of an expected long-horizon return over joint 

policies, recognizing that the objective is realized via approximate function learning and constrained updates 

rather than exact dynamic programming (Sutton & Barto, 1998; Mnih et al., 2015; Henderson et al., 2018):  

𝛾𝑡 (𝑠𝑡, 𝑎1
𝑡, … , 𝑎𝑁

𝑡 )] 𝑡=0 

  

The architecture determines how this joint objective is decomposed, approximated, and optimized through 

decentralized components, and how learning stability is preserved under non stationarity induced by 

interacting learners (Busoniu et al., 2008; Hernández Leal et al., 2019; Zhang et al., 2021). The remainder of 

this chapter elaborates how this decomposition is achieved through a layered architectural framework.  

The architecture defines how this joint objective is decomposed, approximated, and optimized using 

decentralized components, and how learning stability is maintained under non-stationarity caused by 

interacting learners (Busoniu et al., 2008; Hernández Leal et al., 2019; Zhang et al., 2021). The remainder of 

this chapter will describe how this decomposition occurs through a layered architectural framework.  

Layered Architecture: Sensing, Coordination, Decision-Making, and Optimization  

Layered architectural paradigms allow for a systematic method to decompose the complexity of intelligent 

logistics systems while ensuring coordination. The proposed architecture is composed of four interconnected 

layers: sensing, coordination, decision-making, and optimization. Each layer has addressed a unique set of 

technical challenges and corresponds to a specific level of abstraction in the MARL formulation. The sensing 

layer serves as the perceptual interface between the physical logistics environment and the learning system. 

The primary responsibility of the sensing layer is to gather raw data from diverse sources, such as Internet-of 

things devices, telematics streams, inventory databases, and enterprise platforms (Atzori et al., 2010; Gubbi et 

al., 2013). Theoretically, the sensing layer represents the observation function of a decentralized decision 

process. It limits the amount of information available to each agent and thus influences the policy space 

(Busoniu et al., 2008; Zhang et al., 2021). In logistics systems, sensing is partially observable, noisy, and 

asynchronous and is representative of the cyber-physical nature of the domain where sensors, networks, and 

devices operate at different frequencies and levels of reliability (Lee, 2008; Rajkumar et al., 2010). Agents 

observe local traffic conditions but do not know the global congestion state. Warehouses observe the internal 

queue but not the downstream demand realization. The sensing layer must therefore perform abstraction, 

aggregation, and filtering to create concise, semantically meaningful representations.  

The coordination layer is the central element of the MARL system architecture. The role of the coordination 

layer is to enable inter-agent dependency mediation without the need for centralized control. Theoretically, this 

layer approximates the coupling structure of the underlying stochastic game by allowing agents to base their 

decisions on common latent variables rather than the explicit global state (Zhang et al., 2021; Zhu et al., 2024). 

The coordination layer may implement graph-based message passing, learned intent embeddings, or implicit 

coordination through shared value representations, demonstrating the principle that coordination can be 
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achieved through limiting information flow and representation structure, not through transmitting the entire 

state (Shoham et al., 2007; Tuyls & Weiss, 2012). The coordination layer is particularly relevant to logistics 

networks where there is significant interdependence among agents due to congestion, shared resources, and 

shared infrastructure.  

The decision layer implements decentralized policy execution. Each agent selects actions based upon local 

observations and coordination signals, operating independently and subject to strict latency constraints. This 

layer satisfies the constraint of decentralized execution and reflects logistical realities of deployment in 

logistics environments that must meet timing and robustness constraints associated with real-time distributed 

systems (Lee, 2008; Rajkumar et al., 2010). Theoretically, the decision layer corresponds to factorized policy 

representations that approximate the joint policy using only local information (Busoniu et al., 2008; Zhang et 

al., 2021). However, the challenge remains to ensure that locally optimal actions maintain global coherence 

even though they were selected based on incomplete information and asynchronously.  

The optimization layer governs learning and adaptation. It operates on a longer timescale than the decision 

layer and is responsible for updating policies, shaping rewards, and assigning credits. Theoretically, the 

optimization layer implements the learning dynamics that approximate equilibrium-seeking or welfare 

maximizing behavior under multi-agent coupling (Shoham et al., 2007; Tuyls & Weiss, 2012). In logistics 

systems, optimization must address delayed rewards, multiple objectives, and non-stationarity. Architecturally, 

decoupling the decision layer from the optimization layer is necessary to preserve operational stability and to 

continue to improve performance, particularly since large updates can disrupt both learning and real-world 

operations, an issue discussed in the literature related to reproducibility and stability of deep reinforcement 

learning (Henderson et al., 2018). The interaction between layers can be viewed as a closed-loop control 

system. Data flows from the sensing layer up to the decision layer, while learning signals flow from the 

optimization layer down to the policy execution layer. This separation enables independent analysis of 

perception accuracy, coordination fidelity, decision optimality, and learning stability. A compact representation 

of the interaction of the layers is:  

A compact representation of layered interaction can be expressed as:  

𝜋(𝑎𝑖 ∣ 𝑜𝑖, 𝑐𝑖), 𝑐𝑖 = 𝑓coord(𝑜1, … , 𝑜𝑁)  

where ci represents coordination signals generated from the shared information (Zhang et al., 2021; Zhu et al., 

2024).  

Agent Design: Autonomy, Communication, and Shared Policy Learning  

Autonomy is an absolute necessity in logistics because logistics happens in highly dynamic, geographically 

distributed environments. As such, agents must operate autonomously and make real-time decisions when they 

have little or no knowledge of the status of other agents in the system. While theoretically, autonomy means 

that each agent has its own policy and local belief of the environment, it does not mean that an agent is 

independent. Rather, effective agents can take into account the effect of other agents in the system through the 

mechanisms of coordination incorporated into their decision process. Therefore, the design of an agent's ability 

to communicate is very important to the overall architecture of the agents in a multi-agent reinforcement 

learning (MARL) system.  

Direct communication enables the agents to explicitly share information. However, direct communication has 

scalability problems due to the bandwidth and synchronization constraints present in many systems. Thus, 

there is a strong motivation to implement structured communication and/or selective information propagation 

as part of the architectural choices of MARL systems with communication (Zhu et al., 2024). An example of 

indirect communication includes shared latent representations of the environment or coordination through 

environmental signals. In both cases, the agents do not require explicit messages to understand what the other 

agents are doing. From a theoretical perspective, the mechanisms of indirect communication enable the agents 

to coordinate with each other without requiring direct information exchange. In particular, the mechanisms of 

indirect communication can embed coordination into the representation of the policy and values of the agents, 

thus reducing their dependency on direct information exchange (Zhu et al., 2024; Zhang et al., 2021).  
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In addition to the mechanisms of communication and coordination, a significant architectural aspect of MARL 

is the ability of multiple agents to learn and utilize a common policy. In systems consisting of homogeneous 

agents, the sharing of parameters can provide a common policy to the agents. Sharing a common policy can 

provide several benefits including reduced sample complexity for the agents and improved generalization 

performance. Theoretically, the sharing of a common policy imposes symmetry constraints on the learning 

problem. The symmetry constraints restrict the policy space to those functions that are invariant to 

permutations of the agents, thus providing better convergence behavior (Busoniu et al., 2008; Gronauer & 

Diepold, 2022). For example, in a logistics fleet, the agents can learn a common policy to navigate new routes 

or new geographic areas without having to be re-trained from scratch.  

An additional architectural aspect of MARL systems is temporal abstraction. Many logistics decisions are 

made based on historical context including changes in traffic congestion, changing demand trends and so on. 

Agents must be able to abstract over varying lengths of time to consider these types of historical context. The 

attention-based component of the agent can provide a mechanism to abstract over varying lengths of time and 

to selectively focus the computation of the agent on salient structures of the environment. Attention-based 

components are aligned with recent advances in routing-oriented learning methods that use attention to model 

the combinatorial structure of the routing problem (Kool et al., 2019).  

A representative agent-level objective can be expressed as follows:  

𝜋𝑖
∗ = arg⁡ max⁡  [∑ 𝛾𝑡 𝑟𝑖(𝑠𝑡, 𝑎𝑖

𝑡, 𝑎−
𝑡 

𝑖)]  

𝜋𝑖 𝑡 

 where the dependence on other agents’ actions reflects strategic coupling.  

Control Hierarchy Between Centralized Training and Decentralized Execution (CTDE)  

One of the major architectural challenges in designing intelligent multi-agent reinforcement learning systems 

is the trade off between learning efficiency and operational feasibility. One way to address this trade-off is 

through the use of a control hierarchy between centralized training and decentralized execution. From a 

theoretical standpoint, centralized training can provide a global view of the state of the system, the joint 

dependencies of the actions of the agents, and the complete reward signal generated by all the agents. 

However, from a deployment standpoint, decentralized execution is necessary in order to satisfy the 

operational constraints of latency, communication unreliability, and local autonomy that are typical of cyber 

physical and real-time distributed systems (Lee, 2008; Rajkumar et al., 2010). The CTDE paradigm addresses 

this trade-off by decoupling the learning authority from the execution authority while maintaining the 

coordination structure of the system. CTDE is a scalable and governance-compatible approach to deploying 

enterprise-wide intelligent multi-agent reinforcement learning systems.  

Centralized training takes place in a regime where learning algorithms have access to the full joint system state 

and the actions of all agents. However, this regime is not intended to reflect operational reality, but rather to 

stabilize the learning dynamics. From a theoretical perspective, centralized training approximates a more fully 

observable stochastic game, enabling learning updates to condition on the full interaction structure of the 

agents. This is important because each agent experiences a non-stationary environment as the other agents in 

the system update their policies. Centralized training reduces this non-stationarity by conditioning updates on 

joint information, reducing variance and improving convergence behavior (Busoniu et al., 2008; Gronauer & 

Diepold, 2022; Zhang et al., 2021).  

As a result of CTDE, a key architectural construct that emerges is the centralized critic. The centralized critic 

evaluates joint actions in the context of the global state, providing learning signals that reflect the inter-agent 

dependencies of the system. It is important to note that this critic is not executed during deployment. Rather, it 

serves as a training time mechanism that shapes the decentralized policies. Through the centralized critic, the 

system learns the coupling structure of the logistics system, and captures how individual actions contribute to 

congestion, resource contention, and demand fulfillment. From a theoretical perspective, the centralized critic 

approximates the joint-action value function of the underlying stochastic game, which is consistent with the 
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broader actor-critic perspective on stabilizing policy learning through structured value estimation and variance 

reduction (Foerster et al., 2018; Lowe et al., 2017).  

Decentralized execution enforces the operational constraint that each agent must act based solely on locally 

available information. Each agent executes a policy that is conditioned on local observations and limited 

coordination signals, and has no knowledge of the global state or centralized control. This is not simply a 

practical consideration, but rather a foundational consideration that defines the admissible policy class and 

ensures that the learned behaviors can be realized in real-world logistics environments. The architecture must 

therefore ensure that any information utilized during training can be reconstructed by the agents during 

execution. Consistency between centralized training and decentralized execution is a non-trivial architectural 

consideration. If training utilizes information that cannot be reconstructed during execution, a training 

execution mismatch results, which leads to either brittle or unrealizable policies, a failure mode that is 

exacerbated as deep reinforcement learning systems become increasingly complex and sensitive to 

experimental conditions (Henderson et al., 2018). From a theoretical perspective, this requires that the 

centralized critic provide shaping signals while the decentralized actors execute greedily based only on local 

information. Architectural mechanisms such as value decomposition and monotonic mixing provide one 

method to ensure this consistency by bounding how global value is represented and optimized, while 

preserving decentralized greedy execution (Rashid et al., 2018).  

In addition to ensuring consistency between centralized training and decentralized execution, CTDE also 

introduces a temporal separation between learning and control. Typically, training is performed offline or 

asynchronously using simulated environments, historical data, or digital twins. Execution is performed in real 

time under tight latency constraints. This temporal separation is essential for logistics systems since frequent 

policy updates can destabilize operations. The architecture must therefore support slow, controlled policy 

updates that do not disrupt ongoing operations, and align the learning dynamics with the organization's risk 

tolerance. From a control-theoretic perspective, CTDE can be viewed as a two-layer control hierarchy. The 

higher layer performs strategic optimization and policy synthesis, while the lower layer performs real-time 

control. This is analogous to classical hierarchical control architectures, but extends them to include learning 

based systems. The learning layer adapts policies to meet long-horizon objectives, while the execution layer 

ensures responsiveness and stability at operational timescales (Lee, 2008; Rajkumar et al., 2010). CTDE 

architectures also support the needs of safety and governance. The decoupling of learning from execution 

permits the organization to validate and audit policies prior to their deployment. This is particularly important 

in regulated logistics environments where decisions have consequences related to safety, labor and 

compliance. The CTDE architecture enables the development of staged rollout strategies such as shadow 

evaluation and limited deployment, which reduce the risks associated with autonomous decision-making.  

A simplified abstraction of the CTDE consistency relationship can be written as follows:  

𝜋(𝑎𝑖 ∣ 𝑜𝑖) ≈ arg⁡ max𝑎𝑖 ⁡ 𝔼𝑎−𝑖[𝑄central(𝑠, 𝑎𝑖, 𝑎−𝑖)]  

 where the centralized critic shapes decentralized policy behavior without being required at execution time 

(Lowe et al., 2017; Foerster et al., 2018; Zhang et al., 2021).  
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Figure 5: Controlled Hierarchy architecture  

  

The illustration demonstrates a two-layered architecture representing a control hierarchy between centralized 

training and decentralized execution. The control hierarchy has been separated into two distinct areas: a top 

area (centralized) where learning occurs, and an area below (decentralized) where execution occurs. The top 

layer is a centralized training regime that includes the learning system having access to global state 

information, simulated environments and joint actions/rewards generated by all agents. In this regime, joint 

experiences are combined and evaluated by a centralized critic that identifies how the interactions between 

individual agents' actions affect one another due to shared system dynamics such as congestion, resource 

competition and demand dissemination. A centralized critic is used as a training-time construct to stabilize 

learning in a non-stationary multi-agent environment, by having the critic update policy based on the full joint 

information, enabling the correct assignment of credits and the identification of the interdependencies among 

agents that would have otherwise remained hidden to purely local learning. Policy updates are produced 

during centralized training, and include the global interaction structure encoded in decentralized policies. The 

bottom layer illustrates decentralized execution, where each agent operates independently in real-time using 

only their local observations and agent-specific policies. Agents interact with their local environment and with 

each other only indirectly via environment-mediated effects, without access to global state or centralized 

control. Separating the layers ensures that operationally feasible constraints related to latency, communication 

and robustness are respected, while ensuring that learned behaviors can be realized during deployment. The 

link between the two layers emphasizes that, the information flows down from centralized training to 

decentralized execution only in terms of valid policy parameters, and not real-time control signals, thus 

avoiding training-execution mismatches. Overall, the diagram describes CTDE as a hierarchical control 

system where strategic learning and coordination occur centrally and off-line, while tactical decision-making 

and control occur locally and on-line, while providing scalability, stability and governance compatibility in 

large-scale autonomous logistics systems.  
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Scalability Mechanisms for Large-Scale Logistics Systems  

Scalability is the principal architectural constraint that distinguishes theoretically appealing MARL 

formulations from systems that can operate in real logistics networks. Many modern logistics systems consist 

of thousands of vehicles, hundred of warehouses and millions of daily decisions. Without explicit architectural 

structures to address scalability issues, MARL systems will encounter combinatorial explosions in the number 

of possible joint actions, communications overload and unstable learning dynamics (Busoniu et al., 2008; 

Hernández Leal et al., 2019; Gronauer & Diepold, 2022). Scalability problems in MARL arise primarily from 

the exponential growth of the joint action space. As the number of agents increases, the number of possible 

joint actions increases exponentially. Thus, naive representations of joint policies or value functions become 

infeasible. Therefore, scalability architectures must be designed to exploit locality, symmetry and hierarchy 

existing in logistics networks (Tuyls & Weiss, 2012; Zhang et al., 2021).  

Sharing parameters is a fundamental scalability mechanism. In logistics systems consisting of homogeneous 

agents (e.g., delivery trucks or warehouse robots), sharing policy parameters among agents greatly reduces the 

dimensionality of the learning problem. Sharing parameters introduces permutation invariance to the policy 

space, which improves generalizability and decreases variance. By sharing parameters, the learning process 

can use aggregated experiences of multiple agents rather than separate trajectories (Gronauer & Diepold, 2022; 

Busoniu et al., 2008). Another important scalability mechanism is the hierarchical decomposition of decision 

making and learning. Logistics systems typically possess natural hierarchical structure at various levels of time 

and/or space. Examples of hierarchical structure include decision-making at the fleet level (hours/days) versus 

decision-making at the vehicle level (seconds/minutes). Hierarchical decompositions provide a way to 

structure the learning and control processes according to the appropriate scales of decision-making.  

Hierarchical decompositions allow learning within regions/hubs, but also reduce coupling among higher-level 

aggregates. Furthermore, hierarchical decompositions naturally correspond to temporal abstraction in RL, 

where decisions are made at different timescales, and policies can be structured accordingly (Kulkarni et al., 

2016).  

Architectures that provide sparse communication enhance scalability by limiting coordination among agents to 

those that are relevant to the task. Instead of communicating the entire state of the world, agents communicate 

only what is necessary about their local environment. Communication among agents is typically restricted 

based on the proximity of the agents, the agents' access to common resources, or the agents' history of 

interaction (Zhu et al., 2024; Zhang et al., 2021). Structured communication is a stability mechanism because 

it limits the amount of nonstationarity each agent experiences from other learners, yet still allows for 

coordinated behavior among agents.  

Finally, the representation of global utility in value functions contributes to scalability. Representations of 

global utility that can be factored and decomposed enable scalability. Monotonic mixing-based methods, such 

as QMIX (Rashid et al., 2018), can represent global utility as a function of decentralized action selection, 

while approximating the global value function, which is particularly useful at scale where explicit 

representations of joint values are infeasible.  

In addition to the aforementioned architectural mechanisms for managing scale, computational architecture 

plays an important role in scalability. Cloud-edge hybrid architectures are emerging as an important approach 

to supporting large-scale logistics networks. In such an architecture, large-scale training and simulation occur 

on centralized cloud infrastructure, while policy execution occurs on edge devices with low latency. Edge 

computing is particularly important for logistics decision-making loops, which are often time-sensitive and 

require rapid feedback to make decisions. Therefore, execution of policies must occur on edge devices, while 

training, aggregation, and heavy simulation occur on centralized cloud infrastructure (Satyanarayanan, 2017; 

Shi et al., 2016; Mach & Becvar, 2017; Mao et al., 2017). Research on computation offloading based on 

reinforcement learning (RL) supports this type of architecture by showing how the decision of where to 

perform computation can adapt to trade-off latency, energy, and reliability under varying network conditions 

(Hortelano et al., 2023).  
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From a learning-theoretic perspective, scalability mechanisms introduce inductive biases that reflect the 

structure of the environment. These biases limit the hypothesis space of policies and value functions, and 

improve sample efficiency. In logistics, these biases ensure that agents learn behaviors that respect locality, 

capacity constraints and flow conservation without requiring explicit encoding of these rules. Scalability must 

be able to accommodate the continuous growth and changes in organization of logistics networks. Logistics 

networks continue to evolve over time as new routes, facilities, and partners are added. Architectures that rely 

on rigid global coordination fail to accommodate such evolution. Scalable MARL architectures support 

incremental expansion, and allow new agents to join with little retraining, using shared policies and local 

coordination mechanisms. The computational complexity of scalable MARL architectures can be expressed 

abstractly as:  

Complexity ∝ (𝑁 ⋅ 𝑑)  

 where N is the number of agents and d is a bounded local interaction degree, reflecting sparse interaction 

structure (Zhu et al., 2024; Zhang et al., 2021).  

Business Impact and Strategic Value of MARL Architecture in Logistics Systems  

Intelligent MARL Systems' Architectural Design has significant and substantial Business Implications, thus 

constituting a central contribution versus secondary considerations. While Algorithmic Improvements provide 

small increments under controlled conditions, Architectural Choices will either allow for the deployment of 

MARL in Enterprise Scale environments and produce long term Value or prevent such deployments. From a 

Cost Optimization Perspective, MARL Architectures enable continuous, Decentralized Adaptation to Demand 

Variability, Congestion, and Disruptions, whereas Traditional Logistics Systems are reliant upon Static 

Optimization or Periodic Replanning, neither of which effectively responds to Real Time Disturbances. The 

Intelligence embedded within MARL Architectures exists at the Agent Level, thereby enabling continuous 

adaptation of Decisions, resulting in Reduced Operational Slack, Improved Asset Utilization, Lowered Fuel, 

Labor, and Inventory Holding Costs. These Benefits are Strengthened when the System is Built as a Cyber 

Physical Control Loop with Verified Timing and Reliable Execution Pathways, as the Loss of Business Value 

in Logistics is typically due to Delay, Mismatch, and Poor Coordination, rather than Lack of Optimization 

Theory (Lee, 2008; Rajkumar et al., 2010).  

Another primary Business Impact is Service Level Performance. Through Autonomous Responses to Local 

Disruptions while Maintaining Global Coordination among Agents, MARL Architectures Improve Delivery 

Reliability and Reduce Lead Time Variability. This is Particularly Valuable in Time Sensitive Logistics such as 

Ecommerce Fulfillment and Perishable Goods Distribution, where Service Failures have Proportionately 

Larger Downstream Consequences. A Strategic Dimension Where MARL Architectures Provide a Significant 

Advantage is Resilience. As Logistical Networks Experience Increasing Exposure to Disruptions including 

Traffic Incidents, Supply Shocks, and Extreme Weather Events, MARL Architectures Support Adaptive 

Reconfiguration of Routes, Schedules, and Resource Allocations in Response to Such Disruptions.  

Furthermore, Adaptive Resilience Cannot be Achieved through Static Optimization Alone and Represents a 

Fundamental Shift in Logistics Capability.  

A Strategic Dimension Where MARL Architectures Enable the Transition Toward Autonomous, Self-

Regulating Logistics Networks. By Reducing Dependence upon Centralized Planning and Manual 

Intervention, Organizations Can Scale Operations without Linear Increases in Managerial Overhead. This 

Creates a Structural Competitive Advantage That Is Difficult to Replicate Using Traditional Systems.  

Additionally, MARL Architectures Support Sustainability Objectives by Enabling Multi Objective 

Optimization that Explicitly Incorporate Emissions and Energy Efficiency Alongside Cost and Service Quality. 

In contrast to Rule Based Sustainability Initiatives, MARL Systems Continuously Learn Tradeoffs and Adapt 

Behavior as Operational Conditions Change. Organizationally, Layered MARL Architectures Facilitate 

Incremental Adoption. Components can be Deployed Gradually, Integrated with Existing Enterprise  
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Systems, and Evaluated Under Controlled Conditions. This Reduces Adoption Risk and Aligns with Enterprise 

Governance Requirements. Explainability and Accountability Further Influence Business Adoption Because 

Stakeholders Must Be Able to Audit and Justify Autonomous Decisions, Which Motivates Embedding 

Interpretability and Monitoring Interfaces Into the Architecture Itself Rather Than Relying Upon Post Hoc 

Explanations (Doshi Velez & Kim, 2017). Additionally, Fairness and Subgroup Performance Can Also Become 

Business Critical When Optimization Affects Service Allocation, Prioritization, or Customer Experience 

Across Diverse Segments, Thus Making Fairness Aware Evaluation and Governance a Strategic Consideration 

in System Design (Kearns et al., 2019).  

The business objective underlying MARL-enabled logistics can be abstractly expressed as:  

max⁡  [Service Reliability − Operational Cost − Environmental Impact]  

 This objective highlight that MARL architecture is not merely a technical artifact but a strategic enabler.  

Agent Communication and Coordination Protocols  

Direct vs. Indirect Communication Models in Multi-Agent Logistics Systems  

Coordination in Multi-Agent Reinforcement Learning (MARL) depends heavily on Communication. In 

Logistics Environments, Agents have partial Observations, are Spatially Separated, and have different 

Capabilities. Without an effective way to communicate, Agents cannot take into account the Externalities 

caused by their own Actions on Others, resulting in poor Coordination, Congestion Cascades, and Unstable 

Learning Dynamics (Sayde, 2014; Bucsoniu et al., 2008; Zhang et al., 2021). Although Communication is 

costly due to Bandwidth, Latency, Reliability, and Organizational Boundaries, there still needs to be an 

Architectural and Theoretical Design of Communication Mechanisms in MARL for Logistics (Ren & Beard, 

2008; Nowzari et al., 2019; Olfati Saber et al., 2007).  

