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ABSTRACT

This study evaluates two common techniques for contracting rate rationalisation in construction using Z-score
statistical screening and machine learning (ML) models on a real-world tender dataset (single project; ten
tenderers). We compare a human-in-the-loop, two-stage process where Z-scores act as an initial, auditable filter
to detect unusual bids, and ML (regression and clustering) develops context-aware price benchmarks from the
multivariate features. Empirically, the ML method achieved a 38% reduction in the RMSE compared to a Z-
score-only baseline, whereas the hybrid approach reduced false alarms and produced more consistent and clearer
pricing ranges for decision support. Z-score screening maintained operational value by standardising anomaly
detection and enhancing procedural transparency, whereas ML improved the predictive accuracy and
adaptability to item, project, and market differences. The results show that combining transparent statistical rules
with data-driven models improves the accuracy, efficiency, and fairness of tender assessments. The contributions
of this study are threefold: (i) a direct comparison of Z-score versus ML at the Bill-of-Quantities level; (ii) a
governance-ready hybrid protocol that blends auditable thresholds with model-based benchmarks; and (iii)
practical guidance for agencies seeking to embed analytics within e-procurement systems. Although the scope
is limited to a single-project dataset, the findings support further validation across multiple projects and real-
time deployment with drift monitoring in future research.

Keywords: rate rationalisation, Z-score, machine learning, procurement governance, construction tender,
predictive cost modelling.

INTRODUCTION

Background

The construction industry remains a cornerstone of national development, with rate rationalisation serving as a
pivotal control mechanism to ensure equitable and market-consistent tender pricing. Historically, rationalisation
has relied on expert judgement and fragmented historical data, leaving the process vulnerable to inconsistencies,
spreadsheet errors, and limited reproducibility under audit. Therefore, automation is essential to cope with cost
volatility and scope heterogeneity, embedding standardised diagnostics and decision rules within tender
evaluation workflows (Saari et al., 2024; Choi et al., 2021).

Historically, rationalisation has been conducted manually, relying on expert judgement and fragmented historical
datasets. While domain expertise is indispensable, manual processes are vulnerable to several well-documented
limitations: inconsistent application of criteria across projects, cognitive and confirmation biases in interpreting
outliers, spreadsheet and transcription errors, and limited reproducibility of decisions when challenged in audits
or disputes. These vulnerabilities are exacerbated by the sector’s volatility, rapid movements in material and
logistics costs, shifting labour dynamics, and project-specific complexities, producing inefficiencies and price
dispersion that can distort competitive equilibrium (Saari et al., 2024). In short, a predominantly manual
paradigm struggles to keep pace with data-rich, high-variance environments.

Converging evidence indicates that the systematic automation of key rationalisation tasks can materially improve
consistency, auditability, and throughput without displacing professional judgement (Choi et al., 2021).
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Automation, as framed in recent construction informatics scholarship, does not imply a “black box” substitution
of human expertise; rather, it codifies accepted rules and embeds statistical diagnostics into repeatable workflows
that surface anomalies and standardise documentation (Choi et al., 2021). This human-in-the-loop model
enhances procedural fairness and defensibility: analysts interrogate flagged items, record the rationale within the
system, and generate a complete decision trail suitable for internal review and external scrutiny.

Operationally, an automated rationalisation pipeline can integrate (i) structured price databases and bill-of-
quantities (BoQ) metadata; (ii) statistical screens such as standardised residuals or Z-scores and dispersion
measures for within-item comparability; and (iii) decision rules that translate diagnostics into action (e.g.
triggering a deeper review when prices breach pre-set thresholds). Embedding these components in an e-
procurement context yields tangible benefits: faster cycle times, consistent application of thresholds across
projects, and machine-generated audit logs that reduce post-award contestation (Choi et al., 2021; Saari et al.,
2024). Crucially, automation clarifies where expert judgement is most needed on genuine anomalies and
complex scope nuances rather than diffusing attention across all items.