Agents that use Direct Communication Models, send Messages to one another that include State Information, 

Intent Signals, or Coordinated Variables (Zhu et al., 2024). Theoretically, Direct Communication adds to each 

Agent's Observation Space with the Messages they receive from Other Agents, thereby Increasing the  

Informational Richness of the Decision Process of the Agent, Reducing Uncertainty About the Global System 

State (Sayed, 2014; Cover & Thomas, 2006). In Logistics, Vehicles can share Congestion Alerts, Warehouses 

can Share Capacity Signals, Hubs can Coordinate Scheduling Decisions Using Direct Communication. With 

Reliable and Timely Communication, Direct Messaging Can Improve Coordination Efficiency and 

Convergence Speed Significantly (Ren & Beard, 2008; Olfati Saber et al., 2007).  

Although Direct Communication Has Advantages, it Does Not Scale Well in Large Logistics Networks. As the 

Number of Agents Increases, the Communication Graph Becomes Dense and the Volume of Messages Grows 

Combinatorially, Causing Bandwidth Saturation, Synchronization Overhead, and Increased Latency. From A 

Theoretical Standpoint, Dense Communication Introduces Tight Coupling Between Agents, Which Can 

Destabilize Learning by Amplifying Feedback Loops (Nowzari et al., 2019; Sayed, 2014; Zhang et al., 2021).  

Additionally, Operational Failures or Delays in Communication Can Further Reduce Performance, Making 

Direct Communication Brittle Under Real World Conditions (Nowzari et al., 2019; Ren & Beard, 2008).  

Indirect Communication Models Address These Limitations by Embedding Coordination Signals Implicitly 

Within Shared Representations or Environmental Feedback Rather Than Explicit Messages (Zhu et al., 2024).  

Agents Infer Behavior or Intent of Other Agents Through Observed System Dynamics, Shared Latent 

Variables, or Learned Coordination Embeddings in Indirect Communication. For Example, Congestion 

Patterns in a Network Can Serve as an Implicit Coordination Signal, Allowing Agents to Adapt Routing 

Decisions Without Explicit Messaging. Theoretically, Indirect Communication Uses the Environment as a 

Medium for Communication, Reducing Dependence on Explicit Channels (Sayed, 2014; Olfati Saber et al., 

2007).  
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Indirect Communication is Particularly Attractive in Logistics Systems Because It Is More Representative of 

Physical Realities. Many Coordination Signals Are Naturally Embedded in the Environment Such as Queue 

Lengths, Travel Times, Resource Utilization. Agents Can Coordinate Implicitly at Scale While Learning to 

Interpret These Signals. However, Indirect Communication Adds Complexity to the Learning Process for 

Agents to Disentangle Causal Relationships Between Observed Dynamics and the Actions of Other Agents. 

This Can Increase Sample Complexity and Slow Down Convergence If the Architectural Inference Bias Does 

Not Support the Architecture Appropriately (Zhang et al., 2021; Zhu et al., 2024; Bucsoniu et al., 2008). 

Hybrid Communication Models Combine Direct and Indirect Mechanisms to Balance Scalability and  

Coordination Fidelity (Zhu et al., 2024). In Hybrid Models, Direct Communication Is Reserved for High 

Impact or Time-Critical Signals While Indirect Communication Handles Routine Coordination. Selective 

Communication Strategies Reflect a Key Insight: Not All Coordination Requires Explicit Messaging. By 

Prioritizing Communication Resources, Hybrid Models Achieve Scalability Without Sacrificing Performance 

(Nowzari et al., 2019; Sayed, 2014). Communication Models Determine the Coupling Structure of the 

Decentralized Control Problem Theoretically. Direct Communication Increases the Strength of Coupling 

Among Agents While Indirect Communication Weakens Coupling But Relies on Shared Dynamics (Ren & 

Beard, 2008; Olfati Saber et al., 2007). Therefore, Effective MARL Architectures Must Be Designed to 

Stabilize Coordination Under Uncertainty and Optimize the Coupling Among Agents (Nowzari et al., 2019; 

Sayed, 2014; Zhang et al., 2021).  

A conceptual abstraction of communication-augmented policy execution can be written as:  

𝜋𝑖(𝑎𝑖 ∣ 𝑜𝑖, 𝑚𝑖)  

 where 𝑚𝑖represents either explicit messages or implicitly inferred coordination signals.  

Graph-Based Communication Networks and Message-Passing Mechanisms  

Graph-based communication has provided a formal basis to describe the relationships between the agents 

within a logistics system (Zhou et al., 2020; Zhang et al., 2021; Wu et al., 2021; Zhu et al., 2024) because all 

logistics networks have an inherent relational structure based on both physical proximity and operational 

dependencies. Agents are modeled as nodes in a graph and communication channels as edges, and this model 

enables both structured and scalable coordination in alignment with the problem domain (Zhou et al., 2020; 

Wu et al., 2021). Graph-based MARL models represent the interaction topology of the underlying stochastic 

game (Zhu et al., 2024; Zhang et al., 2021). Rather than assuming full connectivity between agents, the graph 

models which agents influence each other. Therefore, it limits the number of possible actions in a given state 

(Zhu et al., 2024; Wu et al., 2021), and limits the amount of information available to each agent to the agents 

they directly communicate with (Wu et al., 2021; Zhou et al., 2020).  

The Message-Passing mechanism used in these models operate on this graph structure by enabling agents to 

pass messages to and receive messages from neighboring agents. An agent uses the messages received from its 

adjacent nodes to create a coordination context which will inform its decisions. The process of aggregating 

messages from different agents is analogous to a distributed consensus or fusion of information across multiple 

agents (Olfati-Saber et al., 2007; Boyd et al., 2006; Dimakis et al., 2010). Theoretically, message passing 

enables agents to reach an agreement on a global solution by exchanging messages repeatedly in a localized 

manner as information does in physical networks (Ren & Beard, 2008; Boyd et al., 2006; Dimakis et al., 

2010). Furthermore, graph-based communication allows for heterogeneity in the agents themselves. Different 

agents (e.g., vehicles, warehouse, hubs) can be represented as different types of nodes in a graph with different 

message passing functions (Zhu et al., 2024; Wu et al., 2021; Zhou et al., 2020). This allows for different 

coordination protocols to adhere to the specific limitations and capabilities of each type of agent (Zhu et al., 

2024; Wu et al., 2021; Zhou et al., 2020). Heterogeneous agents are common in logistics, so this capability 

makes graph-based communication a natural fit for logistics.  

Another theoretical challenge in graph-based communication is achieving a balance between expressiveness 

and stability. Excessive use of deep or unstructured message passing can cause over-smoothing, where the 

representation of individual agents becomes indistinct and thus decision quality decreases. Shallow message 
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passing may fail to capture long range dependency in logistics interactions. Therefore, careful consideration of 

the graph's depth, aggregation function, and update frequency is required to match the spatial and temporal 

characteristics of logistics interactions (Wu et al., 2021; Zhou et al., 2020). Additionally, graph-based 

communication allows for dynamic updates to the topology of the graph itself. If logistics networks change in 

response to changing traffic conditions, shifting demands, or failures, the graph can be dynamically updated to 

reflect changes to the interaction patterns between agents (Nowzari et al., 2019; Wu et al., 2021; Zhu et al., 

2024). These dynamic changes provide additional resiliency to the coordination mechanisms being employed.  

A generic message-passing update can be abstractly represented as:  

  

𝑗∈𝒩(𝑖) 

where ℎ𝑖denotes agent representations and 𝒩(𝑖)the neighborhood of agent 𝑖.  

Bandwidth-Efficient Policy Sharing and Compressed State Exchange  

The bandwidth limitations of MARL are considered one of the major limitations of MARL applications in the 

real world. Many logistics agents have to work through un-reliable wireless networks with limited bandwidth 

and varying latency. Therefore, it will be impossible to continuously send/receive large amounts of high 

dimension data regarding the states or policies of other agents in order to coordinate their actions. As a result, 

communications between the agents need to be optimized for bandwidth (Nowzari et al., 2019; Sayed, 2014).  

From a theoretical perspective, bandwidth optimization is trying to minimize the amount of information that is 

exchanged about the agents, while still optimizing the performance of coordination (Cover & Thomas, 2006). 

The first step to do this is to identify what information needs to be communicated in order to facilitate 

coordination. Some of the information that the agents need to share can be abstracted away or replaced with 

some form of approximation (Cover & Thomas, 2006). For example, in many logistics systems, not all of the 

state variables that are available to each agent are relevant to the coordination of the agents' activities.  

One way to reduce the communication costs associated with coordinating multiple agents is to use policy 

sharing mechanisms. With these mechanisms, instead of communicating the raw state information between the 

agents, they can communicate compact representations of the policies or the intentions of the other agents. 

This would enable the agents to communicate at a lower frequency (i.e., less frequently) than if they were to 

continuously exchange state information. According to the theory, this should allow the agents to anticipate 

how the other agents will behave (Sayed, 2014; Zhang et al., 2021), but it can also introduce new problems 

(such as synchronizing versions, establishing trust, etc.) especially in cases where there are multiple competing 

agents (Zhang et al., 2021; Zhu et al., 2024).  

Compressing state information can further reduce the communication costs, by encoding the observed costs, 

by encoding the observed information into a set of low dimensional latent features. These latent features 

can be learned simultaneously with the policies of the agents, so that the agents only communicate the most 

important information that is necessary for them to coordinate their actions. From a learning-theory viewpoint, 

compressing the state information introduces an information bottleneck that can help to regularize the 

coordination between the agents, and improve their ability to generalize to different scenarios (Cover & 

Thomas, 2006; Sayed, 2014). However, if the compression is too strong, it can lead to the loss of important 

information that is required to perform well, and thus can degrade the performance of the system (Cover & 

Thomas, 2006).  

Finally, another mechanism to optimize bandwidth usage in multi-agent systems is based on event triggered 

communication. In this type of communication mechanism, the agents only communicate when a certain 

threshold has been reached, i.e., a significant change in the level of congestion or capacity. Thus, the 

communication is tied to the actual operational requirements of the system, rather than to the fixed time 
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intervals used in periodic communication schemes (Nowzari et al., 2019; Li et al., 2024). From a theoretical 

point of view, event triggered communication leads to the reduction of the transmission of irrelevant 

information, and to the stabilization of the coordination between the agents under changing conditions 

(Nowzari et al., 2019; Wang et al., 2023).  

A high-level abstraction of compressed communication can be written as:  

𝑚𝑖 = 𝜙(𝑜𝑖), dim⁡(𝑚𝑖) ≪ dim⁡(𝑜𝑖)  

 where 𝜙denotes a learned compression mapping.  

Federated Learning for Distributed Coordination Across Logistics Nodes  

Distributed coordination based on Federated Learning allows for the preservation of data locality, privacy and 

organizational boundaries (Yang et al., 2019; Xia et al., 2021; Li, T., et al., 2020; Aledhari et al., 2020; Huang 

et al., 2022; Yang et al., 2019). Due to regulatory constraints, competitive concerns, and data volume, 

centralizing data aggregation in logistics systems covering various regional areas, partners, or companies is 

generally unfeasible. Therefore, Federated Learning provides an environment for agents or nodes to 

collaboratively enhance shared models without having to share their original data (Aledhari et al., 2020; Yang 

et al., 2019). On a theoretical basis, federated Multi-Agent Reinforcement Learning (MARL) expands upon 

decentralized learning with the introduction of periodic synchronizations of model parameters instead of state 

or trajectory data (Sayed, 2014; Li, T., et al., 2020). Agents perform local learning using their individual 

experiences and the collected updates are combined into a global model. The combination of the updates can 

be viewed as a type of distributed stochastic optimization (Li, T., et al., 2020; Sayed, 2014). Federated 

Learning facilitates coordination among geographically dispersed hubs or fleets in logistics while preserving 

the autonomy and privacy of each hub or fleet (Xia et al., 2021; Aledhari et al., 2020).  

In the context of heterogeneous logistics environments including various stakeholders, federated coordination 

is especially beneficial because each agent operates under different constraints, data distributions, and 

objectives. With federated learning, each agent can provide input to a shared coordination model while 

maintaining their local specialization. Theoretically, this promotes transfer learning and improves the ability to 

generalize over a variety of operational settings (Huang et al., 2022; Yang et al., 2019). One of the largest 

challenges in federated MARL is dealing with non-identical data distributions. For example, logistics nodes 

typically have different demand levels, traffic conditions, and operational constraints. When combining 

updates from different distributions, the rate of convergence can slow down and/or cause bias in the global 

model (Zhao et al., 2018; Li, T., et al., 2020). There are several architectural solutions available such as 

weighted aggregation, adaptive learning rates, and clustering-based federation (Li, T., et al., 2020; Zhao et al., 

2018).  

Additionally, federated learning has implications regarding communication limitations. While federated 

learning reduces the need to send raw data, sending model updates can be large and thus compression and 

sparseness of updates become essential parts of federated coordination architectures (Xia et al., 2021; Aledhari 

et al., 2020). Moreover, asynchronous aggregation can help to reduce latency and synchronize overheads (He 

et al., 2020; Li, T., et al., 2020). From a governance perspective, federated MARL architectures align well with 

regulatory and organizational expectations such as auditability, data sovereignty and controlled sharing of 

information (Yang et al., 2019; Aledhari et al., 2020). This makes federated coordination especially appealing 

for large-scale logistics systems which span across many jurisdictions.  

A simplified federated update can be expressed as:  

𝑁 

𝜃(𝑡+1) = ∑ 𝑤𝑖 𝜃𝑖(𝑡)  

𝑖=1 

where 𝜃𝑖denotes locally learned parameters and 𝑤𝑖aggregation weights.  



INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue I January 2026 

 

 

Page 2688 
www.rsisinternational.org 

 

       

 

Learning Strategies and Algorithmic Mechanisms  

Deep Q-Networks, Actor–Critic, and Proximal Policy Optimization in Multi-Agent Logistics  

Learning Strategies in Multi-Agent Reinforcement Learning (MARL) will define how Agents adjust their 

policies over time in reaction to Rewards that are Delayed, Stochastic and Coupled Strategically (Busoniu et 

al., 2008; Hernández Leal et al., 2019; Zhang et al., 2021). In Logistics Environments, Learning Algorithms 

have to work under High-Dimensional State Spaces, Multi-Objective Reward Structures and Non-Stationarity 

Induced by Other Learning Agents (Henderson et al., 2018; Hernández Leal et al., 2019). Therefore, Classical  

Reinforcement Learning Algorithms have to be Extended and Reinterpreted so that they Function as  

Coordination Mechanisms instead of Isolated Optimizers (Shoham et al., 2007; Zhang et al., 2021). Deep 

QNetworks, Actor-Critic Methods and Proximal Policy Optimization Represent Three Foundational 

Algorithmic Paradigms That Support this Transition (Mnih et al., 2015; Konda & Tsitsiklis, 2003; Schulman et 

al., 2017).  

Deep Q-Networks Approximate Action-Value Functions Using Deep Neural Networks, Allowing Agents to 

Learn Long-Horizon Utility Estimates from Raw Observations (Mnih et al., 2015). For Logistics Tasks Such 

as Routing and Dispatching, DQN Allows Agents to Associate Immediate Actions with Delayed Outcomes 

such as Congestion Buildup or Delivery Delays (Mnih et al., 2015; Henderson et al., 2018). Theoretically, 

DQNs Approximate Fixed Points of the Bellman Optimality Operator (Mnih et al., 2015). However, in Multi-

Agent Settings, the Bellman Operator Becomes Non-Stationary Because Transition Dynamics Depend on 

Other Agents’ Evolving Policies (Busoniu et al., 2008; Hernández Leal et al., 2019; Zhang et al., 2021). Naïve 

Application of DQNs in MARL Often Leads to Instability Unless Architectural Constraints or Training 

Constraints Are Applied (Henderson et al., 2018; Hernández Leal et al., 2019). Stabilization Mechanisms 

Developed in Deep RL, Including Double Q-Learning, Dueling Architectures, Prioritized Experience Replay, 

Distributional RL, and Integrated Approaches Such as Rainbow Are Directly Relevant in this Context Because 

They Reduce Overestimation Bias, Improve Representation, and Enhance Sample Efficiency Under Noisy, 

High-Dimensional Dynamics (van Hasselt et al., 2016; Wang et al., 2016; Schaul et al., 2016; Bellemare et al., 

2017; Dabney et al., 2018; Hessel et al., 2018).  

Actor-Critic Methods Address Some of These Limitations by Separating Policy Representation (Actor) from 

Value Estimation (Critic) (Konda & Tsitsiklis, 2003). This Separation is Theoretically Significant Because It 

Decouples Policy Improvement from Value Approximation Error (Konda & Tsitsiklis, 2003). In Logistics 

Environments, Actor-Critic Methods Enable Continuous Action Spaces and Stochastic Policies, Which Are 

Essential for Modeling Routing Probabilities, Inventory Adjustments, and Scheduling Priorities (Lillicrap et 

al., 2016; Haarnoja et al., 2018). The Critic Provides a Low-Variance Learning Signal That Stabilizes Policy 

Updates Even Under Partial Observability and Delayed Rewards (Konda & Tsitsiklis, 2003; Schulman et al., 

2015). This Family Also Scales Naturally to Distributed Execution and Asynchronous Learning Regimes That 

Are Operationally Aligned with Logistics Systems Where Data Arrives from Many Concurrent Actors, by 

Using Asynchronous Updates and Decoupled Actor-Learner Pipelines (Mnih et al., 2016; Espeholt et al., 

2018).  

Proximal Policy Optimization Introduces an Additional Theoretical Safeguard by Constraining the Magnitude 

of Policy Updates (Schulman et al., 2017). In Logistics Systems, Abrupt Policy Changes Can Destabilize 

Operations, Leading to Oscillatory Routing or Rescheduling (Henderson et al., 2018). PPO Enforces Trust 

Region – Like Constraints That Limit How Far a Policy Can Deviate from Its Previous Iteration (Schulman et 

al., 2017). This Aligns Naturally with Operational Risk Constraints in Logistics, Where Gradual Adaptation is 

Preferred Over Aggressive Optimization (Achiam et al., 2017). From a Theoretical Perspective, PPO Improves 

Stability by Approximating Monotonic Policy Improvement Under Bounded Updates (Schulman et al., 2017), 

Closely Related in Intent to Trust Region Policy Optimization (Schulman et al., 2015).  

In MARL Contexts, these Algorithms Must Be Interpreted as Components of a Coupled Learning System 

Rather Than Standalone Optimizers (Busoniu et al., 2008; Shoham et al., 2007). Each Agent’s Learning 

Update Alters the Effective Environment Experienced by Others, Creating Feedback Loops (Hernández Leal et 

al., 2019; Zhang et al., 2021). Algorithms That Are Stable in Single-Agent Settings May Fail When These 
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Couplings Are Ignored (Henderson et al., 2018; Hernández Leal et al., 2019). Thus, Architectural Constructs 

Such as Centralized Critics, Shared Replay Buffers or Coordination-Aware Value Estimation are Often 

Required to Restore Theoretical Stability (Lowe et al., 2017; Foerster et al., 2018; Hernández Leal et al., 

2019). The Multi-Objective Nature of Logistics Further Complicates Learning. Routing Decisions Affect 

Time, Cost, Emissions and Reliability Simultaneously. Actor–Critic and PPO Frameworks Naturally Support 

Multi-Objective Learning Through Weighted Reward Aggregation or Vector-Valued Critics (Roijers et al., 

2014; Vamplew et al., 2011). This Flexibility Allows Learning Strategies to Encode Organizational Priorities 

Explicitly Instead of Relying on Post Hoc Tradeoff Tuning (Vamplew et al., 2011; Roijers et al., 2014). A 

Representative Learning Objective Underlying these Algorithms can be Expressed as:  

 J(π) = ∑_{t=0}^{∞}γ^t(r_t + \phi(t))  

A representative learning objective underlying these algorithms can be expressed as:  

𝛾𝑡 𝑟𝑖(𝑠𝑡, 𝑎𝑖𝑡, 𝑎−𝑡 𝑖)]  

𝑖 𝑡=0 

 where coupling to other agents’ actions reflects coordination dynamics.  

Value Decomposition Networks for Cooperative Multi-Agent Learning  

A primary challenge in Cooperative Multi-Agent Reinforcement Learning (MARL) is enabling agents to learn 

how to work together and act cooperatively, but execute their actions independently (Busoniu et al., 2008; 

Zhang et al., 2021). Agents within Logistics Systems have a common goal and thus want to minimize the 

overall delivery time and/or costs across all agents, however each agent will only act based upon information 

that it has available locally (Bernstein et al., 2002; Hernández Leal et al., 2019). Value Decomposition offers a 

theoretical framework that allows for the reconciliation of these two opposing objectives by providing a 

method for decomposing the global value function into multiple functions associated with each agent (Rashid 

et al., 2018). The core theoretical contribution of Value Decomposition is that if the joint action-value function 

can be decomposed into a structure composed of individual value functions, then agents acting independently 

based upon their own values will lead to a solution that is globally optimal (Rashid et al., 2018). Thus, in 

Logistics, it suggests that Vehicles or Warehouses can make Local Decisions that result in Optimal 

Performance at the Network Level. It is essential for both Scalability and Feasibility (Bernstein et al., 2002; 

Busoniu et al., 2008).  

 VDN uses an Additive Structure to Decompose the Joint Action-Value Function (Busoniu et al., 2008). While 

Additive Structure simplifies the Problem-Solving Process, it places constraints on how Agents Interact with 

Each Other (Hernández Leal et al., 2019). QMIX relaxes the assumption of Additive Structure by using a 

Monotonic Mixing Function to Mix Individual Values into a Single Global Estimate of Value (Rashid et al., 

2018). The Monotonicity Constraint Ensures that Increasing an Agent's Local Value Cannot Decrease the 

Overall System Value, which Preserves the Ability of Agents to Act Independently (Rashid et al., 2018).  

Theoretical Considerations for Value Decomposition Place Inductive Biases on the Space of Represented 

Coordination Strategies (Hernández Leal et al., 2019; Zhang et al., 2021). These Biases Are Beneficial in 

Logistics Systems Where Agent Interactions Are Structured and Local Rather Than Arbitrary (Zhang et al., 

2021). Encoding the Assumptions Architecturally Improves Sample Efficiency and Learning Stability (Rashid 

et al., 2018; Henderson et al., 2018).  

 Value Decomposition Also Addresses Credit Assignment. By Assigning Portions of the Global Value to 

Individual Agents, It Provides More Informative Learning Signals Than Shared Global Rewards. This Reduces 

Variance and Accelerates Convergence in Large-Scale Logistics Networks (Rashid et al., 2018; Foerster et al., 

2018). Nonetheless, Value Decomposition Is Not Without Limitations. The Monotonicity Constraint May 

Restrict the Capacity of Representation and Prevent the Development of Coordination Strategies That Require 

Non-Monotonic Interactions (Son et al., 2019; Hernández Leal et al., 2019). Therefore, Logistics Contexts 

with Complex Interdependencies Such as Tightly Coupled Hub Scheduling Must Be Carefully Evaluated 

(Hernández Leal et al., 2019; Zhang et al., 2021). Although There Are Limitations to Value Decomposition, It 
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Represents One of the Most Practically Successful Paradigms for Cooperative MARL in Logistics Due to Its 

Balance Between Theoretical Guarantees and Operational Feasibility (Rashid et al., 2018; Hernández Leal et 

al., 2019).  

A canonical abstraction of value decomposition is:  

𝑄total(𝑠, 𝐚) = 𝑓(𝑄1(𝑠, 𝑎1), … , 𝑄𝑁(𝑠, 𝑎𝑁))  

where 𝑓is constrained to preserve monotonicity.  

Reward Shaping and Credit Assignment for Joint Optimization  

Designing Rewards is arguably the most important theoretical element of Multi-Agent Reinforcement 

Learning (MARL) (Busoniu et al., 2008; Zhang et al., 2021), since in supply chain logistics, Rewards express 

organizational goals for which poorly designed Rewards can undermine learning and induce self-serving 

behavior (Henderson et al., 2018; Shoham et al., 2007) and/or sub-optimal equilibria (Shoham et al., 2007; 

Busoniu et al., 2008). Thus, designing Rewards is a fundamental aspect of designing Learning Strategies  

(Foerster et al., 2018; Hernandez-Leal et al., 2019) including both Reward Shaping and Credit Assignment. In 

Cooperative MARL, typically Agents receive a single Global Reward. Although Global Rewards are 

conceptually simple, they create serious problems of Credit Assignment. Specifically, because every Agent's 

learning signal is influenced by all other Agents' Actions, the variance of every Agent's learning signal grows 

as the number of Agents increases, resulting in slow learning and unstable coordination among Agents 

(Hernandez-Leal et al., 2019; Henderson et al., 2018; Busoniu et al., 2008). Reward Shaping introduces 

Intermediate Rewards that guide learning toward a better outcome without changing the optimal policy under 

appropriate conditions (Henderson et al., 2018). Examples of Reward Shaping in Supply Chain Logistics 

include penalizing Congestion Generation, Encouraging Early Delivery, and Maintaining Inventory Balance.  

Theoretical analysis views Reward Shaping as a form of Potential-Based Transformation that preserves Policy 

Optimality while Improving Learning Efficiency (Zhang et al., 2021; Busoniu et al., 2008). Difference 

Rewards represent a Principled Solution to the Problem of Credit Assignment by Measuring the Marginal 

Contribution of each Agent to the Global Outcome (Foerster et al., 2018). In a Supply Chain Context, this 

represents an estimation of how a specific Vehicle's Routing Decision Influenced Overall Network Delay. 

Difference Rewards reduce Variance but are Computationally Expensive because they Require Counterfactual 

Reasoning (Foerster et al., 2018). Value-Based Credit Assignment Mechanisms, such as Centralized Critics 

and Decomposed Value Functions, Offer Scalable Approximations to Difference Rewards (Rashid et al., 2018; 

Lowe et al., 2017). These Value-Based Credit Assignment Mechanisms Infer Contribution Implicitly Through 

Learned Representations Rather Than Explicit Counterfactual Simulation (Hernandez-Leal et al., 2019; Rashid 

et al., 2018). Finally, Credit Assignment is Tightly Coupled with Stability. Poorly Attributed Rewards Can 

Cause Oscillatory Behavior, Where Agents Overreact to Noisy Signals (Henderson et al., 2018). Successful 

Credit Assignment Dampens These Oscillations By Providing Consistent Gradients Aligned With Global 

Objectives (Foerster et al., 2018; Henderson et al., 2018).  

A conceptual representation of difference rewards is:  

𝐷𝑖 = 𝑅(𝐚) − 𝑅(𝐚−𝑖)  

which isolates marginal contribution.  

Meta-Learning and Continual Learning for Adaptive Policy Refinement  

The environments in which logistics take place are always changing — the patterns of demand fluctuate, the 

infrastructure is continuously developing, and unforeseen disturbances will occur (Henderson et al., 2018; 

Parisi et al., 2019). Policies created to be used statically (or to remain unchanged) as they were originally 

designed (with certain assumptions that do not change), quickly deteriorate when working in non-static 

environments (Henderson et al., 2018; Parisi et al., 2019). There are both theoretical and practical 

methodologies associated with meta-learning and continual learning that address the need for continued 
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adaptation within MARL systems (Finn et al., 2017; Parisi et al., 2019; Lesort et al., 2020). Meta-learning is 

concerned with learning "how to learn." Rather than designing an optimal static policy for an environment, 

meta-learning creates policies that are able to quickly adapt to new environments (Finn et al., 2017; Nichol et 

al., 2018). For example, in logistics, it would allow the ability to transfer knowledge between different 

locations, seasons or types of demand (Pan & Yang, 2010; Finn et al., 2017). Meta-learning theoretically finds 

the best way to initially set up or update a policy so as to reduce the amount of time required to adapt to the 

new conditions (Finn et al., 2017; Nichol et al., 2018). Continual learning provides the means for learning over 

an extended operational horizon, providing solutions to the problem of catastrophic forgetting (Kirkpatrick et 

al., 2017; Parisi et al., 2019). For example, in logistics systems, agents may need to learn new things while 

maintaining their existing knowledge of the system's dynamics that have not changed. Continual learning 

methods add constraints or create memories that prevent an agent from losing the representation of useful 

aspects of its knowledge base while adapting to new conditions (Kirkpatrick et al., 2017; Parisi et al., 2019; 

Lesort et al., 2020). Continual learning is especially difficult in MARL environments because each agent's 

adaptation changes the environment for all other agents (Hernández Leal et al., 2019; Zhang et al., 2021). 

Therefore, meta-learning frameworks must consider strategic non-stationarity, so that agents can adapt not just 

to the changes in the environment, but also to the changes in the coordination strategies employed by the other 

agents (Wang et al., 2016; Hernández Leal et al., 2019). Meta-learning also enhances the robustness of MARL 

systems. Exposing agents to a variety of training scenarios, including those that represent rare disruptions, 

helps improve the resilience and generalization of agents (Finn et al., 2017; Nichol et al., 2018). Rare 

disruptions can have significant impacts on logistics systems, so the improvement in generalization and 

resilience provided by meta-learning is important. Meta-learning and continual learning provide a means to 

reduce the cost of retraining MARL systems and to deploy them for longer periods of time (Parisi et al., 2019; 

Lesort et al., 2020). These two methodologies transform the learning process from periodic retraining to 

continuous refinement of the MARL systems, which matches the operational cycle of enterprises (Parisi et al., 

2019; Lesort et al., 2020).  

A simplified meta-learning objective can be expressed as:  

min⁡  𝒯[ℒ𝒯(𝜃 − 𝛼∇𝜃ℒ𝒯(𝜃))] 𝜃 

capturing rapid adaptation across tasks.  

 Figure 6: Multi-Agent Reinforcement Learning Algorithms  
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The Diagram 6 represents a single technical approach for understanding how three basic paradigms of  

Deep Reinforcement Learning (DRL) - Deep Q Networks (DQNs), Actor-Critic Methods and Proximal Policy 

Optimization (PPO) - can be understood as interconnected learning processes in multi-agent logistics 

environments rather than isolated algorithms. On the left is a representation of the DQN block, illustrating 

agents that learn action-value functions mapping high-dimensional logistics states (e.g., inventory position; 

fleet location; level of congestion; etc.) to low-horizon utility estimates. The block emphasizes that updates to 

Q-values are determined by delayed rewards and by the shared use of experience replay, a mechanism that can 

become unstable when multiple agents interact because of policy-induced non-stationarity. In the center is a 

representation of the Actor-Critic block, explicitly separating the actor from the critic. The actor generates 

stochastic or continuous logistics actions (e.g., routing probabilities; dispatch priority; etc.). The critic assesses 

the quality of joint state-action pairs and provides low-variance learning signals to the actor, thus enabling 

coordination among agents even under partial observability and delayed system-level feedback. On the right is 

a representation of the PPO block, highlighting the constrained nature of policy updates via trust-region-style 

clipping. This visually reinforces the idea that logistics systems require slow policy adaptation to avoid 

oscillatory or unsafe operational behavior. Across all three paradigms, the shared experience buffer and joint 

reward paths depicted at the bottom illustrate that learning in a coupled environment occurs where each agent's 

update changes the effective dynamics experienced by other agents, making coordination an emergent property 

of the learning architecture, not an explicit control signal. Diagram 6 also captures the theoretical insight that 

the primary differences among these algorithms arise from their differing approaches to managing the bias-

variance trade-off and stability under coupling. DQN relies on approximating value-iteration-based learning; 

Actor-Critic relies on structured gradient information to improve performance; and PPO constrains policy 

updates based on the agent's risk tolerance for operational failures. Overall, Diagram 6 conveys that in multi-

agent logistics, learning algorithms function as system-wide coordination mechanisms that translate delayed, 

multi-objective rewards into stable, decentralized policies within the constraints imposed by non-stationarity, 

scalability, and feasibility of deployment in the real-world.  

Simulation and Environment Modeling  

Synthetic Simulation of Logistics Networks  

Simulation of synthetic systems is the primary methodological approach for assessing intelligent multi-agent 

reinforcement learning systems in logistics (Shapiro et al., 2014; Powell, 2019). In contrast to traditional 

optimization approaches which assume static parameters and deterministic dynamics, MARL systems are 

inherently dynamic, nonlinear, and sensitive to interaction effects between agents (Dulac-Arnold et al., 2021; 

Henderson et al., 2018). Therefore, analytical solutions cannot be found in a realistic setting and simulation is 

the only viable option for controlled experimentation (Tako & Robinson, 2012). From a theoretical point of 

view, simulation represents an approximation of the underlying stochastic game, enabling the examination of 

policy behavior, coordination dynamics and scalability properties in repeated conditions (Bonabeau, 2002; 

Macal & North, 2010). Synthetic simulation environments in logistics research are created to simulate the 

basic structure of a network of real-world logistics systems (e.g., warehouses, vehicle fleets, transportation 

routes, etc.) (Toth & Vigo, 2014). Each element is abstracted into a representation that retains the causal 

relationships inherent in each element while providing for controlled variation in complexity (Davidsson et al.,  

2005). Warehouses are represented as service nodes with limitations in capacity, queueing delay and 

processing time (Tako & Robinson, 2012). Vehicle fleets are represented as moving agents with routing, 

scheduling and energy limitations (Toth & Vigo, 2014). Travel routes represent the physical connections 

between locations and include both spatial distances and travel time distributions along with the possibility of 

congestion (Vlahogianni et al., 2014; Clark & Watling, 2005). The ultimate goal of such abstraction is not to 

model reality, but rather to accurately capture the structure of interactions so that the behaviors learned through 

simulation will generalize to other environments (Henderson et al., 2018).   

Synthetic simulations provide the ability to systematically examine and compare coordination phenomena that 

cannot be isolated or compared in real world systems (Clark & Watling, 2005). For example, congestion 

cascades, oscillatory routing behavior and coordination failures can be caused intentionally through changes in 

network topology or demand levels (Clark & Watling, 2005). Researchers can then examine how various 
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MARL architectures respond to such "stress" conditions and determine if the learned policies demonstrate 

stability, robustness or unstable/patological behavior (Dulac-Arnold et al., 2021; Henderson et al., 2018). From 

a control theoretic perspective, simulation provides the ability to analyze the closed-loop system behavior 

under different control policies to reveal emergent behaviors that are not evident from the local decision 

making rules (Powell, 2019).  

Another key function of synthetic simulation is the evaluation of scalability. While real logistics networks can 

contain thousands of agents, it is practically difficult to deploy experimental MARL systems of this size during 

the development stage. Simulation allows for gradual scaling of the number of agents, the size of the network 

and the level of interaction among agents to allow researchers to study the evolution of learning dynamics as 

system complexity grows (Henderson et al., 2018). This is critical in validating design decisions regarding the 

architecture of MARL systems, such as value decomposition, sparse communication and hierarchical 

coordination (Dulac-Arnold et al., 2021).  

Synthetic simulation environments provide researchers with the ability to conduct controlled ablation 

experiments. Components of a MARL system, such as coordination mechanisms and/or reward structures, can 

be selectively enabled or disabled to evaluate their effect on the performance and stability of the overall 

system (Henderson et al., 2018). Such controlled experimentation is in line with scientific principles of 

establishing cause-and-effect and supports the validity of experimental conclusions. Controlled 

experimentation in operational logistics settings would not be possible without simulation (Tako & Robinson, 

2012). From a learning perspective, simulation functions as a data generator producing diverse trajectories 

across a wide range of operating conditions (Henderson et al., 2018; Dulac-Arnold et al., 2021). Diverse 

trajectories are necessary for developing robust policies that generalize beyond narrow scenarios. Through 

manipulating network topologies, demand patterns and the frequency of disruptions, simulation provides 

agents with experience with rare but potentially significant events that are under-represented in historical data 

(Henderson et al., 2018; Fu et al., 2020). Theoretical rigor in designing synthetic simulation environments 

necessitates careful consideration of time discretization, event scheduling and synchronization among agents 

(Tako & Robinson, 2012). Logistics systems typically consist of combinations of continuous-time processes 

(e.g., movement of vehicles) and discrete events (e.g., arrival of orders). Simulation frameworks must 

reconcile these differing time structures without introducing artifacts that affect the learning dynamics (Tako & 

Robinson, 2012). Lastly, synthetic simulation provides a risk management capability for containing the risks 

associated with failure during development, identifying failure modes that would be catastrophic in production 

(Dulac-Arnold et al., 2021). As logistics systems errors result in financial, safety and reputational implications, 

the ability to fail safely during the development phase is essential.  

A high-level representation of the simulated environment can be represented as a stochastic transition process:  

𝑠𝑡+1 ∼ (𝑠𝑡, 𝐚𝑡, 𝜉𝑡)  

 where 𝜉𝑡represents exogenous stochastic influences.  

Environment Design Using OpenAI Gym or Unity ML-Agents  

A key function of Simulation environments for Multi-Agent Reinforcement Learning (MARL) is to provide an 

abstraction layer that separates the learning algorithm and the System Dynamics (Brockman et al., 2016; 

Juliani et al., 2018). For example, both OpenAI Gym and Unity ML-Agents are best viewed as abstraction 

layers that formally define the interface between the system dynamics and the agent logic (Brockman et al., 

2016; Juliani et al., 2018). As abstraction layers, they provide a significant theoretical contribution by 

providing a strict separation of concerns, between the Agent Logic and the Environment Dynamics that 

provides the basis for reproducible and modular MARL Research (Henderson et al., 2018). When designing 

environments for Logistics, this includes defining Observation Spaces, Action Spaces, Reward Signals, and 

Transition Dynamics in a way that accurately captures operational constraints (Clark & Watling, 2005; Toth & 

Vigo, 2014). Furthermore, Agents must receive observations based on local and partial information available at 

each agent location, for example, local Inventory Levels or Congestion at neighboring intersections (Clark & 

Watling, 2005). The Action Space defines the possible actions an Agent can take, including Routing Choices, 

Dispatch Timing, and Inventory Repositioning (Toth & Vigo, 2014). Designing the Interface poorly can result 
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in unintended leakage of Global Information or Unintended Control Authority to the Agent, resulting in 

Misleading Results (Henderson et al., 2018). OpenAI Gym Environments emphasize Discrete-Time Decision 

Making and Episodic Interaction, which matches the nature of many Logistics Problems, including Routing 

and Scheduling (Brockman et al., 2016; Toth & Vigo, 2014). By comparison, Unity ML-Agents provides 

support for Continuous-Time Simulation and Physics-Based Environments, allowing for the Modeling of 

Vehicle Motion, Robotic Coordination, and Spatial Effects due to Congestion (Tobin et al., 2017; Peng et al., 

2018; Juliani et al., 2018). Therefore, the selection of a specific Framework is a reflection of the Theoretical 

Assumptions made regarding Time, Continuity, and Observability (Brockman et al., 2016; Juliani et al., 2018).  

One of the most important Design Considerations when Developing Environments is how to Define Episode 

Boundaries. In Logistics Systems, Operations are Continuous, and Artificial Termination of Episodes can 

Introduce Learning Artifacts (Henderson et al., 2018; Pardo et al., 2018). Therefore, Environment Designers 

Must Choose Between Defining Episodic Formulations for Tractability and Continuing Tasks that Better 

Represent Reality. This Choice has Theoretical Implications for Convergence Guarantees and Policy 

Evaluation (Schulman et al., 2015; Henderson et al., 2018). Another Important Aspect of Environment Design 

is Handling Multi-Agent Synchronization. Environments Must Specify Whether Agents Act Simultaneously or 

Asynchronously and How Conflicts Are Resolved (Macal & North, 2010; Davidsson et al., 2005). These 

Choices Can Influence the Effective Game Structure and Significantly Alter Learning Dynamics (Henderson et 

al., 2018). Reset Conditions and Initial State Distributions are Other Important Environmental Design 

Considerations. These Choices Shape the Training Distribution and Influence Generalization. Narrow Initial 

Distributions May Lead to Over-Fitting, While Random Initialization May Slow Learning (Henderson et al., 

2018). Finally, from a Software Architecture Perspective, Environment Frameworks Provide Modular 

Experimentation by Decoupling the Simulation Logic from the Learning Algorithm (Brockman et al., 2016; 

Juliani et al., 2018). This Modularity Supports Comparative Evaluation of Different MARL Strategies Under 

Identical Conditions and Increases Empirical Validity (Henderson et al., 2018).  

The environment–agent interaction can be abstracted as:  

(𝑜𝑖𝑡+1, 𝑟𝑖𝑡) = ℰ(𝑠𝑡, 𝑎𝑖𝑡)  

 where ℰdenotes the environment interface.  

Incorporation of Stochastic Elements in Logistics Simulation  

To test how well MARL systems adapt to unpredictable real-world logistics conditions, it is crucial to include 

stochastic elements into your simulation environment to analyze their ability to operate robustly (Powell, 

2019; Clark & Watling, 2005; Shapiro et al., 2014). Theoretically speaking, when you include stochastic 

variables in your model, they create uncertainty for both the agent's transition from one state to another, and 

the reward function itself, thereby converting what was once a deterministic problem into a stochastic decision 

process (Shapiro et al., 2014; Powell, 2019). The incorporation of stochastic variables creates the need for the 

agent to reason probabilistically and develop policies which will perform well "on average" versus optimal 

(Henderson et al., 2018; Dulac-Arnold et al., 2021). Traffic variability is commonly simulated by applying 

stochastic travel-time distributions to traffic conditions based upon time-of-day, level of congestion, and 

random events (Vlahogianni et al., 2014; Clark & Watling, 2005). Demand spikes can be represented by using 

non-stationary arrival processes, including time-varying Poisson or bursty processes (Powell, 2019). Weather-

induced disruptions have a synergistic effect on all agents within an area experiencing a disruption, requiring 

coordination among agents operating in areas affected by the same event (Dulac-Arnold et al., 2021).  

The inclusion of stochastic variables into a simulation environment also allows you to analyze the 

susceptibility of various learning algorithms to stochastic variability (Henderson et al., 2018). A high-variance 

reward structure can cause instability during training and/or learning, whereas an excessively smoothed 

stochastic representation can result in understatement of risks. Therefore, the designer of a simulation 

environment must carefully calibrate the stochastic processes to achieve a reasonable trade-off between 

realism and learnability (Henderson et al., 2018; Dulac-Arnold et al., 2021). The use of stochastic variables in 

a simulation environment allows for the stress-testing of MARL architectures. By either increasing the amount 

of stochastic variability introduced into the simulation or by simulating rare but catastrophic events, you can 
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evaluate if the policies developed will degrade gracefully or catastrophically fail (Dulac-Arnold et al., 2021). 

These are both critical aspects to evaluate for assessing the resilience and safety of MARL architectures.  

Theoretical studies of stochastic environments focus on developing and analyzing expectations-based 

performance measures instead of providing deterministic guarantees (Shapiro et al., 2014; Powell, 2019). 

Consequently, learning objectives must take into consideration the likelihood of probabilistic outcomes, and 

evaluation procedures should also account for the variance of outcomes across simulation runs (Henderson et 

al., 2018). Finally, the inclusion of stochastic variables into a simulation environment has implications for 

exploration strategies used by agents. For example, in very stochastic environments, it can become 

increasingly difficult to distinguish between structural changes in the environment versus the inherent 

randomness of the stochastic environment, which can complicate learning (Henderson et al., 2018). Using a 

simulation environment provides a mechanism to experimentally investigate these interactions (Henderson et 

al., 2018).  

A stochastic demand model can be abstractly represented as:  

𝐷𝑡 ∼ 𝒟(𝜆𝑡)  

where 𝜆𝑡varies over time.  

Multi-Agent Digital Twin Environments for Real-World Testing  

A Multi-Agent Digital Twin Environment is the most advanced and theoretically supported method to bridge 

the gap between simulated learning and real-world implementation of Intelligent MARL Systems in Logistics 

(Grieves & Vickers, 2017; Minerva et al., 2020). A Digital Twin is not simply a High-Fidelity Simulator but 

rather a Continuously Synchronized Virtual Representation of a Physical Logistics System that Mirrors  

Operational States, Constraints and Dynamics in Near Real Time (Grieves & Vickers, 2017; Tao et al., 2019; 

Fuller et al., 2020). In MARL systems, the Digital Twin serves as a Controlled Experimental Substrate in 

which Decentralized Learning Agents Can Be Evaluated, Stress Tested and Refined Without Risking 

Operations (Wang et al., 2022; Le & Fan, 2024). This Changes Simulation from Being an Offline Research 

Tool to a Live Component of the Learning/Governance Architecture (Minerva et al., 2020; Lu et al., 2020).  

Theoretically speaking, a Multi-Agent Digital Twin can be viewed as a Dynamic Approximation of the 

Underlying Stochastic Game Controlling the Logistics Network (Grieves & Vickers, 2017; Minerva et al., 

2020). Static Simulations Assume Fixed Transition Kernels Whereas the Digital Twin Updates Its State Using 

Real-Time Data Which Allows the Transition Dynamics to Change Over Time (Minerva et al., 2020; Rasheed 

et al., 2020). This is Important Because Logistics Environments are Non-Stationary: Demand Patterns Shift, 

Infrastructure Changes, Human Interventions Alter the Behavior of the System. The Digital Twin Thereby 

Approximates a Time-Varying Stochastic Game Allowing MARL Agents to Learn Policies That Are Valid 

Under Changing Conditions Rather Than Converging to Fragile Solutions Optimized for Assumptions Based 

on Stationarity (Le & Fan, 2024; van der Valk et al., 2022).  

An important aspect of Multi-Agent Digital Twins is Bidirectional Coupling Between the Physical System and 

the Virtual Environment (Fuller et al., 2020; Minerva et al., 2020). The Digital Twin's State Representation Is 

Continuously Updated Using Sensor Data, Telematics Streams, Inventory Updates and Enterprise Transaction 

Logs (Minerva et al., 2020). At the Same Time, the Digital Twin Can Be Used to Evaluate Candidate Policies, 

Coordination Strategies, Architectural Modifications Etc. Prior to Their Deployment (Grieves & Vickers, 

2017; Wang et al., 2022). This Bidirectional Coupling Enables Counterfactual Reasoning: the System Can Ask 

How Alternative Joint Policies Would Have Performed Under the Same Observed Conditions (Rasheed et al., 

2020; Le & Fan, 2024). From a Learning-Theoretic Perspective, This Supports Off-Policy Evaluation and 

Policy Improvement Without Violating Safety Constraints (Thomas & Brunskill, 2016; Levine et al., 2020).  

In MARL Systems, Coordination Failures Often Only Emerge Under Specific Combinations of Agent Density, 

Demand Surges or Correlated Disruptions. These Rare But Highly Impactful Regimes are Difficult to Observe 

During Limited Offline Simulation or Historical Replay. Digital Twins Allow for Targeted Exploration of Such 

Regimes by Injecting Hypothetical Disruptions/Stress Scenarios While Maintaining Realistic Interaction 

Structure (Wang et al., 2022; Le & Fan, 2024). For Example, Correlated Warehouse Outages or Cascading 
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Traffic Incidents Can Be Simulated to Determine Whether Coordination Mechanisms Remain Stable. This 

Capability is Necessary for Assessing Resilience Which Cannot be Inferred from Average-Case Performance 

Alone (Ivanov & Dolgui, 2020; Hosseini et al., 2019).  

Another Key Theoretical Role of Digital Twins is to Validate Policies Under Decentralized Execution 

Constraints. Policies Trained Using Centralized Training Mechanisms Must Ultimately be Executed by Agents 

with Partial Observability and Limited Communication. The Digital Twin Imposes these Execution Constraints 

While Still Permitting Full Observability for Evaluation (Minerva et al., 2020; Le & Fan, 2024).  

This Separation Enables Researchers to Detect Training – Execution Mismatches Where Policies Perform Well 

Under Training Assumptions but Fail Under Deployment Constraints (Henderson et al., 2018; Dulac-Arnold et 

al., 2021). Detection and Correction of Such Mismatches Before Actual Rollout is One of the Strongest 

Arguments in Favor of Integrating Digital Twins into MARL Architectures (Le & Fan, 2024; Fuller et al., 

2020).  