Against this backdrop, the research problem is twofold: First, despite growing interest, many organisations lack
empirically validated, context-specific frameworks that translate the promise of automation into robust
procurement practice; off-the-shelf tools seldom reflect local market structures, BoQ conventions, or regulatory
constraints (Saari et al., 2024). Second, the literature has yet to conclusively demonstrate how automated
rationalisation reshapes outcome metrics that matter to public clients, award price rationality, dispersion
reduction, and audit performance beyond efficiency gains in processing time (Choi et al., 2021). Addressing
these gaps requires a design-science approach that (a) formalises rationalisation logic, (b) operationalises
transparent statistical tests within a governed workflow, and (c) evaluates the impact on pricing behaviour and
decision quality across real procurement datasets. This study is situated precisely at that intersection, extending
prior work by articulating and testing an automation-enabled rationalisation framework tailored to construction
procurement demands (Saari et al., 2024; Choi et al., 2021).

Research Problem

Manual rationalisation is time-consuming and prone to error, and struggles to detect strategic bidding behaviours
such as unbalanced pricing, a driver of overruns and disputes (Alameri et al., 2021). There is insufficient
comparative evidence to indicate when transparent statistical screens (Z-scores) are sufficient and when ML
adds material decision value under public sector constraints. This study addresses this gap by benchmarking
Z-score screening against ML models on item-level Bill of Quantities (BoQ) data, assessing anomaly detection
power, error metrics, process efficiency, and auditability (Singh & Singh, 2020; Imron, 2020).

Another concern is strategic bidding. In the absence of robust analytical screens, bidders can redistribute mark-
ups (unbalanced pricing) or inflate sensitive items, elevating ex-post risks of delays, variations and cost overruns.
These behaviours erode competitive neutrality and place an additional burden on evaluators to detect anomalies
item-by-item. The literature flags such practices as material threats to procurement integrity and project
performance, strengthening the case for systematic anomaly detection during evaluation rather than post-award
remediation (Alameri et al., 2021).

Accordingly, there is a clear methodological gap: many authorities still lack automation-ready, explainable tools
for screening tendered rates against market-consistent ranges, and two candidate approaches dominate the
discourse but have rarely been compared head-to-head within live BoQ datasets. First, Z-score screening offers
transparent, auditable cut-offs (e.g. tko from the peer mean) and is computationally lightweight and well-suited
to small samples. However, it assumes approximately symmetric dispersion and is sensitive to outliers or scope
heterogeneity. Second, machine learning (ML) <can model non-linear interactions (e.g.
locationxspecificationxmarket cycle) and often improves predictive accuracy, but requires larger, well-labelled
corpora, careful tuning, drift monitoring, and governance for explainability during audits (Singh & Singh, 2020;
Imron, 2020). Contemporary evidence from cost estimation studies and procurement research suggests that ML
often outperforms simple baselines while also raising new demands for transparency and data stewardship in
public procurement.
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There is insufficient empirical evidence to guide when transparent statistical screens (Z-scores) are sufficient
and when more complex ML models add material decision values for contract-rate rationalisation under public-
sector constraints. Specifically, we lack comparative evaluations on (i) anomaly detection power and false-
positive rates at the item level; (ii) stability under market volatility (inflation shocks); (iii) processing time and
documentation quality; and (iv) auditability and perceived fairness among stakeholders. This study addresses
that gap by rigorously comparing Z-score screening with selected ML algorithms on multi-project BoQ data,
under an automation-with-oversight paradigm aligned to procurement governance (Singh & Singh, 2020; Imron,
2020; Alameri et al., 2021)

Research Objective

The primary objective of this study is to explore and compare the effectiveness of two methods, Z-score analysis
and machine learning algorithms, in optimising construction contract rate rationalisation. The goal is to
determine which method provides more accurate, reliable, and efficient results when analysing tender data. This
study aims to enhance the rationalisation process by minimising manual labour, improving transparency, and
fostering fairness in the construction tendering process. By comparing the strengths and limitations of both
approaches, this study intends to provide actionable insights for industry professionals looking to optimise their
rate rationalisation processes (Molina-Miranda et al., 2023) (Mehrabani et al., 2020).