Digital Twins Also Enable Closed-Loop Learning Architectures, Where Policy Updates Are Driven by Both 

Simulated Results and Real-Time Feedback from Operations (Grieves & Vickers, 2017; Minerva et al., 2020). 

Rather Than Retraining Policies Episodically from Scratch, MARL Systems Can Be Incrementally Improved 

by Testing Candidate Updates in the Twin, Measuring Their Impact and Selectively Deploying Improvements 

(Le & Fan, 2024; Wang et al., 2022). This Enables Ongoing Learning to Occur Without Jeopardizing 

Operational Stability (Levine et al., 2020; Dulac-Arnold et al., 2021). Theoretically, This Represents a Two-

Timescale Learning Process: Rapid Policy Evaluation in the Twin and Gradual Policy Adaptation in the 

Physical System, Reducing the Likelihood of Unstable Feedback Loops (Grieves & Vickers, 2017; Rasheed et 

al., 2020).  

From an Architectural Point of View, Multi-Agent Digital Twins Must Preserve Agent Heterogeneity and 

Topology of Interactions (Wang et al., 2022; Lu et al., 2020). Logistics Networks Include Different Types of 

Agents with Diverse Action Spaces, Constraints and Objectives. Vehicles, Warehouses, Hubs and Planners 

Interact Through Shared Resources but Operate Under Different Decision Horizons. A Digital Twin That 

Collapses Agent Heterogeneity Into Homogeneous Agents May Misrepresent Coordination Dynamics.  

Therefore, High-Quality Digital Twins Maintain Explicit Agent Roles, Interaction Graphs and Constraint Sets 

Ensuring That Learned Coordination Strategies Remain Structurally Valid (Minerva et al., 2020; Le & Fan, 

2024).  

One of the Most Significant Theoretical Challenges in Developing Digital Twins is Finding the Right Balance 

Between Model Fidelity and Computational Feasibility (Barricelli et al., 2019; Tao et al., 2019). Digital Twins 

That Are Too Detailed May Capture the Physical Dynamics Accurately But Become Infeasible to Run Large-

Scale MARL Experiments Due to Computational Requirements. On the Other Hand, Digital Twins That are 

Too Abstract May Miss Critical Effects of Interaction Leading to False Confidence in the Policies That Were 

Learned. Theoretical Guidance Suggests That Fidelity Should Be Allocated Preferentially to Components of 

Interaction Which Will Influence Outcome (Rasheed et al., 2020; Fuller et al., 2020). Examples of These 

Types of Components Include Congestion Propagation, Capacity Constraints and Demand Coupling Rather 

Than Low-Impact Details (Le & Fan, 2024; van der Valk et al., 2022). This Selective Allocation of Fidelity 

Preserves Learning Relevance While Maintaining Scalability.  

Digital Twins Also Play a Key Role in Governance, Explainability and Trust (Grieves & Vickers, 2017; Fuller 

et al., 2020). Autonomous Logistics Decisions Affect Cost, Safety, Labor and Regulatory Compliance. Digital 

Twins Provide a Transparent Environment Where Decision Logic Can be Inspected, Stress-Tested and Audited  

(Minerva et al., 2020; Wang et al., 2022). For MARL Systems, Where Emergent Behavior Can be Difficult to 

Interpret, Ability to Replay Scenarios and Trace Coordination Outcomes is Essential for Acceptance Within 

Organizations (Le & Fan, 2024; Rasheed et al., 2020). From a Theoretical Perspective, This Provides Post-Hoc 

Analysis of Equilibrium Selection, Stability Properties and Failure Modes (Henderson et al., 2018).  
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Finally, Multi-Agent Digital Twins Extend the Role of MARL Beyond Operational Optimization into Strategic 

Planning Support (van der Valk et al., 2022; Wang et al., 2022). By Allowing for Scenario Analysis and Long-

Horizon Experimentation, Digital Twins Allow Organizations to Assess Infrastructure Investments, Policy 

Changes or Coordination Strategies Prior to Committing Resources (Grieves & Vickers, 2017; Le & Fan, 

2024). This Transforms MARL Systems from Reactive Controllers into Proactive Planning Tools.  

Theoretically, This Represents a Shift from Episodic Control Optimization to Adaptive System Design, Where 

Learning Agents Inform Strategic Decisions Regarding the Structure of the Logistics Network Itself (Tao et 

al., 2019; Lu et al., 2020).  

A simplified digital twin update can be expressed as:  

𝑠𝑡twin ← 𝑠𝑡real + 𝜖𝑡  

 where 𝜖𝑡captures modeling error.  

Figure 7: Multi-Agent Twin environment for real-world testing  

  

Diagram 7 illustrates the system-level structure of an integrated multi-agent digital twin and physical logistics 

system, to support safe, adaptive and theoretically-grounded multi-agent reinforcement learning (MARL) 

applications. The physical logistics system provides an ongoing flow of operational information about its 

operation via a variety of sources including sensors, telematics, inventory systems and enterprise transaction 

records. Each of these types of information provide the digital twin with a dynamic picture of the current status 

of all vehicles, warehouses, hubs, demand, and constraints imposed by the infrastructure. As a result, this type 

of operational information is fed bidirectionally into the digital twin which exists as a synchronous simulation 

model of the real logistics system. The environmental dynamics within the digital twin are continuously 

updated to represent the  

nonstationarity found in the real world; agents can therefore interact in a simulated environment that models 

the true nature of congestion propagation, capacity coupling and disruption effects. In addition, the centralized 

training elements exist within the digital twin, providing global access to the state of the entire logistics 

system, joint rewards, and centralized critics to allow for the development of stable learning and coordination 

analysis to occur within a reasonable timeframe, and without making unrealistic assumptions about the way in 
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which the agents will be deployed. Candidate policies and coordination strategies are tested in a controlled yet 

representative manner, which includes a wide range of stressful scenarios such as correlated disruptions, 

demand surges, or failure of the infrastructure. Such testing enables counterfactual reasoning and off-policy 

evaluation, and provides the ability to develop and implement decision-making processes that have been 

validated against a large number of potential scenarios. Concurrently, the digital twin enforces the constraints 

of decentralized execution so that agents are able to only act upon local observations and limited coordination 

signals, and exposes training-execution mismatches prior to the agent being deployed in a real-world scenario. 

Finally, feedback from policy evaluation is returned to the learning loop, to facilitate incremental policy 

refinement rather than requiring the implementation of disruptive retraining, and thus creates two timescales of 

learning process. Rapid experimentation occurs in a virtual environment, while slow, risk aware updates occur 

in the real-world environment. The diagram also highlights the governance role of the digital twin, and shows 

how audit trails, explanation artifacts, and performance diagnostic tools arise naturally from the same 

architecture that is used for learning/testing. Overall, the figure illustrates that the digital twin is not simply a 

supportive tool, but rather an integral component of the MARL control and governance stack, and supports 

continuous alignment between learned coordination strategies, real-world operational constraints, and 

organizational risk tolerance; and transforms autonomous logistics control into a measurable, testable, and 

auditable system.  

Real-Time Network Optimization  

Real-time network optimization serves as the operational core of intelligent logistics systems; multi-agent 

reinforcement learning enables continuous, adaptive control over routing, scheduling and resource allocation 

under uncertainty (Lin et al., 2018). Most traditional methods of logistics optimization create static, or 

periodically revised plans, based upon either deterministic or stochastic programming models that assume 

relatively stationary system behavior. However, real-time logistics are defined by non-stationarity of demand, 

stochastic travel times, infrastructure failures, and tightly coupled agent interactions that make stationary 

optimization fragile (Clark & Watling, 2005). Within this framework, MARL reformulates routing and load 

balancing as sequential decision-making processes in which agents continually sense changing network states, 

and choose actions that affect both current and future system behaviors (Lowe et al., 2017). Additionally, 

dynamic routing driven by reinforcement learning, permits agents to account for congestion externalities by 

learning how their individual route choice affects overall traffic flow patterns, queue formation and service 

reliability (Roughgarden & Tardos, 2002). Similarly, load balancing is a distributed coordination problem 

among agents, who implicitly negotiate the sharing of available capacity among hubs, vehicles, and time slots, 

using learned policies instead of explicit centralized control. Theoretical implications stem from the transition 

from computing equilibria to tracking equilibria, where policies continually adjust to moving operating points, 

as opposed to converging to a single static point (Hall, 1978). This ability to adapt enables logistics networks 

to react dynamically to unanticipated events such as vehicle breakdowns, sudden demand spikes, or weather 

induced reductions in capacity, while maintaining their level of performance as system conditions continue to 

evolve unpredictably.  

Adaptive scheduling and fleet management represent additional extensions of real-time optimization beyond 

just routing decisions into the temporal and organizational dimensions of logistics control (Wang et al., 2020). 

Scheduling in MARL frameworks treats delivery scheduling as a rolling horizon decision problem in which 

agents learn to rank tasks, assign vehicles, and schedule deliveries based on the current state of the system, 

rather than a predetermined plan (Joe & Lau, 2020). Coordination of fleets is a multi-agent control problem in 

which vehicles, depots, and hubs operate as independent decision-makers, whose policies must be coordinated 

in order to avoid inefficiencies such as idle time, missed time windows, or cascading delays. From a control 

theory perspective, effective scheduling policies reduce variability and limit the propagation of disturbances 

throughout the network and serve as stabilizing feedback mechanisms (Konda & Tsitsiklis, 2003).  

Optimization with multiple objectives is inherent within this process as real-time decisions need to address 

multiple conflicting objectives, including delivery time, operational costs, energy consumption and 

environmental emissions (Roijers et al., 2014). MARL accommodates these trade-offs by learning policies that 

incorporate weighted or vector valued reward structures, permitting agents to dynamically adjust their 

priorities for objectives as the operating conditions change. For example, during periods of congestion, or high 

demand, a policy may prioritize service reliability over minimizing costs; whereas, when there is no 
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congestion or other issues, a policy may focus on reducing energy consumption and environmental emissions. 

The adaptive weighting of objectives in MARL, thus differentiates it from fixed objective optimization, and 

links operational control with broader goals related to sustainability and resilience.  

Feedback loops provide the mechanism that enable real-time optimization to remain viable over long-term 

operation (Schulman et al., 2017). Feedback loops exist at multiple time scales in MARL-driven logistics 

systems: short time scale loops govern immediate control actions, such as routing and dispatching, while 

longer time-scale loops update policies based on accumulated experience and observed performance. These 

feedback loops permit autonomous improvement of policies by providing agents with the opportunity to learn 

from discrepancies between expected and actual outcomes, such as unexpected congestion, or delayed 

deliveries (Mnih et al., 2015). Theoretically, this results in a coupled learning-control system in which policy 

updates affect the underlying environment, which in turn affects future learning signals. Maintaining this 

coupling is important for stability as overly aggressive updates may lead to oscillating behavior, while overly 

conservative updates will reduce the rate of adaptation. From the perspective of the organization, continuous 

feedback enables systems to evolve with the organization, incorporating new constraints, service objectives, or 

regulatory requirements without requiring complete redesign. Therefore, real-time network optimization 

transforms logistics operations from static execution engines to adaptive cyber physical systems that can learn, 

self-correct and improve over time. The strategic implications include a shift towards logistics networks that 

are not merely optimized but also self-optimizing, continually adjusting their operational decisions relative to 

the organization’s objectives, under uncertain conditions.  

Integration with Supply Chain Management Systems  

Interfacing MARL Models with ERP, SCM, and WMS Platforms  

The convergence of multi-agent reinforcement learning (MARL) systems and existing Enterprise Resource 

Planning (ERP), Supply Chain Management (SCM), and Warehouse Management Systems (WMS) represents 

a paradigmatic shift in how supply chain intelligence is operationalized (Jacobs & Weston, 2007). ERP, SCM, 

and WMS are not simply repositories of information, they are encoded embodiments of organizational policy, 

contractually enforceable logic, compliance requirements, and financial obligations (Lambert & Cooper, 

2000). From a theoretical point-of-view, the introduction of MARL systems into the environment of traditional 

deterministic workflows and pre-determined rules creates an opportunity for adaptive, probabilistic decision 

making processes to occur (Vernadat, 2007). Therefore, the primary challenge is not establishing technical 

connectivity between MARL and Enterprise Systems, but reconciling two fundamentally different control 

paradigms: learning-based adaptive control and rule-based enterprise governance (Vernadat, 2007).  

In order for successful integration to occur, an architectural mediation layer will need to be established so that 

MARL agents can make decisions that are bounded by the feasibility constraints defined by the enterprise, 

while still being able to learn and adapt under conditions of uncertainty (Chen et al., 2008).  

Enterprise Systems operate over a variety of planning time horizons, including long-term financial planning 

and procurement, as well as short-term operational execution. By contrast, MARL systems operate over very 

fine time scales, where decisions are made continuously based on a stream of observation. Therefore, 

theoretically, a hierarchical control architecture needs to be established whereby ERP and SCM Systems 

provide high level objective definitions, constraint definitions, and priority definitions for the MARL Agents to 

execute against at the operational execution layer in real-time (MacCarthy et al., 2016). Establishing this 

hierarchy ensures that the learned policies developed by MARL Agents aligns with the overall strategic 

objectives of the organization, thereby limiting the potential for local optimum behaviors that conflict with 

longer-term commitments such as Service Level Agreements (SLAs), contractual delivery windows, and 

Inventory Valuation Rules (Gunasekaran et al., 2001).  

An additional theoretical requirement for successful integration is the establishment of semantic alignment 

between the state representation used by MARL Agents and the domain semantics embodied in the data 

models of ERP and WMS Platforms. In particular, ERP and WMS Platforms embody domain semantics such 

as Order Lifecycle States, Ownership Boundaries, Inventory Classifications, and Fulfillment Priorities. 

Therefore, MARL Agents must accurately internalize these semantics so that they do not develop policies that 



INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue I January 2026 

 

 

Page 2700 
www.rsisinternational.org 

 

       

 

optimize surrogates that do not represent true business performance. To achieve this, explicit Schema 

Mapping, Ontology Alignment, and Semantic Validation Layers must be developed to map enterprise concepts 

into agent-interpretable State Variables (Chen et al., 2008). If semantic alignment does not exist, 

Reinforcement Learning may converge to policies that look like they are numerically efficient but produce 

operational outcomes that are misaligned with organizational intent.  

Integrating WMS Platforms introduces additional layers of complexity since Warehouse Operations are 

governed by Physical Layout Constraints, Labor Rules, Safety Protocols, and Equipment Availability (Alyahya 

et al., 2016). Therefore, MARL Agents operating with WMS Systems must be able to operate under dynamic 

feasibility constraints. From a theoretical viewpoint, this means that Constraint-Aware Learning Mechanisms 

such as Action Masking or Feasibility-Condiioned Policies will need to be implemented to prevent MARL 

Agents from proposing actions that would violate physical or regulatory limits. Establishing constraint 

awareness is critical both from a safety standpoint, as well as from establishing trust in Autonomous Decision-

Making Systems within Operational Environments (Lim et al., 2013).  

SCM Platforms typically include Deterministic Planning Modules for Forecasting, Network Design, and 

Capacity Planning. MARL Agents do not replace these modules, rather they augment them through Adaptive 

Execution Intelligence that Compensate for Errors in Forecasts and Real-Time Volatility (Wang et al., 2016).  

Therefore, this Layered Intelligence Architecture preserves the Strengths of Classical Optimization while 

Addressing its Limitations Under Conditions of Uncertainty. From a Systems Theory Perspective, this 

represents a Hybrid Control Architecture where Planning Determines Feasible Regions and Learning 

Optimizes Trajectories Within Those Regions (He et al., 2020).  

From a Business Impact Standpoint, Effective Integration Enables Organizations to Move from Reactive 

Exception Handling to Proactive Self-Optimizing Operations. Decision Latency is Reduced, Manual 

Intervention Decreases, and Operational Resilience Improves (Wamba et al., 2017). However, these benefits 

can only be achieved if MARL Decisions are Transparent, Auditable, and Reversible Within Enterprise 

Systems. Therefore, Integration Architectures Must Support Detailed Logging, Explainability Hooks, and 

Governance Workflows That Allow Human Oversight While Preserving Automation Benefits (Rahimi et al., 

2016).  

Integration Also Redefines Organizational Decision Authority. Integrating MARL into ERP-Driven Workflows 

Transfers Control from Static Rules to Adaptive Policies. Therefore, The Socio-Technical Shift Requires 

Phased Deployment, Human-In-The-Loop Validation, and Gradual Trust Building. Theoretical Frameworks 

from Organizational Systems Emphasize that Autonomy Must be Introduced Incrementally to Avoid 

Resistance and Unintended Consequences (MacCarthy et al., 2016). Ultimately, Interfacing MARL with ERP, 

SCM, and WMS Platforms Determines Whether Reinforcement Learning Remains an Experimental 

Optimization Tool or Becomes a Core Operational Capability. Therefore, Integration is Not an Implementation 

Detail, Rather It is a Central Theoretical and Architectural Concern That Defines the Viability of Intelligent 

Logistics Systems.  

Data Ingestion Pipelines from IoT Sensors and Telematics  

The perceptual base of MARL-based Supply Chain Systems are Data Ingestion Pipelines (Ben-Daya et al., 

2019), which are different from traditional analytical pipelines, used for historical reporting, that have to send 

continuous low-latency high fidelity data-streams to enable decision making in real time. From a theoretical 

point of view, they represent the Observability Structure of the Learning Environment (Atzori et al., 2010) 

defining how parts of the system-state are observable by agents and with what time precision. These structures 

influence learning-stability, learning-speed and policy robustness in partially observable environments, like 

logistics, because the ingestion design determines how agents receive information about their environment. 

The IoT sensors (Gubbi et al., 2013) offer detailed insight into inventory level, equipment condition, 

environmental factors and process-states in warehouses and transport assets. Additionally, telematics (Gubbi et 

al., 2013) systems monitor the position, speed, fuel consumption, driving behavior and route-compliance of 

mobile agents. The integration of the different heterogeneous data-sources requires careful normalization, 

synchronization and noise-filtering. Theoretically, this process can be seen as State Estimation under 
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Uncertainty (He et al., 2020), transforming unstructured raw signals to structured observations, which can be 

used for Reinforcement Learning under Stochastic Dynamics (He et al., 2020).  

Latency is the dominant bottleneck in the ingestion pipeline-design. Late observations will lead to a phase-lag 

in the control-loop, which will reduce the quality of the decisions made and can even cause instability in the 

learning-dynamics. As a result, ingestion architectures have to prioritize real-time ingestion, edge-processing 

and priority-routing of critical-signals to make sure that agents take decisions based on current instead of 

outdated information (Shi et al., 2016). Additionally, ingestion-pipelines need to be reliable and fault-tolerant. 

Failures of sensors, communication-breakdowns and irregularities in reporting are inherent in logistics 

environments. For this reason, MARL-systems have to be able to function properly in spite of missing or 

impaired data. Therefore, ingestion-pipelines have to include redundancy-mechanism, probabilistic imputation 

and confidence-aware observation-models (Brous et al., 2020), allowing agents to reason about the uncertainty 

they perceive instead of relying on perfect knowledge (Brous et al., 2020).  

For businesses, well-functioning ingestion-pipelines provide real-time insights into all areas of the supply 

chain, enabling faster reactions to disturbances and better monitoring of performances (Wang et al., 2016). 

Poor quality of ingestion-data results in distrust towards autonomous systems, causing manual interventions 

and undermining the benefits of automation (Wang et al., 2016). Therefore, the quality of ingestion-data has a 

direct effect on the operational-performance as well as on the organizational-adoption of MARL-based 

systems. Another major architectural-challenge related to scalability. Large logistics-networks generate 

massive amounts of data from thousands of assets. To manage these large amounts of data ingestion-pipelines 

need to scale-outwards, while still guaranteeing ordering of the events, needed for learning. To achieve this 

scaling, distributed streaming architectures and event-driven processing are necessary to prevent bottlenecks 

(Shi et al., 2016).  

In addition to the challenges mentioned above, ingestion-pipeline design needs to address security and privacy 

concerns. Telematics- and IoT-data contains operational and personal information, which are subject to various 

regulations. Therefore, ingestion-pipelines need to implement encryption, access-control and anonymization, 

resulting in trade-offs between data density and compliance (Brous et al., 2020). Finally, ingestion-pipelines 

need to address data-drift (Wang et al., 2016). Due to changes in operational-behavior, the statistical properties 

of the new data differ from the statistical properties of the data used during training. Therefore, ingestion 

pipelines need continuous monitoring and adaptation-mechanisms to maintain the distribution of the training- 

and deployment-environment. If no such mechanisms exist, MARL-policies will deteriorate silently over time.  

API-Driven Real-Time Coordination Between Warehouse and Transport Nodes  

API-driven coordination forms the operational control-surface through which MARL-based systems exert 

influence over distributed logistics-subsystems (Papazoglou & van den Heuvel, 2007). In an enterprise 

context, APIs are not only integration-tools, but formally defined control-surfaces translating learned policies 

into executable-actions within warehouse-management-systems, transportation-management-systems and fleet 

control-platforms. Theoretically, APIs form the interface between adaptive-learning-processes and 

deterministic-operational-executions. Therefore, this interface needs to be carefully designed to preserve the 

original intention of the MARL-policies, while enforcing feasibility, safety and compliance-constraints 

specific to physical-logistics-operation. A poor design of the APIs introduces latencies, ambiguities or 

distortions that can undermine both learning-stability and operational-reliability. Historically, warehouse and 

transport subsystems were decoupled and had to coordinate manually. Routing-decisions depend on docking-

plans, allocation-plans and picking-orders, whereas transport-delays in the warehouse-propagate downstream 

into fleet-planning and delivery-commitments. With API-driven-coordination, these subsystems can now 

exchange state-information and commitment-to-action in real-time, establishing a distributed control-loop that 

facilitates synchronized-decision-making (Eugster et al., 2003). From a control-theory-perspective, the 

relationship between the subsystems can be considered as a coupled MIMO-system (Multi-Input Multi-Output 

System), in which APIs are the signal-channels transmitting state-feedback and control-actions across the 

subsystems.  

A significant theoretical problem occurs due to the mismatch between MARL-policy-outputs and the 

operational-expectations of the enterprise-execution. MARL-agents typically produce probabilistic, high-level 
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action-recommendations that are optimized for maximizing the long-term rewards. In contrast, operational 

systems require deterministic, accountable and executable commands that can be performed reliably. 

Therefore, the mediation-layer between the MARL-policy-outputs and the operational-execution has to 

perform action-concretization, constraint-enforcement and conflict-resolution. This mediation does not occur 

neutrally; it defines the actual action-space available to the MARL-agents and has to be explicitly modelled to 

prevent unintended feedback-loops that may deteriorate the learning-performance. A second key problem is the 

temporal-coordination. Since APIs operate under hard-latency constraints, delayed execution can invalidate or 

worsen decisions. Even minor delays can cause cascading effects in real-time logistics, such as missing time-

windows or congestive-amplifications. Theoretical models of real-time-control highlight the necessity of 

bounded-delay and deterministically-predictable execution-time. Therefore, API-architectures need to focus on 

minimizing-latency communication, using asynchronous processing when possible, and providing 

deterministic-response-guarantees to maintain closed-loop stability (Vogels, 2009).  

In addition to the problems mentioned so far, temporal-coordination is crucial when coordinating activities 

between multiple agents in logistics environments. Transactional-integrity is essential when executing 

coordinated activities across multiple agents and systems. Activities in logistics often consist of sequential 

steps, such as dispatching a vehicle and at the same time preparing the inventory. Partial execution of such an 

activity can lead to inconsistencies that are difficult and expensive to correct. Therefore, APIs need to provide 

atomicity, idempotence and rollback-mechanisms to ensure that coordinated activities are either completely 

executed or fail safely. Theoretically, this means that APIs have to provide additional distributed-transaction 

semantics in the learning-execution-cycle, increasing the complexity of designing these systems. The 

scalability of API-driven coordination adds to the complexity of designing these systems. As the number of 

agents in a MARL-based system grows, the amount of coordination traffic increases significantly. Therefore, 

the API-infrastructure needs to be able to handle high concurrency, avoiding to become a bottleneck. 

Principles from queueing-theory and distributed-systems can help here, as improperly scaled APIs can cause 

congestion that negatively impacts the learning- and execution-performance of the system. Therefore, scalable 

designs of API-driven coordination should use load-balancing, back-pressure-mechanisms and prioritization of 

critical control-messages.  

Security considerations are an integral part of the design of APIs. APIs expose control-surfaces that, if 

compromised, can adversely affect physical operation, financial flows or safety-criteria. Therefore, APIs need 

to include authentication, authorization and ongoing-monitoring, to protect against unauthorized usage of 

APIs, and to account for accountability and traceability. From a business impact viewpoint, API-driven 

coordination decreases manual interventions, speeds up responses to disruptions and synchronizes warehouse 

and transport operations. This leads to increased throughput, lower dwell times and improved reliability of 

services (Wamba et al., 2017). However, these advantages can only be achieved, if APIs are designed as first 

class control-interfaces and not as ad-hoc integration points. Ultimately, APIs realize intelligence. They 

determine whether MARL-systems can work together seamlessly across distributed logistics-nodes or remain 

limited to independent decision-support.  

System Interoperability with Digital Enterprise Ecosystems  

MARL will not only add to the internal logistical functions but will also provide integration into the wider 

digital enterprise environment; including, purchasing, accounting, compliance, partner networks, and 

regulatory interfaces (Panetto & Molina, 2008). Today's supply chains exist as large-scale socio-technical 

systems. No one platform has complete control and/or visibility. From an abstract view point, the issue of 

interoperability is associated with the matching of the logical control processes, semantic data representations 

and governance frameworks of disparate systems, that were not developed to support adaptive control based 

on learning (Chen et al., 2008). Therefore, MARL systems must be integrated in a way that respects existing 

institutional boundaries, yet allows for collaborative optimization. The enterprise platforms such as SAP,  

Oracle and IBM contain strong assumptions about sequence of process steps, data ownership and compliance. 

These platforms have been optimized for consistency, audibility and financial accuracy, as opposed to 

adaptability (Jacobs & Weston, 2007). In contrast, MARL systems will optimize expected long term 

performance given uncertainty. Therefore, interoperability will require architectural patterns allowing MARL 
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to effect the execution of workflow without altering the invariant constraints imposed by enterprise platforms 

(Vernadat, 2007).  

The standards-based approach to interoperability is critical in addressing the interplay between these two 

competing views. The use of message-oriented middleware, canonical data models and event driven 

architectures help decouple tightly coupled systems and allow for incremental integration of MARL systems. 

From a systems theory perspective, modular interoperability increases the resilience of systems by confining 

failures locally and reducing the risk of cascading disruption (Hohenstein et al., 2015) and is especially 

important in cases where the interactions with MARL systems occur within financial and compliance sensitive 

work flows. Additionally, modular interoperability facilitates cross-enterprise coordination in multi-enterprise 

logistics networks. Many supply chain environments include multiple entities, each operating independently 

with their own systems and incentive structures. MARL systems can facilitate cross-entity coordination 

through the exchange of high level signals (e.g. alert vs. raw data) thereby providing confidentiality to the 

participating entities while facilitating collective optimization. This aligns with game theoretic considerations 

for multi-agent systems, in which partial information sharing can lead to better equilibrium outcomes then full 

transparency would.  

From a learning perspective, modular interoperability provides additional contextual information to agents. 

Information from upstream suppliers or downstream customers enhances the situational awareness of agents 

and enables them to make more anticipatory decisions (He et al., 2020). However, the greater 

interconnectedness of systems via modular interoperability introduces fragility. The propagation of 

errors/delays quickly throughout systems is possible due to tight coupling. Architectures for modular 

interoperability must therefore include fault isolation, graceful degradation and fallback plans to preserve 

stability under failure (Brewer, 2012). Governance and compliance are essential components of modular 

interoperability. Autonomous decisions made by MARL systems that could potentially affect the value of 

inventory, the amount billed to a customer or the submission of regulatory reports must be traceable and 

explainable across all systems. Modular interoperability layers must therefore support detailed logging, 

versioning and auditing trails to demonstrate accountability. Without these mechanisms, organizations are 

unlikely to accept the responsibility for granting operational authority to MARL systems (Rahimi et al., 2016). 

Business impact will arise from the operation of the supply chain ecosystem. An effective modular 

interoperability enables end-to-end visibility, decreases the coordination friction among participants in the 

ecosystem and enables the strategic alignment of participants in the supply chain. Participants in the supply 

chain can therefore act collectively in response to disruptions, optimize shared resources and negotiate 

dynamic trade-offs (Lambert & Cooper, 2000). MARL systems therefore become strategic coordinators 

instead of just optimizing localized operations. Additionally, modular interoperability influences the long-term 

evolution of the system architecture. As MARL systems influence decisions across multiple platforms, they 

can also contribute to the redesign of business processes, contractual relationships and infrastructure. The 

closed-loop interaction of learning systems and organizational evolution transform MARL systems into drivers 

of organizational adaptation and not merely as passive tools. Ultimately, the ability of MARL systems to 

achieve strategic relevance in supply chain management is determined by the degree of modular 

interoperability achieved. Without modular interoperability, MARL systems remain limited to isolated 

operational optimizations. With modular interoperability, MARL systems become a fundamental capability 

that changes how businesses cooperate, compete and collaborate in digital ecosystems.  
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Figure 8: API Integration with Enterprise supply chain system  

  

The illustration shows a complete end to end, API centric, architecture for using multi agent reinforcement 

learning in conjunction with an enterprise supply chain management system. The architecture is designed to 

clearly separate the learning, coordination, and execution responsibilities. On the left side of the diagram there 

are the data ingestion pipeline(s) collecting and processing real time data feeds from IOT sensor systems and 

telematics systems. In addition to collecting and processing data from IOT sensor systems and telematics 

systems, the pipeline(s) capture telemetry data related to the status of inventory, environmental condition, 

vehicle location, and driver behavior. All of these collected streams define the "observable" state of the 

logistics environment and feed upward into the system through event driven interfaces and not through a direct 

interface to the logistics systems. The API Driven Coordination Layer is located at the middle of the diagram 

and represents the institutional control surface between the learning and the enterprise level execution. The 

API Driven Coordination Layer provides an Observability API (API which provides access to observables) for 

MARL agents to receive observation(s), an Action API (API providing access to actions) for MARL agents to 

provide policy based decisions, and an Action Mediation & Validation Component. The action mediation and 

validation component validates all generated actions against a set of predefined policy constraint(s), feasibility 

check(s), governance rule(s), and auditability criteria prior to issuing any control commands to the enterprise 

systems. Thus ensuring that all learning behavior produced by the MARL agents will be constrained by the 

enterprise level logic and compliance requirements. Enterprise systems appear only once on the lower portion 

of the diagram and represent the authoritative execution platforms. The enterprise systems include the 

Warehouse Management System, ERP and Supply Chain Management  

Platform, and the Transport Control Platform. Each of the enterprise systems exposes standardized API's and 

maintain full control over the deterministic execution, financial accountability, and regulatory compliance. 
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External enterprises and partners can coordinate with the enterprise systems through controlled external ERP 

APIs, thus allowing for coordination with regulators, business partners, and financial systems without 

exposing the internal learning logic. Overall, the diagram illustrates that the MARL intelligence is operating 

above the enterprise systems as a decision optimization layer and that the APIs act as formal governance and 

control boundaries that translate the probabilistic policies into safe, auditable and executable supply chain 

actions.  

Data Engineering and Infrastructure Requirements  

Distributed Pipelines of Data for Multi-Agents Learning   

Intelligent logistics systems using Multiple Agents Reinforcement Learning (MARL) rely on the distributed 

data pipeline for their computational core for continuous learning, coordination, and adaptation in complex 

large-scale networks (Dean & Ghemawat, 2008). Compared to classical Machine Learning (ML) pipelines for 

static datasets, MARL pipelines have to deal with concurrent data generation from thousands of agents in 

interaction with each other and producing temporally correlated experience streams (Chen et al., 2014). A 

theoretical point of view, these pipelines give a formal representation of the Stochastic Game formulation of 

the problem of MARL by converting the raw interaction trajectories into learning signals that respect the 

temporal order, the causal structure, and the identity of each agent (Lamport, 1978). If poorly implemented, the 

temporal order, the causal structure, and the identity of the agents can be distorted, causing unstable and 

inefficient policy performances in logistics environments. Agents produce heterogeneous data types (e.g., 

states, actions, rewards, messages exchanged, and transitions of the environment), and the goal is to ingest, 

index, and partition these data streams so that they can be used both for the learning of each individual agent 

and for the coordination of the whole system. It has been theoretically demonstrated that MARL learning 

depends not only on the amount of data available (volume), but also on how well the data is aligned 

(alignment). Experiences should be synchronized among agents to represent joint actions and common results. 

Therefore, the distributed pipelines should guarantee the temporal consistency and the joint context 

reconstruction, which is much more difficult to achieve compared to the independent data ingestion of single 

agents.  

Scalability is probably the major difficulty for the distributed pipelines of MARL. When the number of agents 

grows, the volume of data generated by the interactions between them grows even faster because of the 

coupling effects between agents. Pipelines of data must be able to scale horizontally and not introduce 

bottleneck that slow down the learning process or increase the latency (Isard et al., 2007). From a systems 

theory point of view, it is necessary to carefully define the partitioning strategy in order to distribute the load 

and keep the proximity of the interactions. Simply partitioning the data by agent identity is not enough; the 

pipelines must also consider the spatial and temporal coupling of agents working in the same area of the 

network. Reliability and fault-tolerance are important theoretical and practical challenges. In fact, data loss or 

corruption can silently deteriorate the quality of the learning process of the logistics system. Therefore, 

pipelines of data of MARL must include redundancy, mechanism of checking points, and replay mechanisms 

to allow the learning to proceed continuously even when there are failures of the infrastructure (Akidau et al., 

2013). Convergence guarantees are undermined if the failure of the infrastructure introduces biases in the 

sampling of the experience distribution. From a learning dynamic point of view, the design of the 

infrastructure of the pipelines also influences the exploratory behavior of the agents. Experiences delayed or 

lost can cause the agents to adopt an outdated policy, thereby reducing the effectiveness of the exploratory 

behavior. This shows that the design of the infrastructure of the pipelines is tightly coupled to the algorithmic 

properties of the MARL systems, which means that the data engineering cannot be separated from the learning 

theory. There is a significant business impact. In fact, the use of robust distributed pipelines allows the learning 

and adaptation to take place almost in real-time, which decreases the reaction time to disruptions and increases 

the operational resilience. On the contrary, weak pipelines increase the operational risk and reduce the 

confidence in the autonomous systems. Therefore, companies deploying MARL must treat the pipelines of 

data as critical infrastructures of the mission and not as secondary components of analytics.  

Distributed pipelines can also facilitate the experimentation and the governance. In fact, by recording and 

replaying the interaction data, the companies can audit the decisions made, reproduce the results obtained, and 

validate the new policies before implementing them. This capability is essential to meet the regulatory 



INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue I January 2026 

 

 

Page 2706 
www.rsisinternational.org 

 

       

 

compliance and the organizational accountability. Finally, distributed pipelines are the substrate through which 

the intelligence flows. In fact, the design of the distributed pipelines will determine whether the MARL 

systems scale up properly or fail under the complexity of the operation.  

Hybrid Deployment on Cloud-Edge for Low-Latency Logistics  

Hybrid cloud-edge architectures are solutions to one of the most basic conflicts in intelligent logistics systems: 

the relationship between the computing power required by the MARL algorithms and the latency required for 

the decision making (Shi et al., 2016). In fact, MARL algorithms often require high computing power for the 

training and coordination of the agents, and they prefer to be deployed in centralized cloud infrastructure 

(Varghese & Buyya, 2018). However, logistics operations require rapid responses to events and decisions need 

to be made quickly and close to the physical system. From a theoretical point of view, hybrid architecture 

solves this conflict by dividing the learning and the execution in the spatial and temporal scales. In fact, edge 

nodes (such as onboard vehicle controllers or gateway of warehouse) provide fast access to the local state 

information. These nodes enable the decentralized execution of learned policies under partial observability. On 

the contrary, cloud infrastructure provides the centralized training of the agents, global coordination, and long 

horizon optimization. MARL frameworks, such as centralized training with decentralized execution, assume 

this division of responsibilities, but hybrid architecture makes this assumption concrete and operational.  

An important challenge is to synchronize the cloud and edge components. In fact, policies learned centrally 

must be disseminated to the edge nodes quickly and safely. Similarly, experience data generated at the edge 

must be aggregated and sent to the cloud quickly and efficiently without overloading the network capacity 

(Akidau et al., 2015). Control theory emphasizes the importance of bounded delay and consistency in the 

feedback loops to maintain the stability (Lamport, 1978). Hybrid architectures also support hierarchical 

learning. Fast-reacting edge policies solve immediately control problems, while slower cloud-based learning 

processes solve strategically behaviors on longer timescales. This multi-temporal organization corresponds to 

the natural temporal hierarchy of logistics operations, in which routing decisions are taken faster than the 

configuration of the network and/or the planning of capacities.  

From a business perspective, cloud-edge hybrid architecture reduces the operational latency, improves the 

service reliability and enables scalability without excessive costs of the infrastructure (Abbas et al., 2018). 

Companies can deploy intelligence incrementally, starting with critical nodes and expanding the coverage 

progressively. Security considerations are increased in hybrid architectures. Edge nodes are usually physically 

exposed and vulnerable to attacks. Therefore, secure communication, authentication, and isolation between 

cloud and edge nodes are required to protect the learning integrity and the operational safety (Roman et al., 

2013). Hybrid architecture also increases the resilience. Edge nodes can continue to work independently 

during the outage of the cloud, while the cloud can recover and refine the policies offline. This redundancy 

improves the resilience under adverse conditions. In summary, cloud-edge hybrid architecture is not simply a 

choice of deployment, but a theoretical facilitator of scalable and low-latency MARL systems in logistics.  

Data Lakes and Stream Processing for Real-Time Learning  

Data lakes and stream processing frameworks provide the memory and the nervous system of intelligent 

logistics platforms, allowing both real-time learning and long-term optimization (Harby & Zulkernine, 2025). 

Data lakes allow storing in a centralized way all the different types of data, such as raw streams of sensors, 

data of the company organized in tables, and derived features. Stream processing frameworks allow 

performing in real-time the transformations and aggregations of the continuous data streams into formats ready 

to be used for learning (Akidau et al., 2013). Together, they enable the analysis of the data offline and the 

learning online. From a theoretical point of view, the data lakes preserve the complete interaction history of the 

MARL system, and allow analyzing retrospectively the system, evaluating counterfactually the decisions, and 

auditing the policies adopted. The preservation of the interaction history is fundamental to understand the 

dynamics of the learning, diagnose failures, and validate improvements. Unlike the traditional datasets, the 

MARL data are non-iid and temporally correlated, and the storage systems used must preserve the ordering 

and the context of the data (Lamport, 1978). Stream processing frameworks allow the computation in real-time 

of the continuous data streams. Technologies like Apache Kafka and Apache Spark enable scalable ingestion, 
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transformation, and routing of the data in real time. These systems allow the MARL agents to receive the 

timely updates, and also to perform the batch analytics for the training and the evaluation (Akidau et al., 2015).  

Theoretically speaking, stream processing must preserve the causality. In fact, aggregations or windowing 

operations that obscure the temporal relationships can distort the learning signals. Therefore, the pipeline must 

be designed in accordance with the temporal assumptions of the algorithms of the reinforcement learning. 

Business wise, data lakes and streaming enable the unified view of the entire supply chain. In fact, companies 

can analyze the trends of the performance, identify the anomalies, and simulate alternative scenarios using the 

historical data. This allows to improve both the operational aspects and the strategic ones. Scalability is a 

fundamental issue. In fact, the volume of data grows very quickly as the number of agents grows. 

Architectures of data lakes must support the elastic scalability while keeping the performance and the 

efficiency of the costs (Chen et al., 2014). Governance and data quality management are also very important 

issues. In fact, without a strong management of the schema and the validation of the data, the data lakes can 

degenerate into unmanageable repositories. Good governance will allow the learning systems to operate on 

reliable and understandable data.  

Security and Privacy Protocols in Multi-Agent Collaboration  

Enterprise logistics is an ideal area for MARL systems, however, security and privacy are fundamental needs 

before MARL systems can be implemented in this field (Sicari et al., 2015). The continuous flow of 

information between agents creates a large amount of potential vulnerabilities and complex data flow paths. 

From a theoretical viewpoint, the limitations created by security constraints provide the boundaries for the 

possible information exchange structure of the MARL environment that determine how agents will coordinate 

and learn from one another. MARL systems need to protect against unauthorized access to data and models, 

and the intentional manipulation of data and models to create incorrect results, which could potentially cause 

unsafe behaviors and reveal confidential information (Kouicem et al., 2018). Therefore, security measures 

need to be included in the design of the learning process, as opposed to being used as an afterthought to protect 

the learning process. Privacy concerns exist in multi-enterprise logistics networks, due to the fact that each 

agent represents an organization that has their own set of interests. As a result, there must be careful 

consideration given to the way information is shared among agents to ensure that the positive effects of 

collaboration do not outweigh the negative effects of sharing too much information. This adds a new layer of 

complexity to the design of security, and introduces a new class of problems related to game theory; as the 

incentives provided to the agents play a critical role in determining what information they will share. In 

addition to using techniques like encryption, access control, and secure communication channels, MARL 

systems also need to have privacy preserving learning methods that allow for agents to collaborate without 

exposing private information. Examples of these types of methods include federated learning and secure 

aggregation methods (Bonawitz et al., 2017). Enterprise-wide systems are unlikely to adopt MARL-based 

solutions unless there are adequate levels of security and privacy measures in place, and regulatory compliance 

requirements, including data protection regulations, place additional constraints on the design of MARL 

systems. Data protection regulations govern the use of personal data and other sensitive data. For example, if 

an organization is required to store data for a certain number of years, then the MARL system must be 

designed to meet those requirements. Compliance with data protection regulations requires that organizations 

design their systems to comply with regulations at all times. Additionally, security measures provide 

organizations with the ability to establish governance and accountability for the actions of autonomous 

systems, through audit trails, anomaly detection, and incident response procedures. To summarize, security and 

privacy are not secondary concerns in the implementation of MARL systems, they are primary considerations 

that directly affect the way that agents will interact with one another and the level of trust that organizations 

will have in the autonomous systems.  

Evaluation Metrics and Performance Assessment  

Learning Metrics: Convergence Rate, Stability, and Reward Efficiency  

Learning-centric metrics evaluate the learning aspects of Multi-Agent Reinforcement Learning (MARL) 

because MARL represents a coupled adaptive system rather than a single optimizer solving a specific problem 

(Ning & Xie, 2024). The environment in logistics is uncertain, partially observable, and subject to ongoing 

change; however, the additional layer of nonstationary created by MARL arises from the fact that while the 

environment itself may change, each agent adjusts its policy in response to interactions with other learning 
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agents. As such, performance should not be viewed solely as evidence that learning is taking place 

appropriately because high short-term rewards can be generated through fragile conventions, over-fitting to a 

specific subset of the scenario distribution, or exploiting characteristics of the simulator used for training 

(Henderson et al., 2018). Learning metrics thus operationalize the broader question of whether policies are 

being learned in ways that are consistent across interactions, stable across uncertainty, and consistent with the 

organizational objectives embodied in rewards. Often, convergence rate is defined as the rate at which the 

system converges toward a stable state; however, in MARL, convergence rate is best understood as the rate at 

which the entire system converges toward a state in which all agents behave consistently (Watkins & Dayan, 

1992). Consequently, convergence metrics in MARL are generally concerned with bounding policy updates, 

reducing oscillation in action distributions, reducing variance in returns, and demonstrating consistent 

performance across time periods rather than strictly achieving convergence toward an optimal solution (in the 

traditional sense). In logistics terms, the learning question is whether the system will consistently generate a 

repeatable operational regime that continues to perform effectively when there are changes in demand, 

congestion patterns, and the behaviors of coordination partners.  

Stability is essential in MARL because the learning environment produced by MARL is endogenously 

determined by the agents themselves. When one agent updates its routing, dispatch, or scheduling behavior, 

the state transition dynamics experienced by other agents change instantaneously, as congestion, capacity 

contention, and queue dynamics depend upon the behavior of all agents (Williams, 1992). Consequently, the 

learning process in MARL is not simply one of adapting to a stochastic external process, but is instead one of 

reshaping the very process it is attempting to model, making instability a primary theoretical failure mode 

(Williams, 1992). Thus, stability metrics are designed to identify whether training trajectories exhibit 

oscillatory behavior, divergent behavior, regime switching, or extreme sensitivity to minor perturbations (e.g., 

slight variations in demand, noisy observations, etc.) caused by factors such as minor changes in 

communication bandwidth. Instability manifests in logistics as operational thrashing; for example, when trucks 

repeatedly route around predicted areas of congestion, when warehouses repeatedly reschedule pick/dock 

events, and when hubs oscillate between periods of overloading and underutilization. Such behaviors can 

paradoxically occur even when the total reward appears high, because rewards shared among agents can 

obscure localized volatility, and because policies can exploit short term gains in order to cause long term 

disruption. Therefore, the application of stability metrics provides a direct link between learning theory and 

operational reliability, and requires that high reward levels be associated with smooth control, predictable 

coordination, and limited reactions to disturbances, which are all necessary for adoption in safety and service 

level constrained environments.  

Reward efficiency refers to the degree to which experience contributes to lasting improvements, and it is 

relevant in large-scale logistics MARL systems because data collection is costly in multiple senses: it is 

expensive in terms of simulation computing resources, expensive in terms of the time required by engineers to 

design simulations, and potentially expensive in terms of actual service degradation in the field (Agarwal et 

al., 2021). While sample efficiency refers to the number of experiences collected relative to the time required 

to collect them, reward efficiency captures the quality of those experiences as well as their quantity. Agents 

collect data under a policy distribution of behavior that changes due to exploration by other agents collecting 

data simultaneously, resulting in noisier and less representative learning signals. Reward efficiency is therefore 

concerned with the variance of learning updates, the stability of advantage estimates, and the degree to which 

reward shaping accurately communicates the true objective rather than a distorted representation of that 

objective. Credit assignment theory provides the underlying justification for evaluating reward efficiency in 

MARL systems, because agents cannot learn efficiently unless rewards are able to isolate marginal 

contributions of individual agents and are not delayed, sparse, and confounded by exogenous factors (such as 

traffic and weather). Rewards that do not provide efficient credit assignment result in high variance gradients, 

policies that pursue noise, and slower or brittle convergence, which can ultimately produce policies that appear 

to work well in training but fail when subject to the slightest shift in the distribution of the operating 

environment. From an enterprise perspective, low reward efficiency increases the cost and risk associated with 

experimentation, because more training cycles, more simulation runs, and more tuning of parameters are 

required prior to achieving confidence in performance, thereby delaying deployment and increasing the 

likelihood of costly failures during rollout.  
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Robustness across random seedings and initial conditions is not simply a minor detail in the evaluation of 

MARL methods, but rather is a fundamental theoretical requirement for asserting that a MARL method has 

learned a stable coordination mechanism rather than simply memorizing a particular training sequence 

(Engstrom et al., 2020). Equilibrium selection in MARL is typically path-dependent, meaning that two 

separate training runs using the same hyperparameters but initialized differently can converge to different 

conventions, some of which are efficient and others of which are wasteful. Therefore, evaluation protocols 

must view randomness as part of the scientific object being studied, and not as an error source that must be 

suppressed. Evaluation of robustness examines distributional properties such as the mean performance, 

variance, worst-case quantiles, and probability of catastrophic failure across runs, because enterprises cannot 

permit systems that function only under favorable initial conditions. Robust evaluation of MARL methods 

therefore aligns with stochastic control theory, where policies are evaluated under uncertainty and disturbance, 

and with safe evaluation of MARL methods, where the risk of failure in the tails of the distribution is as 

important as the expected mean. In logistics systems, the need for robustness is magnified further by the fact 

that operational conditions change every day, and therefore a policy that is stable only in a small portion of the 

state space is operationally dangerous. Consequently, metrics must explicitly measure the consistency of 

convergence times, the stability of the final action distributions, and the replicability of the coordination 

patterns across training runs, in order to provide evidence that the learning process has identified structural 

relationships rather than noise.  