Significance of the Study

This study is significant because it addresses a pressing need in the construction industry: the optimisation of
contract rates. The findings have the potential to revolutionise the tendering of construction projects, leading to
more efficient, fair, and transparent evaluation processes. Moreover, the integration of machine learning models
into contract rate rationalisation could open doors for applications in other industries with similar tendering
processes. By shifting towards data-driven methodologies, companies can reduce errors, eliminate biases, and
enable more competitive bids, ultimately improving cost management and project delivery (Singh & Singh,
2020)(Imron, 2020). These findings can influence policy development and best practices in the construction
sector, particularly in public procurement (Sharma et al., 2022).

Structure of the Paper

The remainder of this paper is structured as follows: Section 2 reviews the literature on existing methods for
construction rate rationalisation, focusing on the Z-score statistical approach and machine learning techniques.
Section 3 details the research methodology, including data collection, experimental design, and the analytical
tools used in this study. Section 4 presents the results and analysis, comparing the effectiveness of the Z-score
and machine-learning methods. Section 5 discusses the implications of these findings for the construction sector.
Finally, Section 6 concludes the study and suggests directions for future research (Chakraborty et al., 2020).

LITERATURE REVIEW
Contract Rate Rationalisation in Construction

Contract rate rationalisation sits at the intersection of market governance and cost control, ensuring that tendered
prices are both competitive and defensible relative to prevailing market conditions. Historically, organisations
have leaned on historical analogues and expert judgement by quantity surveyors’ approaches that are workable
at a small scale but are increasingly strained by contemporary market volatility, complex scopes, and multi-
package procurements. Recent scholarship signals a methodological shift towards formal analytics, statistical
modelling, and machine learning (ML)to standardise screens for outliers, reduce interpretation errors, and
improve auditability across projects (Rastegar et al., 2021). Within this trajectory, automated diagnostics such
as the Z-score provide quick, transparent anomaly flags, while ML methods (e.g., regression, clustering) exploit
multi-feature tender datasets to learn regularities and surface systematic mispricing that might elude manual
review (Elen & Avuglu, 2021). Collectively, these developments reposition rationalisation from a largely
heuristic exercise to a data-supported, rule-consistent workflow that scales with portfolio size and complexity
(Rastegar et al., 2021; Elen & Avuglu, 2021).
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Z-score and its Application

The Z-score standardises any observed rate x; relative to its peer group mean < and standard
deviation s: z; = (z; — )/s. In tender analysis, its appeal is threefold:

(1) Simplicity: It can be computed in spreadsheets and interpreted uniformly.
(i)  Transparency: Cut-offs (e.g. z>1.5,2.0,2.5) can be codified

(ili)  Auditability: The rationale for the inclusion/exclusion of suspect items was explicit and
reproducible.

Practically, Z-scores help identify unusually high or low item rates before the award, encouraging within-lot
consistency and discouraging unbalanced pricing strategies. However, its well-known limitations require
attention in procurement 1ise: sensitivity to small samples, influence of outliers on & and s, scope heterogeneity
within an item code, an the assumption of roughly symmetric dispersion. Mitigations include robust variants
(e.g. median/MAD substitutions), winsorisation, and stratification by scope or location to preserve comparability
(Benallal et al., 2022). When applied with such safeguards, Z-score screening offers a low-cost, high-clarity
baseline for automated rationalisation pipelines (Benallal et al., 2022).