Temporal consistency extends robustness from the training horizon to the deployment horizon, and recognizes 

that MARL systems can appear to be converged during training but then degrade when exposed to longer 

operational sequences (Pardo et al., 2018). Reasons for degradation include compounding approximation 

errors in value functions, un-modeled slow dynamics such as gradual changes in congestion levels, feedback 

loops between policy actions and demand responses, and drift caused by non-stationary exogenous processes. 

Metrics for temporal consistency therefore examine whether the returns, constraint violations, and 

coordination quality of a policy remain stable across extended rollouts, whether performance degrades over 

time, and whether policies become brittle when the environment moves into rarely visited portions of the state 

space. Temporal consistency is particularly important in logistics because operations are continuous, and 

therefore performance degradation over several days can be significantly more impactful than modest under- 

performance that persists indefinitely. Metrics for temporal consistency often include measures of the stability 

of returns, constraint violation rates, and measures of the entropy of policies and the drift of action 

distributions over time. Ultimately, temporal consistency directly affects the reliability of MARL systems over 

long time horizons, and therefore affects the level of trust placed in these systems by organizations.  

The learning metrics outlined above represent the scientific foundation for the evaluation of MARL methods in 

autonomous logistics. They determine whether the learning process is reliable, stable, efficient, and 

reproducible under the interaction dynamics that characterize autonomous logistics.  

Operational Metrics: Delivery Accuracy, Cost Reduction, and Lead Time Variability  

Operational metrics, like delivery accuracy and cost savings, are quantitative measurements of how well an 

algorithm behaves. They provide a theoretical link between the goals of a Reinforcement Learning algorithm 

and the constraints of Service Systems (Beamon, 1999). For example, delivery accuracy measures how well 

the algorithm satisfies the time windows and service levels required by the customer. These requirements are 

viewed as "hard" constraints from the customer's viewpoint regardless of their encoding as "soft" penalties in 

the RL training framework. The theoretical significance of measuring delivery accuracy is that it measures 

how well the algorithm has satisfied the deadlines of the service system, given stochastic travel times, queue 

dynamics, and coordination dependencies among agents. Moreover, delivery accuracy is rare when there are 

many agents contributing to the delivery of a shipment; as many agents will have impacted the trajectory of a 

shipment through various means such as hubs, docks, and routes. Therefore, the delivery accuracy of a learned 

coordination strategy signifies that the local decisions made by each agent have been aligned with the 

satisfaction of the overall deadline for the shipment, which is a greater achievement than maximizing the 

average reward. Furthermore, delivery accuracy impacts the brand trust, contract penalties, and customer 

retention of the enterprise, making delivery accuracy a non-negotiable criterion for deploying autonomous 

solutions.  
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In contrast to delivery accuracy, cost savings represents the economic efficiency of the solution. Cost savings 

in a Multi Agent Reinforcement Learning setting is primarily related to network-level coordination rather than 

local optimization (Gunasekaran et al., 2001). Logistics-related costs arise from decisions that are 

interdependent. For example, a routing decision may decrease transportation cost and labor cost, but also cause 

traffic congestion and subsequent increases in service time for deliveries downstream, which may result in 

additional costs associated with overtime, missed delivery windows, and inventory holding costs. Theoretical 

analysis views cost savings as an emergent property of coordinated policies that address the congestion 

externality, capacity contention, and task assignment across agents. As such, cost savings must be broken 

down into measurable components, such as transport cost per mile, asset utilization rates, warehouse labor 

efficiency, dwell time, and penalty avoidance, because a singular cost metric may obscure trade-offs that 

negatively affect service quality. In addition, enterprises expect a sustained reduction in cost and therefore cost 

metrics must be developed to include total cost of ownership and total cost to serve in order to be viewed as 

credible.  

Lead Time Variability is theoretically significant because it provides insight into the degree of sensitivity of the 

system to uncertainties and the degree to which the system can mitigate disturbances. Lead time variability is a 

key objective in control theory and can be measured as the standard deviation of the distribution of lead times. 

While average lead time may decrease and the variance may remain constant, a reduction in the variance of 

lead time indicates that the system has learned to anticipate disturbances and mitigate them through 

anticipatory behaviors that avoid congestion formation, balance load, and coordinate arrival at constrained 

resources such as docks and hubs. In control theory terms, a reduction in the variability of lead time indicates 

that the system has learned to stabilize itself under stochastic disturbances and thus reduces the amplification 

of random fluctuations through feedback loops. In an enterprise context, the reduction of variability can be 

viewed as more beneficial than a reduction of the mean because it allows for leaner safety stock inventories, 

more reliable appointment schedules, and improved capacity planning leading to compounding financial 

benefits.  

Operational metrics should be tested under a variety of realistic demand patterns and disruption scenarios 

because nominal performance does not necessarily translate into real world deployment value in logistics 

networks that frequently undergo shock events. Metrics focused on resilience such as the degree of service 

degradation under peak demand conditions, recovery time following a disruption, and performance under 

correlated failures are essential because they indicate whether the system can maintain adequate service under 

stress. Theoretically, robust policies should exhibit performance generalization across a variety of state 

distributions, not simply optimal performance in the most typical regime. If the training data for the MARL 

method contains inadequate diversity of scenarios, then the method may become overly specialized to the 

specific distribution of the training data, resulting in poor performance under stress testing. As such, stress 

testing becomes a part of the operational evaluation methodology, rather than a post-hoc check. In addition, 

these metrics directly relate to the risk management of an enterprise, as large financial and reputational losses 

can occur due to disruptions and autonomy will only be valued if it results in improved performance in high 

impact scenarios.  

Metrics related to fairness and equity are necessary in MARL to prevent asymmetric burdens being placed 

upon regions, customer segments, and agent groups as a result of multi-objective optimization. Policies that 

minimize cost may place a disproportionate number of delays on lower-priority regions, shift congestion to 

specific corridors, or assign undesirable routes to specific types of vehicles. Such policies may be 

operationally unacceptable and raise ethical concerns. Theoretically, fairness adds distributional constraints to 

the evaluation of performance, requiring measurement of performance beyond averages, such as quantiles, 

group-wise service rates, and disparity indices across geographic areas and/or customer tiers. Fairness also 

relates to the risk of violating regulatory and reputational standards in logistics networks serving diverse 

communities. Finally, fairness metrics are used to ensure that autonomy is not viewed as arbitrary or biased, 

and support internal alignment and external trust.  

From the business perspective, operational metrics are the determining factors of adoption because they 

represent outcomes that directly matter to executives, operations managers, and customers. Delivery accuracy 

supports the establishment of trust with customers and adherence to contractual obligations, cost savings 

support margins and lead time stability supports the efficiency of planning and inventory optimization. 
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However, businesses require predictability as much as improvement, therefore operational metrics must be 

evaluated across seasons, demand regimes, and disruption patterns to demonstrate consistent value.  

Accordingly, operational metrics must include variance and tail risk reporting in addition to point estimates, as 

a small probability of a severe failure can outweigh average gains. Additionally, operational metrics determine 

organizational readiness to adopt automation: if frequent human intervention is needed to realize performance 

gains, then the value proposition of autonomy is diminished independent of the sophistication of the 

algorithms used.  

Finally, operational metrics serve as feedback mechanisms for continuous improvement and lifecycle 

management of MARL systems. Through performance monitoring, the detection of drift, degradation or 

emerging failure modes can trigger the need for retraining, updating constraints, or rolling back policies. 

Theoretically, the use of operational metrics in deployment shifts evaluation from a one-time experiment to an 

ongoing measurement process, where the learning and the operations are co-evolving. This parallels the 

concept of continued evaluation, where metrics are calculated online and compared to guard rails to ensure 

that autonomy remains within acceptable risk thresholds. In enterprise environments, this supports governance 

models where autonomy is increased or decreased based on measurable performance, thereby enabling metrics 

to be utilized as operational control instruments. Ultimately, the use of operational metrics ensures that the 

advancement of MARL translates into tangible, reliable and scalable improvements in real logistics outcomes.  

System Metrics: Scalability, Energy Efficiency, and Communication Overhead  

The primary reason to report on system-level metrics is that they define whether a MARL solution that has 

been demonstrated to work in a research setting can be scaled up to be run in a real enterprise setting with 

thousands of agents, strict latency limits, and limited computing resources (Ning & Xie, 2024). Simply stated, 

scalability is not about whether your solution still performs well as you add more agents, it's about whether the 

algorithmic and architectural complexity of your solution grows in a reasonable manner. Theoretically, there is 

an explosive combinatorial problem here; joint action spaces and interaction graphs grow exponentially with 

the number of agents and the size of the network, leading to both learning instabilities and infrastructure 

bottlenecks. To create a scalable MARL solution, therefore, the coordination mechanism, critic, and 

communication protocol must all be developed to avoid global coupling where possible. In addition, 

scalability metrics usually determine whether an organization can limit its autonomy to a pilot area or extend it 

across national operations, and this can have a direct strategic effect.  

Similarly, energy efficiency metrics have become important because both training and running MARL systems 

can consume a lot of computational and environmental resources, and because many organizations now seek to 

optimize their logistics supply chains using sustainability goals (Strubell et al., 2019). Thus, we need to 

evaluate energy efficiency over two different dimensions: compute energy consumption (by training and 

inference), and operational energy (due to decisions regarding routing and scheduling). Theoretically, we want 

to avoid "cost-shifting," i.e., reduce emissions in the physical network, but substantially increase them through 

compute, or reduce compute, but then make decisions that result in increased fuel usage. Thus, we need to 

carefully account for our entire system, including measuring energy per training episode, energy per decision, 

and the marginal energy cost of communication and coordination layers. For enterprises, energy efficiency 

means controlling costs and complying with regulations, because both the costs of compute and emissions 

reporting are becoming increasingly material (Schwartz et al., 2020).  

Communication overhead is perhaps the most important metric in MARL, because coordinating agents can 

quickly become communication-bound. Communication overhead can include message frequency, message 

size, bandwidth utilization, and the latency sensitivity of coordination messages. Information theoretically 

speaking, the main question is: how much information must be communicated to get a certain level of 

coordination, which is essentially an efficiency frontier. Communicating too much can undermine scalability, 

increase failure susceptibility, and create privacy problems, while communicating too little can lead to 

coordination failures and inefficiency. In logistics networks, communication constraints are very real due to 

poor connectivity in the field, varying devices, and the cost of transmitting data; therefore, our overhead 

metrics should reflect real-world deployment constraints rather than idealized networks.  
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Although communication overhead is closely related to latency, we believe it necessary to evaluate latency 

explicitly as an end-to-end metric because timely decisions are crucial to real-time logistics control. Latency 

can include sensing delay, processing delay, communication delay, inference delay, and actuation delay, and 

these delays may interact non-linearly with each other as the workload increases. Theoretically, the 

relationship between latency and closed-loop stability is that delayed feedback can cause oscillations and 

instability, especially if multiple agents respond to stale congestion signals. Therefore, evaluating latency must 

include both average latency and tail latency, because infrequent spikes in latency can trigger cascading 

failures in tightly-coupled systems. In enterprise deployments, latency metrics determine whether autonomous 

decision-making can be used for time-critical routing versus only for slower planning tasks.  

Fault tolerance and availability metrics assess how MARL solutions perform during infrastructure stress, 

including partial outages, degraded sensors, and communication failures. These are not optional, because 

logistics networks are always operating and downtime results in both financial and service penalties. 

Theoretically, the focus should be on graceful degradation: the extent to which the system can revert to safe 

local heuristics, continue to satisfy constraints, and avoid catastrophic coordination collapse when part of the 

system fails. Some relevant metrics for assessing fault tolerance and availability include mean time to 

recovery, performance under node loss, and resilience under partitioned communication. For enterprises, these 

metrics determine what degree of risk is acceptable because a highly optimal system that fails unpredictably 

will likely be rejected in favor of one that is less optimal, but reliable.  

Ultimately, from a business perspective, system metrics determine the total cost of ownership and operational 

feasibility. An organization must justify compute costs, network costs, monitoring costs, and engineering 

overhead against operational gain. System metrics therefore help an organization make design trade-offs, such 

as whether to use heavy centralized critics, how much communication to permit, and where to deploy edge 

inference. Practically, organizations will frequently accept slightly less optimal performance in order to obtain 

significantly better scalability and reliability, because once an organization deploys a stable solution, it 

generates compounding benefit. System metrics also aid in capacity planning by enabling organizations to 

determine the amount of infrastructure needed to provision and where to place it. In conclusion, system 

metrics are required to ensure that MARL solutions are not only intelligent in theory, but deployable, 

sustainable, and economically rational in the real world of logistics.  

Finally, system metrics allow for scientifically comparable architectures at the system level, not just the 

algorithmic level. Two MARL solutions that produce similar reward outcomes can have greatly differing 

amounts of compute demanded, communication overhead, and fault tolerance. Reporting system metrics 

therefore precludes misleading claims that do not take into consideration the actual costs associated with 

deploying an MARL solution in a production environment. In logistics environments, where the scale of 

operation is large, these hidden costs can exceed the cost savings from optimization; hence, system metrics are 

essential for truthfully evaluating MARL solutions. Therefore, system metrics complete the evaluation 

framework by establishing a link between the success of learning and operational improvements, and the 

realities of distributed infrastructure.  

Benchmark Datasets and Evaluation Environments  

Benchmark datasets and standardization of the testing environments are required for MARL due to the nature 

of the target evaluation: the object of evaluation is not a mapping of static input-output, but rather a policy that 

interacts with a dynamic environment, generating data in a manner that is endogenously determined  

(Bellemare et al., 2013). While supervised learning datasets may be fixed and shared, the evaluation of MARL 

relies heavily upon the characteristics of the dynamic environment (i.e., environment dynamics, observation 

models, stochasticity, and reward definitions), which makes benchmarks used in MARL evaluation essentially 

epistemological instruments; they provide the conditions under which claims of coordination, robustness and 

scalability are evaluated. Due to this dependency, a comparison between the findings of two studies claiming 

similar improvements would be rendered invalid, even if the studies were conducted in environments of 

radically differing difficulties. As a result, a rigorous MARL science relies on the availability of benchmark 

environments that clearly define the dynamics, constraints, stochastic processes and the evaluation protocol.  
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Large-scale logistics simulation systems that model enterprise fulfillment networks provide large-dimensional 

test beds that challenge coordination, capacity constraints, and temporal coupling among other factors. These 

testbeds include warehouse capacity limitations, dock scheduling constraints, route networks, stochastic 

demands and congestion propagation, and as such, represent interaction complexities that smaller "toy" 

problems cannot capture. The theoretical value of these types of benchmarks lies in their ability to subject 

algorithms to realistic externalities where an agent's decision creates costs or benefits to other agents, a factor 

central to the study of MARL. They also naturally induce delayed rewards structures where decisions made 

today affect outcomes tomorrow, representing realistic logistical practices. Enterprise-wide applicability of 

these types of benchmarks is critical since they assess not only if an algorithm can learn, but if it can learn 

under realistic operational constraints and noise.  

The OR Library provides a wide array of deterministic benchmark problems for vehicle routing, scheduling, 

and network design, which can serve as a solid baseline for evaluating how competitive MARL is compared to 

established deterministic methods under static conditions. Although these types of problems do not have the 

same type of endogenous learning as MARL does, they can provide the ground truth or nearly-optimal solution 

to validate if the learned MARL policy is significantly inefficient under stable conditions. The theoretical point 

here is not to suggest that MARL replaces deterministic solvers in static settings, but rather to ensure that  

MARL claims are grounded to some degree against known baselines to prevent over-estimation of innovation. 

When MARL achieves the same level of performance as classical solutions in deterministic regimes, and 

surpasses classical solutions in uncertain and non-stationary regimes, then the comparative advantages become 

scientifically credible. From a business standpoint, these baselines also provide assurance that MARL will not 

perform worse than traditional planning methods under relatively stable conditions.  

Urban logistics is characterized by dense interaction, congestion, time-dependent travel times, and multi-

modal routing, making simulated city networks important benchmarks. City networks allow the evaluation of 

coordination under high coupling, where marginal actions can generate system-level congestion waves. The 

theoretical value of city networks as benchmarks lies in the fact that they naturally encode equilibrium 

concepts such as Wardrop-style route choices, making them suitable for the study of equilibrium selection, 

inefficiency, and coordination mechanisms. They also allow for the evaluation of last-mile delivery dynamics, 

where time windows, parking constraints, and stochastic delays are common. From a business standpoint, city 

benchmarks are directly relevant to customer-facing operations where service reliability is most visible, and 

where optimization gains translate directly to improvements in customer experience.  

Scenario diversity is required to evaluate benchmarks properly, as MARL systems can over-fit to specific 

topologies, demand regimes, or disruption patterns. A single environment benchmark could lead to incorrect 

conclusions if algorithms learn environment-specific tricks or take advantage of reward artifacts. Evaluation 

protocols that use sets of scenarios that vary in terms of topology, demand intensity, disruption frequency, and 

observation noise are therefore required (Cobbe et al., 2020). The theoretical connection to generalization 

under distribution shift is fundamental in control systems deployed in changing real-world environments. 

Benchmark sets should therefore include stress tests and out-of-distribution scenarios, and not as optional 

features but as core evaluation components. Scenario diversity is directly related to risk management from an 

enterprise viewpoint, as operations must function effectively across various regimes throughout the year, city, 

and business cycle.  

From a business perspective, the primary mechanism for reducing the risk associated with adoption before 

deployment is the provision of benchmark-based evidence. Leaders must be confident that the system will 

scale, remain stable, and maintain service levels during periods of stress, and benchmarks provide structured 

evidence for these claims. Additionally, benchmarks help to reduce vendor and research risk by providing a 

means for independent validation. From a research community viewpoint, standardized benchmarks facilitate 

rapid progress by allowing for comparisons based on "apples-to-apples," and by determining which 

innovations improve performance broadly and not just in a single environment. Ultimately, the provision of 

benchmark datasets and evaluation environments serves as the empirical foundation of MARL science, by 

connecting theoretical claims to replicable evidence generated under well-specified conditions.  
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The standardization of benchmarks also enhances scientific integrity by requiring clarity regarding what is 

being optimized and under what constraints. Results reported in MARL papers can be intentionally or 

unintentionally modified through small variations in reward scaling, termination conditions, or observation 

noise. The use of standardized benchmarks helps to eliminate this variability by specifying the environment 

and the reporting protocols. Standardized benchmarks promote cumulative science, and allow for reliable 

measurement of progress over time. In logistics, where the stakes of deployment are high, disciplined use of 

benchmarks also enhances safety and trust by discouraging premature claims of readiness. In conclusion, 

benchmarks are not optional tools, but are instead a structural component of evaluation that facilitates both 

scholarly credibility and enterprise deployment confidence.  

Applications in Autonomous Logistics Networks  

Fleet Coordination and Last Mile Delivery Optimization  

At a theoretical level, last-mile logistics can be considered a decentralized partially-observable stochastic 

control problem where each vehicle agent only sees a small piece of the larger transportation network, yet the 

actual state of the system is composed of many hidden factors such as congestion and queue dynamics 

downstream of delivery points, and variations in demand over time (Powell, 2019). As a result of the 

interconnectedness of vehicles, route choice, dispatch time, and delivery sequence all affect the propagation of 

congestion, cluster formations due to stops, and ultimately the overall service level achieved by the fleet. As a 

result, the optimization of last-mile logistics represents a coordination challenge rather than simply a collection 

of individual shortest path problems, which necessitates the development of policies that account for the 

interdependencies between the fleet members.  

One of the primary theoretical contributions of MARL to the field of fleet coordination is its ability to develop 

adaptive policies that adapt to non-stationary demand and travel time distributions without having to model 

those conditions explicitly through parametric forecast models. The traditional methods used to solve routing 

problems are based on deterministic optimization with stochastic adjustments. However, these traditional 

methods are frequently unable to effectively manage situations where the environment is changing more 

quickly than the planning horizon of the traditional routing system (Pillac et al., 2013). By contrast, MARL 

agents are able to develop policies that continuously re-plan in response to environmental changes, while 

maintaining global coordination. This continuous adaptation capability is particularly important in situations 

where demand surges, road incidents occur, or weather events force changes in the available routes and/or time 

window risks. Additionally, this continuous adaptation can be viewed as developing a control law that maps 

observed system characteristics to action updates that allow the fleet to follow a dynamic optimum rather than 

repeatedly solving for a static solution.  

In last-mile MARL, the action space is inherently multi-dimensional. For example, a fleet agent may select a 

routing edge, insert a new order into a route sequence, select a dispatch time, modify the rate of service, or 

negotiate the transfer of a portion of a load with another vehicle. The richness of the action space introduces 

several theoretical difficulties related to the abstraction of the actions taken by the agent and hierarchical 

control. Typically, a doctoral-level architecture decomposes actions into two levels, i.e., a high-level policy 

determines the region assignments, the boundaries for delivery zones, or the shift schedules, whereas a lower 

level policy determines the fine-grain route decisions and stop ordering. Hierarchical decomposition has 

several advantages for learning in MARL including reducing the learning variance and increasing the 

scalability of the system by allowing different timescales of control to be managed by different portions of the 

system.  

Communication limitations play a major role in last-mile environments. In particular, real-world fleets are 

subject to bandwidth restrictions, intermittent connectivity, and confidentiality requirements across different 

subcontracted carriers. Consequently, MARL systems must learn coordination techniques that do not depend 

on continuous global communication. Examples of such techniques include learning mechanisms for message 

passing, compressed sharing of intentions, and graph-based coordination among neighbors, which allow 

vehicles to communicate only the necessary information to avoid duplication of effort and congestion. From a 

theoretical perspective, this can be viewed as learning sufficient statistics for coordination under limited 

information exchange where the goal is to approximate global coordination using only local signals.  
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The reward structure for last-mile optimization is a multi-objective function that must include measures of 

service quality, costs, and sustainability. While on-time delivery and time window compliance are commonly 

represented as constraints, minimizing fuel/energy consumption and distance traveled are common objectives. 

Nonlinear penalties for customer dissatisfaction resulting from missed time windows can reflect the 

operational realities where late deliveries result in greater negative impacts on business. Theoretical design of 

the reward structure is therefore closely tied to constrained reinforcement learning, where feasibility and safety 

must be maintained while optimizing performance. One robust method combines penalty functions for 

constraint violations with explicit feasibility checks and safe-action filtering to prevent exploration of unsafe 

delivery sequences during learning.  

Evaluation in last-mile MARL must move beyond average performance to focus on tail risk. A policy that 

consistently provides good average performance but infrequently results in large cascades of delayed 

deliveries will not be acceptable. Therefore, risk-sensitive evaluation metrics such as maximum possible 

lateness, highquantile delivery delay, or probability of violating a constraint become operationally relevant. 

The connection to the theoretical concepts of distributional reinforcement learning (DRL) or risk-aware RL 

lies in the fact that the policy is optimized to achieve not only an optimal expected value of the reward but also 

controlled variability and bounded downside risk. Risk-shaping becomes critical in logistics that involve 

consumers.  

In addition to reducing miles driven, fuel cost, and labor overtime while improving service consistency, the 

strategic impact of improved coordination involves increased operational resilience by providing the means to 

rapidly respond to disruptions without human dispatch interventions. The combination of lower operating cost 

and improved customer experience creates significant competitive advantage in markets where delivery speed 

and reliability are the drivers of customer loyalty. Furthermore, the use of more efficient routing and fewer 

failed delivery attempts enables organizations to reduce their carbon footprint and achieve other sustainability 

related goals.  

Additionally, the strategic impact of MARL coordination extends to capacity utilization and asset productivity. 

MARL coordination can improve the effective throughput of an existing fleet by reducing idle time, increasing 

the density of routes, and smoothing demand over time windows. Reducing the amount of idle time and 

improving the efficiency of the existing fleet allows organizations to meet growing demands for service 

without necessarily adding additional assets to their fleets. This reduces the need for capital investment in new 

assets and helps organizations scale their services without proportionate increases in assets. Ultimately, this 

translates into improved return-on-investment (ROI) for logistics assets and greater margin stability, both of 

which are critical for organizational-wide acceptance of MARL technology. Finally, deploying MARL 

technology in last-mile applications will require strong governance and accountability frameworks, including 

explanations for the reasons behind the routing decisions made by the autonomous system, auditable records 

of the causes of late deliveries, and compliance with operational constraints such as federal regulations 

regarding hours-of-service and labor practices. Autonomous systems must produce transparent output that 

includes intent signals, summaries of the reasoning behind routing decisions, and confidence values to ensure 

that humans can evaluate and accept the decisions made by the autonomous system. Ensuring that autonomous 

systems remain trustworthy and aligned with enterprise-wide principles of accountable decision making are 

critical.  

Warehouse Robot Collaboration and Task Assignment  

Robot collaboration in a warehouse is a canonical multi-agent setting due to its unique combination of 

physical coordination, spatial resource contention and stringent safety constraints in a structured environment 

(Wurman et al., 2008). In principle, the theoretically optimal method for modeling multi-robot warehouse 

operation would be as a cooperative decentralized partially observable decision-making process, where agents 

have a common global objective (such as maximizing warehouse throughput or minimizing makespan) but 

perceive the world only locally (due to occlusions, sensor noise and lack of communication). However, the key 

defining characteristic of warehouse robots is the tight coupling of their actions through common pathways, 

intersections, charging stations, and queues at pick stations. As a result, in practice, learning effective policies 

will require agents to understand how their individual actions affect those of other agents in the warehouse and 
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develop stable coordination conventions that prevent collisions and deadlocks while achieving high 

throughput.  

Assigning tasks to robots in a warehouse is not merely a scheduling problem; it is a dynamic allocation 

problem under uncertainty. New incoming orders have varying priorities, items move in response to 

replenishments, and interactions between humans add stochastic delays to the system. MARL provides the 

ability to develop policies that adaptively assign tasks to robots based upon both the current state of the system 

and anticipated congestion (Chen et al., 2022). For instance, deciding which tasks should be assigned to a 

robot must take into account factors like travel distance, queue length at pick stations, and expected contention 

on common aisles. From a theoretical perspective, this has similarities to a distributed resource allocation 

problem in which the system learns to allocate limited time and mobility among competing tasks in such a 

manner that the global reward is maximized.  

In many warehouse settings, there is a need for structured communication among robots. Direct 

communication allows robots to negotiate who goes first, share intentions, or coordinate hand-offs between 

tasks. Indirect communication occurs through environmental mediated signals such as occupancy grids, virtual 

pheromones, or shared blackboards. Graph-based communication networks allow robots to communicate with 

each other locally, and are scalable since they do not require all robots to communicate directly with each 

other. From a theoretical perspective, the goal is to find communication policies that are bandwidth efficient, 

but also enable nearly optimal coordination, particularly in densely populated warehouses where 

communication overhead could otherwise grow extremely rapidly with the number of robots.  

Safety and constraint enforcement are fundamental to autonomous warehouse systems. Robots must avoid 

colliding with other objects, follow speed limits, keep a safe distance from people, and adhere to operational 

policies. Therefore, reinforcement learning techniques must be used in a constrained manner, allowing robots 

to learn from experience while respecting valid feasible action sets that are dynamically restricted. There exist 

various theoretical frameworks for performing such constrained policy optimization and for developing safe 

exploration methods that prevent learning unsafe trial actions. In warehouse settings, safe learning is not just 

an optional feature of warehouse autonomy but a necessary condition for deployment; thus, evaluation of 

autonomous warehouse systems must assess constraint violations, near misses with people or other objects, 

and recovery capabilities after encountering unexpected obstacles.  

A warehouse collaboration reward function must balance throughput, utilization, and delay costs while 

maintaining safety and fairness across tasks. Reward functions that only optimize for throughput can cause 

robots to behave aggressively, i.e., to select paths that increase the likelihood of collision with other robots or 

objects. Therefore, reward shaping typically includes penalties for creating congestion, blocking, or waiting 

excessively at intersections. From a theoretical viewpoint, penalty terms must be designed so that they do not 

create perverse local optima in the robots' behavior, e.g., if robots learn to always avoid areas with high 

congestion levels, then high-priority pick tasks will starve.  

Scalability is a primary issue. Warehouse robotics can potentially involve hundreds or thousands of agents, 

rendering centralized control infeasible. Decentralized Training Decentralized Execution (CTDE) architectures 

are commonly employed, where training relies on a global state and centralized critics, but execution remains 

decentralized and is based on local observations and minimal communication. Theoretical advantages of 

CTDE architectures include reduced non-stationarities during training and more accurate credit assignment 

due to global advantage estimation. During execution, robots run lightweight policies that are dependent only 

on local sensing and minimal communication, ensuring operational viability under latency constraints.  

MARL-based task assignment will improve the operational efficiency of a warehouse, thereby improving the 

throughput of orders, the amount of labor required per unit of throughput, and the utilization of the warehouse 

space (Boysen et al., 2019). Most importantly, it will improve the robustness of a warehouse to disturbances 

such as downtime of stations, temporary blockage of aisles, etc. Robustness translates into less operational 

downtime and increased service reliability for downstream delivery operations. In a competitive fulfillment 

environment, this will translate into faster shipping promises and higher customer retention.  
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An additional strategic business benefit of MARL is the flexibility to reconfigure warehouse operations. 

Traditional warehouse automation technologies typically require significant design effort when warehouse 

layouts change or when new products with different pick patterns are introduced. On the other hand, MARL 

systems can quickly adapt policies to new warehouse layouts or changes in demand patterns, thereby reducing 

reconfiguration costs and enabling rapid scaling. The ability to reconfigure quickly is particularly valuable in 

high-growth e-commerce environments where fulfillment networks are rapidly evolving. Finally, successful 

MARL warehouse deployments require close integration with warehouse management systems (WMS) and 

governance workflows. The policies developed using MARL must be understandable by warehouse operations 

personnel in order for them to be trusted, and decision log data must be available for auditing and continuous 

improvement. It is the combination of safety assurances, performance enhancements, and operational 

transparencies that make MARL-based warehouse collaboration credible as a production technology rather 

than a research prototype.  

Inter-Hub Scheduling and Global Route Synchronization  

Inter-hub scheduling and global route synchronization extend MARL from localized operational control to 

network-wide coordination of multiple distribution centers, cross-docks, and transportation corridors. 

Theoretically, this domain is characterized by long-horizon dependencies, delayed rewards, and multi-scale 

coordination, where decisions made at one hub affect congestion, capacity, and service outcomes across the 

network hours or days later (Powell, 2019). A multi-agent framework is applicable here, as each hub and 

transportation corridor can be viewed as an agent with local goals and constraints; however, the overall 

performance of the system depends on the coordinated behavior across the network. Thus, inter-hub operations 

are transformed into a coupled stochastic control system in which coordination must balance flow conservation 

and dynamic capacity constraints.  

At the hub level, scheduling involves decisions such as when to dispatch trailers, which dock doors to assign, 

how to allocate labor, and how to sequence cross-docking operations. The decisions made at one hub affect the 

arrival processes, service times, and capacity constraints at upstream and downstream nodes. Classically, 

scheduling models assume deterministic arrival processes; however, real-world networks exhibit stochastic 

variability resulting from traffic, weather, and demand volatility. MARL can learn policies that anticipate these 

uncertainties and adjust schedules to avoid downstream bottlenecks. Theoretically, the learning of these 

adaptive policies occur in a partially observable environment, where each hub estimates the state of the entire 

system through local indicators of global conditions such as delay patterns at incoming docks and buildups at 

queue locations.  

Global route synchronization is a coordination problem because the routes taken by shipments between hubs 

must be aligned to meet service commitments and minimize dwell time. If a hub dispatches too early, the 

downstream hubs may not be ready to receive shipments, causing dwell and congestion. Conversely, if a hub 

dispatches too late, service quality suffers. MARL can learn policies that synchronize dispatch and processing 

rates across hubs by developing implicit coordination strategies, which are often mediated by shared 

representations or limited communication. Theoretically, this has similarities to distributed control with 

coupled constraints where the stability and throughput of the system depend on the coordinated flow control of 

the system rather than the local optimization of individual components. Information sharing between hubs is a 

primary constraint at the network level, as hubs may belong to separate business units or partner organizations. 

Due to restrictions related to privacy, contracts, and technical interoperability, information sharing may be 

partial. Therefore, MARL architectures must be able to perform coordination with incomplete information 

sharing. Architectures employing federated or privacy-preserving learning can facilitate the sharing of policy 

improvements without revealing sensitive operational data. This introduces theoretical challenges related to 

learning from decentralized data and diverse objectives.  

Reward structures for inter-hub scheduling must reflect end-to-end service reliability, total network cost, and 

congestion avoidance. Rewards are delayed because the impacts of scheduling decisions may not be evident 

until shipments reach downstream nodes. Therefore, credit assignment is a significant theoretical challenge, as 

mechanisms such as difference rewards or value decomposition must be employed to attribute the outcome of 

decisions to specific hub decisions. Without effective credit assignment, learning variance increases and 

convergence to stable policies slows. Evaluating MARL for inter-hub scheduling must include metrics such as 
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throughput, dwell time, missed connections, and service reliability across lanes. Critically, evaluation must 

emphasize the system's resilience; specifically, how quickly a network recovers from hub failures, lane 

closures, and/or sudden demand spikes. MARL is most beneficial in situations where disruptions propagate 

nonlinearly through the network, and adaptive coordination can mitigate shock propagation by routing flows 

and reallocating capacity. These ideas are consistent with theories of resilience and network control.  

Emergency Logistics and Humanitarian Supply Distribution  

The application of multi-agent reinforcement learning (MARL) to emergency logistics and humanitarian 

distribution represents a very high stakes application area whose objectives are not merely economic, but also 

relate to human welfare, timely response to crisis, and the availability of resources. From a theoretical 

perspective, emergency logistics and humanitarian distribution share many characteristics with other uncertain 

domains, including changing and unknown constraints and lack of complete information (Holguin-Veras et al.,  

2012). Emergency logistics and humanitarian distributions are typically conducted in the presence of 

infrastructure damage, volatile demand, and costs of failure measured in lost human life rather than monetary 

penalties for missed delivery times. Because there are multiple decision makers involved in emergency 

logistics and humanitarian distribution (e.g. vehicles, warehouses, medical supply nodes, and coordinating 

entities), and because of the need for those decision makers to act based upon partial observability, multi-agent 

reinforcement learning is applicable to this domain.  

Humanitarian logistics can be modeled as a mixed-mode multi-agent problem, as agents acting within the 

same organization can work cooperatively together, yet compete for the same resources as agents acting in 

different organizations or jurisdictions. This creates a game theoretic component to the problem, since even 

though all agents seek to assist others, their individual interests will likely not always be aligned (Kovacs & 

Spens, 2007). As such, MARL architectures must be able to support both cooperative and strategic interaction 

between agents, and possibly incorporate some mechanism for incentivizing cooperation among agents, or 

provide some level of coordination protocol to allow agents to cooperate partially without having to fully trust 

one another. The theoretical contribution in this paper relates to developing policies that continue to function 

effectively despite poor coordination among agents and changes in the structure of the coalitions of 

cooperating agents (Balcik et al., 2010).  

Decisions regarding routing and allocation during emergencies must be capable of adapting to changing 

conditions (e.g. road closures, evolving hazards, etc.) and changing demand hotspots. Optimization techniques 

used in traditional methods require knowledge of fixed maps and known constraints, however, during 

emergency situations, it is rare that either of these two pieces of information are known (Özdamar & Ertem, 

2015). MARL provides a means for developing policies that can adapt to unknown or changing conditions 

through use of stochastic elements in the simulation environment, allowing agents to respond quickly to new 

information as it becomes available. In terms of theoretical basis, the development of MARL policies is 

analogous to robust stochastic control, in that the policy must perform well over a wide variety of possible 

environmental states, rather than being optimized for a single predicted state (Özdamar & Ertem, 2015).  

Resource allocation is a key aspect of emergency logistics and humanitarian distribution. Given the limitations 

of available resources (e.g. limited supplies, limited number of vehicles and personnel), and the need to 

allocate these resources across competing demands, a major theoretical challenge is developing a framework 

for making multi-objective priority decisions (e.g. deciding how to distribute limited resources fairly, 

efficiently, and with urgency). Developing rewards that capture the relative importance of ethical criteria (e.g. 

minimizing mortality risk, maximizing the amount of critical supplies covered) is important, as is ensuring that 

the reward functions do not create bias or inequities in the way that resources are allocated.  

In addition to the challenges posed by resource allocation, communication during emergency logistics and 

humanitarian distribution is severely limited by damaged infrastructure, thus limiting the ability of agents to 

communicate with one another and/or with a centralized entity. As such, MARL-based systems must be 

designed to operate in a completely decentralized manner with limited reliance on centralized communication. 

Edge computing and local coordination are necessary to achieve this goal, as agents may have to operate 

independently for extended periods of time, communicating only limited status updates when communication 

with a centralized entity is possible. Theoretically, this necessitates the development of robust, decentralized 
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policies and effective coordination mechanisms that minimize communication overhead. The metrics used to 

evaluate the performance of MARL-based systems in humanitarian logistics applications are significantly 

different from those used in commercial logistics. Critical metrics include response time to critical areas of 

population, percentage of population covered, fairness/equity of allocation, and robustness to infrastructure 

degradation. Additionally, given the tail-risk nature of humanitarian logistics applications (where a small 

probability of severe failure is unacceptable), the evaluation of MARL-based systems must take place within a 

risk-sensitive framework and include safety constraints.  

Finally, the business and social implications of deploying MARL-based systems in humanitarian logistics 

applications are significant, as they enable humanitarian organizations to increase efficiency, reduce waste, and 

extend coverage with the same resource base, governments to enhance disaster preparedness through the use of 

MARL-based digital twins to model response strategies and identify potential bottlenecks prior to a crisis, and 

ultimately lead to faster responses, fairer allocations, and increased public trust (Sheu, 2007). However, 

deploying MARL-based systems in humanitarian logistics applications is subject to a greater degree of 

scrutiny in terms of transparency and accountability than deploying them in commercial settings. Thus, 

stakeholders must be provided with sufficient information to understand how decisions were made, and 

systems must be capable of providing audit trails. To address this requirement, MARL-based systems must be 

integrated with explainable mechanisms, decision logs, and governance frameworks that ensure the ethical 

deployment of these systems (Yi & Ozdamar, 2007). Ultimately, the technical robustness of MARL-based 

systems, their alignment with ethics and norms of behavior, and their feasibility of operation determine if 

MARL can make responsible contributions to humanitarian logistics (Mili, 2025).  

Business Value and Strategic Implications  

Cost Optimization Through Adaptive Automation  

Adaptive automation through cost optimization represents one of the most direct and easily defendable areas 

of business value for multi-agent reinforcement learning in logistics. However, its strategic implications extend 

far beyond simply saving money. Cost in logistics is an emergent property of a coupled dynamic system where 

individual agent decisions produce externalities that propagate through congestion, capacity contention and 

service failures (Tang, 2006). Thus, adaptive automation is important since it allows the system to learn control 

policies that take these externalities into account instead of optimizing the isolated local objectives. In practical 

terms, MARL will therefore reduce costs not only by choosing shorter routes and faster schedules, but also by 

influencing the network level behavior of things like smoothing flow, reducing peak congestion and preventing 

cascading delays that produce overtime and penalty costs (Waller & Fawcett, 2013).  

One of the main mechanisms for cost optimization is the transition from reactive dispatching to anticipatory 

control. Rule-based systems traditionally react to congestion and delay once they become apparent; however, 

MARL policies can learn anticipatory patterns of action from past experiences and simulations (Dubey et al., 

2019) allowing them to make decisions proactively and earlier in the process, such as earlier route selection, 

early inventory pre-staging, and earlier fleet rebalancing before bottlenecks develop. From a theoretical basis, 

policies learn mappings from high-dimensional observation spaces to control actions that maximize expected 

returns over long horizons, thus embedding an approximate representation of the system's future dynamics in 

present-day decision-making. From a cost perspective, this results in the elimination of the expensive 

nonlinear penalties that arise when service levels fail due to operating at or near capacity limits (Ivanov, 2020).  

Operational volatility has a disproportionate effect on labor costs. Warehouses and hubs incur overtime when 

incoming shipments arrive unpredictably in large volumes and drivers incur idle time when their schedules do 

not coincide with available docking space. By learning synchronized schedules and capacity aware dispatch, 

MARL can reduce this volatility and act as a controlling element that attenuates disturbances in the system by 

reducing variance in system output. Less variance in system output results in more predictable staffing needs, 

better labor utilization and lower overtime premiums, turning cost optimization into a structural rather than 

episodic activity.  

MARL does not limit transportation cost reduction to minimizing distance but also includes fuel efficiency, 

maximizing asset usage, and eliminating empty miles (Waller & Fawcett, 2013). Empty miles result when 
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decentralized decisions cause unbalanced flows in multi-agent fleets, resulting in vehicles being left without 

profitable backhaul opportunities or having to operate outside of their preferred pick-up/drop-off zones. 

MARL policies can learn repositioning strategies that minimize imbalance by treating vehicles as part of a 

network, rather than independently acting units, thereby reducing deadheading, improving load factors, and 

increasing revenue per mile, which is typically the greatest contributor to profit in logistics (Wamba et al., 

2017).  

When MARL is incorporated into supply chain planning systems, it can influence replenishment timing, safety 

stock placement, and cross-docking routing, leading to inventory related cost optimizations. Not only is 

inventory holding cost influenced by the average demand, but it is also influenced by the variability in lead 

time and service risk (Tang, 2006). When MARL reduces variability and improves reliability, companies can 

safely reduce safety stock without negatively impacting service (Ivanov & Dolgui, 2020), providing another 

layer of cost reduction through working capital and obsolescence risk savings. Theoretical foundations exist 

for inventory reductions, which enable the company to implement leaner inventory policies. These benefits are 

compounded in that inventory reductions free up working capital and reduce obsolescence risk.  

There is also a cost aspect of avoiding penalties and complying with contracts. Logistics operations frequently 

incur nonlinear penalties for missing delivery windows, failing to deliver on time, and not meeting service 

level agreements (Tang, 2006). MARL policies can learn to assign priority to high-penalty events and allocate 

resources accordingly, essentially incorporating contractual risk into the reward function. There is great 

importance in designing objectives correctly to ensure that MARL learns to trade-off cost and service in a 

systematic manner, rather than relying on inflexible rules. The cost of infrastructure to run MARL itself must 

also be factored into the cost optimization analysis. Both training and inference require compute resources, 

data pipelines, and monitoring systems. The value of strategic application is realized when the total operational 

savings outweigh the total cost of ownership including compute, integration, and governance overhead 

(Brynjolfsson et al., 2011). Therefore, a formalized evaluation method is necessary in order to measure cost 

metrics that include both operational savings and the expenditure for digital infrastructure. Companies that 

view MARL as a product capability versus an experimental technology can achieve the optimal balance 

between the two by utilizing efficient cloud-edge deployment and implementing policy update governance that 

minimizes the necessity of redundant retraining (Wamba et al., 2017).  

From a strategic management perspective, adaptive automation shifts the cost profile of logistics from variable 

and reactive costs to predictable and structured investments in infrastructure (Brynjolfsson et al., 2011). As a 

result, this shift creates greater margin stability and reduces a company's exposure to cost spikes due to 

logistical disruptions, ultimately enabling scalability without commensurate increases in personnel or 

managerial overhead. Additionally, the strategic implications of MARL is that it can transform logistics from a 

cost center into a controllable performance engine that utilizes continuous learning to maintain efficiency 

regardless of increased demand and/or network complexity (Dubey et al., 2019). Furthermore, cost 

optimization also provides a strategic advantage in competitive markets by affecting pricing flexibility and 

service differentiation. Lower unit costs provide either pricing competitiveness or the opportunity to reinvest 

into faster delivery promises and better customer experience. Since logistics performance is increasingly 

becoming a defining factor of brand perception in e-commerce and retail, cost optimization through adaptive 

automation can serve as a strategic lever rather than a back-office efficiency initiative.  

Competitive Advantage Through Data Driven Decision Making  

Competitive advantage in today's logistics industry is primarily derived from decision intelligence rather than 

physical assets (Brynjolfsson et al., 2011). By converting raw operational data into adaptive policies that 

continually improve execution (Wamba et al., 2017), multi-agent reinforcement learning (MARL) enables 

decision intelligence. Theoretically, logistics networks are complex adaptive systems whose outcomes are 

dependent upon the interactions between numerous agents and constraints (Ivanov, 2020). The ability to utilize 

structure in these interactions to anticipate bottlenecks and coordinate resources more effectively than 

competitors who rely solely on static optimization and manual dispatching enables data-driven decision 

intelligence to contribute to competitive advantage. One of the primary strategic advantages that derive from 

decision intelligence is faster decision cycles. Traditional planning methods rely on periodic batch 

optimization and replanning, which create lag times between environmental change and operational responses. 
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MARL enables continual decision-making through learned policies that operate in real-time. Technically 

speaking, policies can provide nearly instant inference once they have been trained, thereby facilitating high 

frequency control without requiring computationally intensive optimization at each decision point.  

Decision intelligence also enhances resource allocation efficiencies. Fleets, hubs and warehouses are all 

limited resources that must be allocated under conditions of uncertainty. Competitors that employ static 

policies commonly rely on conservative buffers, such as excess vehicles or higher safety stocks. MARL 

systems can eliminate the need for buffers by dynamically allocating resources, thereby enhancing capacity 

utilization. As such, MARL systems provide a competitive advantage by enabling the rapid expansion of 

service levels and growth with less capital investment than competitors employing static policies. Data 

network effects enhance this competitive advantage. Companies with extensive operational footprints gather 

richer data across various routes, demand regimes and types of disruptions. MARL systems can leverage this 

data to learn more robust policies, establishing a positive feedback loop whereby scale improves learning and 

learning improves scale (Brynjolfsson et al., 2011). From a theoretical perspective, this is analogous to 

statistical learning concepts where varied experience distributions reduce over-fitting and enhance 

generalization. Therefore, smaller competitors may face barriers to entry as they lack sufficient data diversity 

to train policies that are equivalent in robustness.  

Competitive differentiation also exists through sustainable performance. Customers and regulators 

increasingly reward companies that have lower emission logistics. MARL can optimize for carbon efficiency 

along with cost and service, thereby enabling companies to demonstrate tangible proof of sustainability 

commitments.  

This is a strategic differentiator, especially in markets where green logistics impacts procurement decisions 

and consumer brand preference. Another competitive advantage exists through the improved reliability and 

predictability of logistics operations. Many logistics customers place a greater emphasis on consistent delivery 

than occasional speed. MARL can reduce lead time variability by stabilizing flows and coordinating capacity, 

thereby providing superior reliability (Wieland & Wallenburg, 2013). This reliability enables companies to 

differentiate their services through offering guarantees of delivery windows, premium delivery tiers, or just-

intime replenishment, which competitors may find difficult to match without the presence of advanced 

coordination intelligence.  

Governance-wise, decision intelligence also enables companies to improve compliance and risk management. 

Autonomous policies can be constructed to respect regulatory guidelines, driver hours, and safety standards, 

thereby enabling consistent compliance at scale. Manual operations may not provide the same level of 

compliance and risk exposure as autonomous policies. This risk reduction itself is a strategic advantage, as it 

protects against potential reputational damage and regulatory penalties. Finally, business impact exists in 

customer retention and customer lifetime value. Rapid, reliable logistics operation improves customer 

satisfaction and reduces churn. In e-commerce and FMCG, where switching costs are minimal, reliable 

logistics operation is a key determinant of customer loyalty. Thus, decision intelligence not only provides cost 

savings, but also revenue protection and growth. Competitive advantage also exists through organizational 

learning. MARL systems integrate learning into logistics operations, thereby enabling the company to rapidly 

adapt to new network configurations, new product mixtures, and new market entries. This adaptability reduces 

the time-to-market associated with entering new geographic regions or launching new delivery modes, thereby 

providing strategic agility.  