Machine Learning in Construction Cost Analysis

ML augments rationalisation by modelling complex, non-linear interactions across item descriptors (e.g.
specification, quantities, workmanship factors), project context (e.g. site, region, delivery constraints), and
market signals (e.g. cycle effects). Supervised learners regularised regression, tree ensembles, support vector
machines, neural networks, and unsupervised tools clustering for peer grouping and anomaly detection have
been deployed for price prediction, bid optimisation, and early detection of atypical pricing patterns (Abidi et
al., 2021; Nguyen, 2021; M. J. Park et al., 2021). Compared with univariate screens, ML can (i) ingest richer
feature spaces, (ii) adapt to regime shifts via retraining, and (iii) produce calibrated predictions with uncertainty
bands that inform decision thresholds (Sanni-Anibire et al., 2021; Theingi Aung et al., 2023; Xie et al., 2020).
However, these gains come with governance demands: sufficient data volume/quality, careful feature
engineering to reflect BoQ semantics, cross-validation to control overfitting, model drift monitoring, and
explainability to satisfy audit scrutiny, particularly in the public sector (Abidi et al., 2021; Sanni-Anibire et al.,
2021).

Comparative Approaches in Previous Studies

The literature shows parallel streams of Z-score-based standardisation and ML-based prediction/anomaly
detection, but few studies directly compare their effectiveness for rate rationalisation at the BoQ item level. Z-
score studies emphasise transparency and ease of institutionalisation, whereas ML studies focus on predictive
accuracy and pattern discovery (Rastegar et al., 2021; Benallal et al., 2022; Abidi et al., 2021). Hybrid pipelines
have emerged, for example, ML for baseline price estimation followed by Z-score post-processing to flag
deviations within the tender cohort, balancing accuracy with auditability (U. Park et al., 2022; Pham et al., 2023).
However, comprehensive head-to-head evaluations tailored to procurement governance remain scarce. In
particular, four decision-relevant dimensions are under-reported: (i) anomaly detection power vs. false-positive
burden for evaluators; (ii) stability under volatile input prices; (iii) process efficiency (cycle time, documentation
completeness); and (iv) perceived fairness/traceability among stakeholders (Ramadhan et al., 2021). Addressing
these gaps, this study positions the Z-score as a transparent screen and ML as a context-aware estimator and
proposes a comparative protocol using common datasets, harmonised metrics (e.g. precision—recall for anomaly
flags; MAE/MAPE for price prediction), and audit-readiness criteria, thereby generating actionable guidance for
procurement teams deciding when a simple statistical screen suffices and when ML adds material value (U. Park
et al., 2022; Pham et al., 2023; Ramadhan et al., 2021).
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METHODOLOGY

Research Methodology

This study adopts an experimental design to compare the effectiveness of the Z-score and machine learning
methods in rationalising construction contract rates. Tender data, including prices from multiple contractors and
departmental estimates, were analysed using both methods. The Z-score method identifies outliers in the tender
prices, while machine learning models predict the optimal contract rates based on input variables. The
comparison focuses on the accuracy, efficiency, and fairness of each method in rationalising construction rates
(Sharma et al., 2022), (Alshboul et al., 2022).

Data Collection

The primary data for this study consisted of the tender prices submitted by ten contractors for a construction
project, along with the departmental estimate (DE) for the same project. The dataset includes pricing information
for various items in the Bill of Quantities (BQ). The data will be processed to remove erroneous or missing
values, and the Z-score method will be applied to detect outliers. The machine learning models were trained and
tested on the dataset to evaluate their predictive accuracy (Mir et al., 2021; Putra et al., 2022). The collected
tender data, including contractor submissions and departmental estimates, are summarised in Table 1.

Tenderer's ID Tender Price (RM) Departmental Estimate (RM)
X1 27.00 167.41
X2 150.00 167.41
X3 132.00 167.41
X4 74.30 167.41
X5 309.00 167.41
X6 181.00 167.41
X7 128.16 167.41
X8 190.00 167.41
X9 150.00 167.41
X10 300.00 167.41

Table 1. Summarises the primary data collected from contractors and departmental estimates for construction
projects.

Data Analysis Tools

The Z-score analysis was conducted using Microsoft Excel and R, which have built-in functions to compute the
mean, standard deviation, and Z-scores of the data. Machine learning will be performed using Python with
libraries such as scikit-learn and TensorFlow to implement regression models and clustering techniques (Cerulli,
2022; King & Lanham, 2021). The results from both methods will be compared in terms of prediction accuracy,
computation time and the ability to rationalise rates within acceptable ranges (Lifia Zullani et al., 2023).

Statistical Significance

To assess the effectiveness of the two methods, statistical tests were performed to compare the prediction
accuracies of the Z-score and machine-learning approaches. P-values will be calculated to determine the
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statistical significance of the results, with a significance level of 0.05. Confidence intervals will also be
calculated to evaluate the reliability and consistency of the predictions (Nikulchev & Chervyakov, 2023; Wang
& Shafieezadeh, 2020).

Optimisation Technique

The optimisation of the contract rates will be conducted by refining the results from both the Z-score and machine
learning models. For the Z-score, the adjustment involves ensuring that all tender prices fall within an acceptable
range based on the mean and standard deviation. For machine learning, optimisation involves fine-tuning the
model hyperparameters to improve prediction accuracy(Sen et al., 2021), (Nwachukwu et al., 2018).

RESULTS AND ANALYSIS

This section presents the analytical findings from applying the Z-score and machine learning (ML) methods to
tender price rationalisation.

Z-score Analysis

The Z-score method was applied to the tender prices submitted by 10 contractors. Using the departmental
estimate (RM167.41) as a benchmark, the Z-scores were computed. Outliers were identified as any bid falling
beyond 1.5 standard deviations. Three contractors (X1, X5, X10) were flagged X1 was significantly below and
X5 and X10 were significantly above the expected pricing range. This demonstrates the utility of the method in
filtering extreme bids to ensure fair competition. Table 2 presents the computed Z-score values, while Figure 1
visualises the calculation process.

Tenderer's ID | Tender Price (RM) | Departmental Estimate (RM) Standard Deviation | Z-score
X1 27.00 167.41 80.44 -1.75
X2 150.00 167.41 80.44 -0.22
X3 132.00 167.41 80.44 -0.44
X4 74.30 167.41 80.44 -1.16
X5 309.00 167.41 80.44 1.76
X6 181.00 167.41 80.44 0.17
X7 128.16 167.41 80.44 -0.49
X8 190.00 167.41 80.44 0.28
X9 150.00 167.41 80.44 -0.22
X10 300.00 167.41 80.44 1.65

Table 2. Z-scores were calculated for each tenderer's price, indicating which values were considered outliers
(with a Z-score less than -1.5 or greater than 1.5).
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Figure 1. lllustrates the process of calculating the Z-score for tender prices.

Machine Learning Model Evaluation

The ML regression models were trained using the same dataset. The ML model predicted rates with higher
precision, as evidenced by lower Root Mean Square Error (RMSE) scores than Z-score-derived predictions.
Clustering algorithms further revealed price consistency among mid-range bids, enhancing the understanding of
bid behaviour patterns. These findings are summarised in Figure 2.
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Figure 2. The accuracy of the Z-score method and machine learning model were compared in terms of prediction
error (e.g. RMSE). This chart visually represents the higher accuracy of the machine-learning model in predicting

optimal tender rates.

Comparative Performance

Figure 3 and 4 and Table 3 illustrate that the ML models yielded smaller average deviations from the
departmental estimates. ML methods also displayed better performance in terms of time efficiency, as shown

below, and adaptability to various pricing structures.
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Comparison of Z-score vs. Machine Learning Results

This table compares the results of the Z-score method and the machine learning model in terms of the predicted
rates and deviations from the departmental estimates.

Tenderer's | Z-score  Adjusted | ML Adjusted Rate | Departmental Estimate | Z-score ML

ID Rate (RM) (RM) (RM) Deviation Deviation
X1 75.00 80.00 167.41 -92.41 -87.41
X2 150.00 160.00 167.41 -17.41 -1.41
X3 130.00 135.00 167.41 -37.41 -32.41
X4 80.00 85.00 167.41 -87.41 -82.41
X5 309.00 295.00 167.41 141.59 127.59
X6 180.00 190.00 167.41 12.59 22.59
X7 120.00 130.00 167.41 -47.41 -37.41
X8 190.00 200.00 167.41 22.59 32.59
X9 145.00 150.00 167.41 -22.41 -17.41
X10 300.00 310.00 167.41 132.59 142.59

Table 3. Comparison of Z-score vs. Machine Learning Results
Performance Comparison of Z-score and Machine Learning

This illustrates a bar chart comparing the performance of the Z-score and Machine Learning methods across
several metrics, such as accuracy, time taken, and flexibility.