Resilience Against Disruptions in Logistics and Transport Chains  

Logistical resilience refers to the ability of a logistics network to withstand disruptions (Ivanov, 2020) and 

continue to provide an acceptable level of service despite being disrupted (Ivanov, 2020). As MARL provides 

policies that can operate under uncertain circumstances and can react to unforeseen events in real-time, MARL 

will contribute to a logistics network's resilience. Logistical disruptions are caused by a variety of factors such 

as traffic accidents, inclement weather, employee shortages, failure of infrastructure, surge in demand, and 

failure of suppliers; each type of disruption affects the entire logistics network in a cascading manner because 

logistics networks are tight-coupled systems. For example, when there is a delay at a hub it causes delays in 

other areas of the logistics network in the form of missed pickups and dropoffs and inventory shortages. 

MARL can help to minimize the propagation of these cascading effects by providing policies that allow for the 
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coordination of the logistics network to reroute shipments, rebalance capacity, and to prioritize critical 

deliveries (Ivanov & Dolgui, 2020). Therefore, theoretically speaking, MARL acts like a decentralized 

adaptive controller that rapidly adjusts system behavior to prevent shock from magnifying in its effect (Ivanov 

& Dolgui, 2020).  

Training of MARL agents in scenario-based simulations is crucial for developing a resilient logistics network. 

Agents need to be exposed to random elements and disruption models in order for them to develop policies to 

respond to rare, yet impactful, events (Queiroz et al., 2020). Robust control theory emphasizes that robustness 

requires training agents on disturbances and their distributions during training (Queiroz et al., 2020). Digital 

twins of logistics systems enable agents to safely test their resilience strategies prior to deployment. A resilient 

logistics network should degrade gracefully. When communications fail or data is corrupted, agents need to 

have a fallback policy that prevents chaos from occurring versus failing to produce useful results.  

Architectures of MARL agents that utilize CTDE and local fallback heuristics can ensure that some level of 

operation continues to exist even in the event of degraded conditions. Evaluating the performance of MARL 

agents requires evaluating how they perform under failure conditions and how quickly they recover from 

disruptions. Performance evaluation should assess both the robustness of the algorithms used to support the 

MARL agent and the resilience of the logistics infrastructure. Coordination among agents under disruptive 

conditions is especially difficult because agents may be competing for limited resources such as routes, 

docking space, and personnel. MARL agents must dynamically allocate resources and do so subject to 

multiobjective constraints. Equilibrium selection under stress is a theoretical consideration since agents must 

select an equilibrium that does not lead to the convergence of the system to selfish behaviors that ultimately 

increase the system's performance loss (Wieland & Wallenburg, 2013). The design of rewards and 

coordination protocols has significant impacts on the resilience of a logistics network supported by MARL 

agents.  

Resilience has a greater business impact than cost savings associated with normal operations because 

disruptions cause nonlinear loss to a company. Missed deliveries can generate contractual penalties, customer 

dissatisfaction, and damage to reputation. Inventory shortages can decrease sales and stop production. MARL 

agents can mitigate the business loss resulting from disruptions thereby protecting a company's revenues and 

decreasing its risk exposure, making resilience a strategic value driver. Resilience also supports strategic 

continuity planning. Companies that can deliver services during disruptions gain market share over companies 

that are unable to continue delivering services during disruptions. This creates competitive advantage during 

times of crisis. MARL enables companies to rapidly adapt to changing conditions without having to manually 

coordinate agents that are located throughout the world. Rapid adaptation is critical during disruptions that 

occur in many different locations at the same time. Another aspect of resilience involves learning from 

disruptions. MARL agents can use information collected after a disruption occurs to improve future responses 

to similar disruptions. Therefore, disruptions can be viewed as training signals for continually improving the 

organization's resilience strategies. This creates an organizational learning loop wherein disruptions are 

converted into positive events instead of purely negative events. Ultimately, this will increase the 

organization's robustness and reduce its reliance on static contingency plans.  

Transition to Autonomous, Self-Regulating Supply Networks  

The transition to autonomous, self-regulating supply networks represents the ultimate strategic implications of 

adopting MARL. Instead of optimizing individual logistical activities in isolation, MARL enables the creation 

of distributed intelligence that coordinates across fleets, warehouses, hubs, and enterprise systems.  

Theoretically, supply chains become complex adaptive systems with embedded decision-making agents that 

make adjustments to their behavior in response to state changes in the system (Ivanov, 2020). This represents a 

shift from centralized planning to distributed control where coordination emerges from the interaction of 

policy between agents that share common objectives and constraints. Autonomous, self-regulating supply 

networks require multi-layered autonomy. Agents at the lowest layer make decisions locally, such as 

determining a route to take or what tasks to assign to vehicles. Meta-controllers at higher layers adjust 

objectives, constraints, and policy parameters based on strategic goals. This hierarchy of autonomy aligns with 

multi-scale control theory where fast operational control is nested within slower strategic adaptation.  
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Ultimately, this creates a supply ecosystem that can reorganize itself dynamically without human intervention. 

A fundamental characteristic required for self-regulation is stable coordination in the presence of limited 

communication and partial observability. Because autonomous ecosystems cannot rely on continuous central 

control due to latency and scale, MARL architectures must support decentralized decision-making with 

minimal yet informative coordination signals. This creates scalable autonomy while ensuring global alignment, 

enabling large networks to be created without an exponentially increasing amount of coordination overhead. 

Governance is a key issue in autonomous ecosystems. Accountability, auditability, and compliance with 

organizational ethics and regulatory requirements are all critical aspects of autonomy. This means that 

decision-making agents must be able to demonstrate accountability for their actions, provide explanations for 

their actions, and provide version control for their policies. Trustworthy autonomy theory emphasizes that self 

regulation must include oversight mechanisms, i.e., human governance sets constraints and monitors outcomes 

while agents optimize within those constraints. Another important aspect of autonomous supply ecosystems is 

interoperability across organizations. Autonomous supply ecosystems typically involve multiple organizations 

and digital platforms. MARL agents must therefore coordinate across organizational boundaries using 

standard-based interfaces and privacy-preserving learning techniques. Federated reinforcement learning can 

facilitate shared learning between agents while preventing the sharing of sensitive data, thus facilitating 

ecosystem-wide optimization while maintaining boundaries of trust.  

Autonomous supply ecosystems can benefit businesses in several ways. They can increase business agility and 

speed of response to changes in markets, as well as reduce friction in coordinating logistics (Dubey et al., 

2019). Autonomous supply ecosystems can add new nodes, delivery modes, or partners much more quickly 

than traditional supply ecosystems because the intelligence needed to support the ecosystem is distributed and 

adaptive. This reduces the costs associated with integrating new components of the ecosystem and increases its 

scalability. Strategically, autonomous supply ecosystems can enable predictive and prescriptive logistics. 

Instead of responding to disruptions, systems can anticipate disruptions and reconfigure themselves in 

anticipation of those disruptions (Ivanov & Dolgui, 2020). This enables new business models such as dynamic 

service pricing, guaranteed delivery windows, and adaptive inventory allocation. Businesses can differentiate 

themselves from other businesses based on their reliability and responsiveness, not just their size. However, 

transitioning to autonomous supply ecosystems will change the roles of employees in logistics. Employees will 

no longer be responsible for manually dispatching vehicles and managing exceptions. Instead, employees will 

be involved in oversight, exception management, and policy governance. Organizations will need to invest in 

developing capabilities related to AI operations, monitoring, and compliance, as well as the development of 

organizational social structures that support the success of autonomous supply ecosystems. Therefore, the 

strategic success of autonomous supply ecosystems will depend on the successful implementation of both 

technological innovation and socio-technical transformation.  

Ethical, Governance, and Operational Trust Considerations  

Decision Transparency in Autonomous Agent Actions  

The transparency of the decision process is a basic requirement for the responsible use of multi-agent 

reinforcement learning systems in logistics due to the fact that the autonomy of the decision-making process 

changes the way decisions are made, explained, and challenged in organizations. Traditional logistics 

operations involve decisions that are traceable to human planners, rule-based systems or optimization models 

with clearly defined objectives and constraints. Multi-Agent Reinforcement Learning (MARL) systems 

generate policies through learning processes based on data, and the decision logic is encoded implicitly in the 

parameters of the high dimension. Therefore, theoretically, there exists an epistemological gap between correct 

behavior and understandable behavior, a problem identified by researchers working on the challenges related 

to black-box learning systems and explainability (Guidotti et al., 2018; Rudin, 2019). Hence, transparency is 

not only an issue of usability but also a structural requirement to ensure that autonomous systems comply with 

the governance of the organization and the social expectations (Floridi et al., 2018; Jobin et al., 2019).  

Technically, the transparency of the decision process of the agents implies that the stakeholders of the agents 

have access to the internal decision process of the agents. This does not mean that the raw weights of the 

neural networks should be exposed to non-expert users, but rather that structured explanations should be 

provided of why specific actions were taken in specific conditions, as part of the explainable AI paradigms 
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(Guidotti et al., 2018). In MARL, this problem is even more challenging since the actions of the agents depend 

not only on their local observations, but also on the anticipated reactions of the other agents and the 

coordination behaviors that have been learned. Thus, the transparency mechanisms must be able to operate at 

two levels simultaneously: the level of each individual agent and the level of coordination of the system, and 

explain how the local decisions contribute to the global consequences such as the reduction of the congestion 

or the priority of services.  

Theoretically, the approaches to transparency in MARL often refer to explainable reinforcement learning and 

interpretable control theory. The techniques such as policy distillation into simpler surrogate models, 

counterfactual reasoning, and the formalized description of the behavior of the model are aligned with the 

accountability practices proposed for high-risk AI systems (Mitchell et al., 2019; Raji et al., 2020). In logistics 

applications, the transparency of the decision process may consist of summaries of the decisions that identify 

the most important factors that determine the routes of the vehicles, the schedules, and the allocations of 

resources, etc., such as the forecasts of the congestion, the risks of exceeding deadlines, and the constraints of 

capacities. These summaries will allow the human operators to know if the decisions of the autonomous 

systems match the intuitions and the policies of the operators.  

Moreover, the transparency of the decision process is necessary for the calibration of the trust of the human 

operators in relation to the autonomous systems. An excessive trust in the autonomous systems can be as 

problematic as a lack of trust. When the human operators have access to the rationales of the decisions of the 

autonomous systems, they will be able to decide when to intervene correctly, i.e., when to cancel decisions that 

are correct and when to pay attention to potential problems of the autonomous systems. From a theoretical 

point of view, the calibration of the trust requires that the transparency of the decision process is timely, 

contextual, and proportional to the importance of the decisions, as required by the human-centered frameworks 

of governance of AI (Floridi et al., 2018; Jobin et al., 2019). In addition, the high-stake decisions, such as the 

emergency rerouting of vehicles or the priorities of services, require a much more detailed explanation than the 

routine decisions.  

In addition, the transparency of the decision process must consider the emergent behavior of the system of 

agents. Many of the coordination behaviors of the system are generated by the interactions of the agents, and 

not by the explicit instructions of the agents. Consequently, it is difficult to assign the consequences of the 

system to the individual agents. The frameworks of transparency of the decision process must, therefore, 

provide the explanations of the coordination behaviors of the system, and of the equilibrium selections and of 

the adaptations of the system, in order to allow the organizations to understand what drives the improvements 

of performance, and to maintain the confidence in the long-term deployments of the systems of autonomous 

agents. From the operational point of view, the transparency of the decision process allows the training and the 

organizational learning of the human planners and the managers, in order to know the new heuristics and the 

new coordination behaviors that could not be previously considered.  

Finally, the transparency of the decision process is also an element that is essential in the resolution of 

disputes. In case of failures of service, the organizations must justify the decisions taken by the autonomous 

systems to the clients, the partners, or the regulatory bodies. If the autonomous systems do not have the means 

to justify the decisions, the organizations will be exposed to the risks of reputation and of legality. Therefore, 

the mechanisms of transparency of the decision process must be developed so as to support the analyses after 

the events, and the communications with the stakeholders external to the organization, in addition to the 

optimization internal to the organization. Finally, the transparency of the decision process is indissociable from 

the ethics of deployment of the autonomous logistics systems. The ethical principles of fairness, 

accountability, and proportionality, cannot be implemented, and therefore monitored, without having access to 

the rationales of the decisions (Dwork et al., 2012; Floridi et al., 2018). Therefore, the transparency of the 

decision process is the foundation of all the subsequent guarantees of governance and ethics of the systems of 

autonomous logistics.  

Accountability and Traceability in AI-Driven Logistics  

Accountability in AI-driven logistics corresponds to the possibility of attributing responsibilities for decisions, 

results and failures in systems that are increasingly operating autonomously. In the traditional logistics 

operations, the accountability is organized hierarchically and depends on the roles of humans. The multi-agent 
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reinforcement learning (MARL) systems, however, modify this hierarchy of accountability, and introduce 

decentralized entities of decision-making that are learned instead of being programmatically determined. From 

a theoretical point of view, this introduces the question of agency, of responsibility and of control in the 

systems of autonomous agents that act in a decentralized manner, and which echoes the questions posed by the 

research on accountability of algorithms (Raji et al., 2020).  

The traceability is the technical method that makes possible the accountability. The traceability consists in 

keeping detailed records of the observations, of the actions, of the communications, and of the versions of the 

policies that lead to a particular outcome. In MARL, the traceability is complex because the decisions of the 

agents are interdependent and occur in succession. For example, a delay of delivery can result from a sequence 

of interactions between several agents who respond to evolving conditions. To be effective, the traceability 

must reconstruct the causal chains that link the agents in space and in time, as part of the auditing frameworks 

end-to-end that have been proposed for complex systems of AI (Raji et al., 2020). From a systems point of 

view, the traceability must be integrated into the architecture of the system, and not be added later.  

The logging mechanisms must record sufficient information to allow the analysis of causality without creating 

an overload of storage, and without compromising the constraints of the privacy. This includes recording the 

abstractions of the states used by the agents, the key variables of decision, and the messages of coordination.  

Mechanisms of preservation of privacy such as the aggregation secure and the differential privacy become 

increasingly relevant in this context, in order to make possible the traceability, and to protect the data of 

operation that are sensible (Abadi et al., 2016; Bonawitz et al., 2017). Theoretically, the traceability must 

retain the sense of the data, and not only the raw data, in order to allow a meaningful analysis.  

The frameworks of accountability must also distinguish the different levels of responsibility. Certain 

consequences of the system may correspond to the individual decisions of the agents, whereas others may 

correspond to the properties of the system, such as the design of the rewards, the biases of the training data, 

and the communication protocols. Assigning the accountability solely to the individual agents can hide the 

design flaws of the system. Therefore, the models of governance must recognize the shared responsibility 

among the designers of the algorithms, the architects of the systems, and the managers of the operations.  

Legally speaking, the mechanisms of accountability support the management of liabilities. As the regulations 

will evolve to treat the systems autonomous, the organizations will have to show that they have control, 

supervision, and protection measures reasonable. The traceability will allow to show that the decisions were 

taken according to the authorized policies and constraints, which is indispensable for the defense against the 

claims and the audits of compliance. Trust between business partners and clients depends also on the 

accountability. The partners and clients must be confident that the autonomous logistics systems will not 

behave in a capricious and unfair manner. The clear accountability structures will reassure the stakeholders 

that there exist the mechanisms of correction of the errors, of compensation of the damage and of prevention 

of the recurrences.  

Regulatory Compliance in Global Freight and Delivery Data  

Compliance with regulatory regimes is one of the most important constraints affecting the use of MARL 

systems in global logistics networks. In addition to the jurisdictional differences, logistics operations operate 

under a wide variety of laws and regulations concerning the collection, storage, processing, and sharing of 

operational data regarding transportation safety, labor standards, trade compliance, and data protection. For 

autonomous decision-making systems, operationally compliant with all applicable regulatory requirements 

while continuing to perform well and scale to meet increasing demands of the network will be essential. 

Practically speaking, regulatory compliance introduces external constraints that limit the possible policy space 

of MARL agents.  

In terms of data protection, the data used in the MARL system must be collected, stored, processed, and shared 

in a manner that satisfies the requirements of various legal and regulatory requirements. The data required for 

the MARL system is derived from a wide variety of sources, including sensors, telematics, and enterprise 

systems. The data must be protected in accordance with the principle of fair information practices, as described 
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by the International Organization for Standardization (ISO) and the European Union's General Data Protection 

Regulation (GDPR), and using privacy-preserving machine learning techniques (Abadi et al., 2016; Wilkinson 

et al., 2016). The cross-border movement of data presents significant difficulties. A number of researchers have 

proposed federated learning paradigms as a method for conducting decentralized training of ML models, 

which do not require centralized collection of data, and thus, address the difficulties associated with cross 

border data flow issues (Yang et al., 2019).  

In addition to the regulatory requirements for data protection, logistics operations must also comply with 

transportation-related and labor-related regulations. As a result, the autonomous routing and scheduling 

decisions made by the MARL system must be made in accordance with various federal, state, local 

regulations, and labor agreements, and the autonomous routing and scheduling decisions must also be made in 

accordance with the hours-of-service limits for drivers, vehicle restrictions, and hazardous materials handling 

requirements. These types of constraints must be incorporated into the learning process of the MARL system 

through either constrained actions spaces or penalty mechanisms. From a control-theory perspective, this can 

be considered constrained optimization under uncertainty, where the feasibility of the solution is as important 

as the optimality of the solution.  

In addition to the regulatory compliance requirements, the MARL systems must also satisfy the explainability 

and auditability requirements imposed by regulatory agencies. There may be a requirement to explain why the 

MARL system has made certain decisions, especially when those decisions affect safety or the economics of 

the network. The MARL system must therefore incorporate features that enable the tracking of the decisions 

made by the MARL system and link those decisions to the relevant regulatory requirements and audit trails. In 

terms of business considerations, failure to comply with regulatory requirements poses serious risks to the 

entity operating the MARL system, including financial penalties, loss of operating privileges, and damage to 

reputation. As a result, compliance with regulatory requirements should be taken into account in the early 

stages of the design of the MARL system, rather than being considered an afterthought.  

Ethical AI Deployment and Fairness in Algorithmic Resource Allocation  

The deployment of ethical AI in logistics involves ensuring that the autonomous decisions made by the MARL 

system align with the values of society, such as fairness, equality, and respect for human dignity. The MARL 

system allocates scarce resources, prioritizes deliveries, and influences access to services in logistics. Those 

decisions can have different effects on different regions, customer groups, or communities. From a theoretical 

viewpoint, there are potential ethical implications of autonomous decision-making in logistics because the 

optimization objectives of the MARL system may conflict with societal values unless those values are 

formally included as part of the optimization objective function (Dwork et al., 2012).  

Ensuring fairness in algorithmic resource allocation in logistics requires defining what it means to treat 

customers fairly in logistics contexts. This could include providing similar service levels throughout regions, 

giving priority to vulnerable populations, or allocating resources proportionately to need. The MARL system 

must then encode these principles into the rewards or constraints of the MARL system. However, fairness is 

inherently multi-dimensional and context-dependent, and formalizing it is difficult. From a theoretical 

viewpoint, researchers have approached fairness in algorithmic resource allocation in logistics using fairness 

aware learning and multi-objective optimization (Dwork et al., 2012).  

Bias can occur in the MARL system through the training data, environment, or rewards. The historical data 

used in the MARL system may reflect existing inequities, and as a result, the MARL system may learn to 

develop policies that reinforce those inequities. Ethical deployment of the MARL system, therefore, requires 

careful consideration of the datasets used to train the MARL system, the design of the scenario(s) used to test 

the MARL system, and the methods used to evaluate the performance of the MARL system to identify and 

mitigate bias. Transparency and accountability are required for ethical evaluation of the MARL system. 

Without knowledge of the decision logic and outcomes of the MARL system, biased behavior may remain 

undetected (Mitchell et al., 2019; Raji et al., 2020).  

From an organizational viewpoint, ethical deployment of the MARL system contributes to long-term trust and 

legitimacy. Customers, employees, and regulatory agencies are becoming increasingly scrutinized regarding 
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the decisions made by AI systems. Demonstrating alignment with ethics can reduce reputational risk and 

promote long-term acceptance and utilization of the MARL system. Ultimately, ethical deployment of the 

MARL system contributes to the positive contribution of the MARL system to society while promoting 

operational improvements. Fairness, accountability, and transparency are not barriers to achieving optimal 

solutions but constraints that contribute to developing responsible intelligence.  

 CONCLUSION AND FUTURE RESEARCH DIRECTIONS  

Intelligent multi-agent reinforcement learning (MARL) is demonstrated in this research article as a 

foundational paradigm for autonomous coordination and real-time network optimization in logistics. It 

demonstrates the capability of MARL to transform logistics systems from reactive, rule-based systems into 

adaptable, learning-driven systems. Through modeling logistics networks as distributed, partially observable, 

and dynamically coupled systems, MARL enables decision-making that considers network externalities, 

anticipates disruptions, and coordinates resources across spatial and temporal dimensions. The theoretical 

contributions of this work are in defining logistics as a multi-agent control problem, establishing architectural 

principles for scalable coordination, and basing evaluations on learning, operational, and system-level metrics 

to provide scientific validity and relevance to enterprises.  

At the architectural level, this research demonstrates that pure MARL is insufficient for implementation in 

complex, safety-critical logistics environments. Future systems must employ hybrid architectures that combine 

MARL with classical optimization and graph-based representations. Classical optimization layers provide 

feasibility guarantees and constraint enforcement, while graph neural networks capture the relational structure 

of logistics networks, allowing the policy to generalize across topologies and scales. Hybridization is a critical 

area of future research, as it balances adaptability with stability, learning with control, and flexibility with 

governance. Theoretical work is required to establish convergence properties, stability guarantees, and error 

propagation across these layered architectures.  

Digital twin technology offers another major research frontier. Digital twins represent the ability to conduct 

predictive testing, counterfactual analysis, and safe experimentation by maintaining high-fidelity 

representations of real logistics systems. When coupled with MARL, digital twins enable robust policy 

development for rare, high-impact disruption scenarios and facilitate ongoing adaptation as system dynamics 

evolve. However, coupling digital twins with MARL creates a new set of theoretical challenges related to the 

co-evolution of policies and environment models. Theoretical advances in system identification, robust 

control, and meta-learning will be required to establish the long-term consistency between simulation and 

reality.   

Federated reinforcement learning is a necessary advancement of MARL deployment as logistics networks 

increasingly span across organizational and geopolitical borders. Federated approaches to MARL enable 

learning across distributed nodes without centralized aggregation of data, thereby protecting data sovereignty, 

privacy, and trust. However, federated MARL introduces deep theoretical challenges, heterogeneous 

environments, and strategic behavior among participants. Establishing convergence, fairness, incentive 

compatibility, and robustness against adversarial updates will be essential for enabling ecosystem-wide 

intelligence across global logistics networks.  

Finally, the future of intelligent logistics will be realized through the extension of MARL to include strategic 

decision-making through integration with multi-agent generative AI. Generative models can generate a wide 

variety of plausible future scenarios that may involve demand shifts, infrastructure changes, regulatory 

developments, and climate risk. When paired with MARL, the generation of future scenarios enables the 

systematic testing of operational policies and facilitates long-term planning under deep uncertainty. The 

combination of MARL and generative models will shift logistics intelligence from reactive optimization to 

proactive, scenario-based decision support, creating a vast array of new research areas at the intersection of 

reinforcement learning, generative modeling, and strategic management.  

Together, these research directions suggest the emergence of autonomous, self-regulated supply ecosystems 

that are comprised of distributed intelligence, hierarchical control, and continuous learning. Such ecosystems 

require both algorithmic sophistication and strong social and technical governance frameworks that address 
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transparency, accountability, ethics, and regulatory compliance. Therefore, the future of autonomous logistics 

research must take a socio-technical approach and recognize that successful autonomy requires the alignment 

of learning systems with organizational structures, human oversight, and societal values.  

In summary, this work situates multi-agent reinforcement learning as a central element of a larger intelligent 

infrastructure for logistics and, as a result, views MARL as a critical element of a broader intelligent 

infrastructure for logistics. Through specifying architectural principles, evaluation frameworks, and future 

research areas, this work provides a foundation for developing the science and practice of autonomous 

logistics. Ultimately, the creation of fully adaptive, explainable, and resilient logistics ecosystems will require 

sustained interdisciplinary research combining theories of learning, control, optimization, systems engineering, 

and governance in a single framework.  
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