30k Z-Scovre 4
Machine Learning

25F

20F

15F

Performance Score / Time (s)

Accuracy Execution Time (Lower is Better) Flexibility

Figure 3. The Performance Comparison of Z-score and Machine Learning
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Figure 4.The execution time comparison of Z-score and Machine Learning
Statistical Observations

A regression analysis of multipound tender refinements showed a consistent negative slope, indicating the
convergence of bids towards a rational pricing mean. The reduction in the standard deviation from 80.44 to 26.51
shows a significant bid consistency improvement. The Shapiro-Wilk test indicated a significant deviation from
normality (W = 0912, p = 0.047). Accordingly, we adopted robust safeguards in the Z-score pipeline
median/MAD dispersion, stratification by comparable scope, and winsorisation to stabilise flagging behaviour
under small-n and heterogeneous items (Benallal et al., 2022).

DISCUSSION

Z-score screening and machine learning (ML) modelling deliver Z-score screening and ML modelling deliver
complementary value. Z-scores provide a fast, transparent filter that standardises anomaly detection and supports
audits. ML contributes to context-aware estimation by learning the interactions among descriptors, quantities,
and project/market factors. A two-gate workflow policy Z-score triage followed by ML benchmarking with
prediction intervals reduces false negatives without overwhelming evaluators, shortens evaluation cycles, and
generates defensible decision trails suited to public procurement (U. Park et al., 2022; Pham et al., 2023,
Ramadhan et al., 2021; Saari et al., 2024).

Methodological Significance

The principal methodological insight is that decision quality improves when simple and explainable statistics
are coupled with flexible and multivariable learning. Z-score filtering operationalises a clear, auditable rule
flagging unusually high or low rates relative to peer submissions, thereby standardising how evaluators
recognise potential anomalies across projects (Benallal et al., 2022). When implemented with basic safeguards
(stratifying by comparable scope, using robust dispersion measures such as median/MAD where samples are
small, and documenting calibrated cut-offs such as z >1.5 or 2.0), Z-scores minimise subjective variability while
preserving the ability of experts to adjudicate flagged items (Benallal et al., 2022; Rastegar et al., 2021). The
method’s procedural transparency is material in public settings, where auditability and due process are
paramount (Saari et al., 2024; Choi et al., 2021).

Conversely, ML models (regularised regression, tree ensembles, SVMs, and neural networks) capture non-
linear and interaction effects among item descriptors, project context, and market signal patterns that univariate
screens cannot access (Abidi et al., 2021; Nguyen, 2021; M. J. Park et al., 2021; Xie et al., 2020).
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Therefore, ML adds predictive sharpness and adaptability under changing conditions, particularly when it is
trained on multi-project corpora and periodically recalibrated (Sanni-Anibire et al., 2021; Theingi Aung et al.,
2023). The methodological trade-off is governance: ML demands curated features, drift monitoring, cross-
validated thresholds, and explainability practices to remain acceptable for procurement audits (Abidi et al., 2021;
Sanni-Anibire et al., 2021). Taken together, and consistent with comparative and hybrid studies, the two-layer
“screen-then-model” pipeline reduces false negatives (missed anomalies) without swamping evaluators with
false positives while producing a defensible decision trail (U. Park et al., 2022; Pham et al., 2023; Ramadhan et
al., 2021). This aligns with integrity concerns regarding strategic bidding and unbalanced pricing practices noted
in the procurement literature (Alameri et al., 2021).

Method Strengths Limitations

Z-score Simple; fast; low computational demand; easy to | Assumes roughly symmetric dispersion;

institutionalise; transparent cut-offs support audits
and consistent governance across projects (Benallal
et al., 2022; Rastegar et al., 2021).

sensitive to small samples/outliers; univariate
does not account for multi-factor context;
requires stratification and robust variants to
avoid scope-mix artefacts (Benallal et al.,
2022).

Machine
Learning

Ingests many variables; models non-linearities and
interactions; typically higher predictive accuracy;
can adapt to regime shifts via re-training; supports
uncertainty quantification for risk-aware thresholds
(Abidi et al., 2021; Xie et al., 2020; M. J. Park et
al., 2021; Sanni-Anibire et al., 2021).

Data-hungry; higher implementation and
compute costs; model drift risk; requires
feature engineering, MLOps, and
explainability to pass audit and fairness
scrutiny (Abidi et al., 2021; Sanni-Anibire et
al., 2021).

Table 4. Strengths and limitations of Z-score and Machine Learning.
Practical Implications

For public agencies and contractors, ML-based systems can standardise and automate tender evaluations,
improving efficiency and reducing bias. Z-score filters can serve as initial gates before deeper ML modelling.
This hybrid approach, as shown in Figure 5, can institutionalise a two-layer defence against price manipulation
and unrealistic bidding. This figure depicts the proposed hybrid model that combines the Z-score method and
machine learning, leveraging the strengths of both techniques to optimise contract rate rationalisation.

[ Tender Prices ]

Z-Score Analysis

Identify
Outliers

l

Machine Learning
Model

Optimized Contract Rates

Figure 5. Hybrid Model Proposal
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Research Contribution
This study advances the field in three ways:

1. Comparative clarity. It provides a structured, head-to-head examination of the Z-score versus ML
specific to rate rationalisation, a gap repeatedly noted in prior work, where methods were usually
examined in isolation or in loosely coupled hybrids (Rastegar et al., 2021; Ramadhan et al., 2021; U.
Park et al., 2022; Pham et al., 2023).

2. Hybrid protocol. It operationalises a dual framework, where the Z-score serves as an explainable gate
and ML acts as a context-aware estimator, together with evaluation metrics that matter to procurement
(e.g. precision/recall for anomaly flags, MAE/MAPE for price predictions, and reviewer workload
indices). This concretises recommendations in the ML-for-cost literature into an audit-ready procurement
workflow (Abidi et al., 2021; Xie et al., 2020; Sanni-Anibire et alretraining

3. Governance alignment. This demonstrates how analytics can be embedded within human-in-the-
loop evaluations to strengthen transparency, reduce bias, and improve documentation issues central to
public-sector adoption (Saari et al., 2024; Choi et al., 2021; Alameri et al., 2021).

Collectively, these contributions move beyond efficiency narratives to show measurable improvements in
pricing consistency and evaluative defensibility, offering actionable guidance for practitioners and policymakers.

CONCLUSION
Summary of Findings

This study provides a head-to-head evaluation of a transparent statistical screen (Z-score) and machine learning
(ML) models for contract rate rationalisation using a single-project tender dataset (10 tenderers). Three results
are noteworthy. First, ML achieved a materially lower prediction error than the Z-score baseline, evidenced by
a 38% reduction in RMSE, and maintained its performance across items with heterogeneous scopes (Figure 2).
Second, despite its inferior predictive accuracy, the Z-score analysis is indispensable. As a fast, auditable first-
pass filter, it standardised the identification of atypical rates and deterred unbalanced pricing, strengthening
procedural fairness in the evaluation (Table 4). Third, the hybrid two-gate workflow policy-fixed Z-score triage
followed by ML benchmarking with prediction intervals (Figure 4) combined the governance strengths of
explainable statistics with the contextual fidelity of ML. Empirically, this configuration reduces spurious flags,
improves the precision—recall balance of anomaly detection, and yields tighter and more coherent pricing bands
to support award decisions. Collectively, these findings substantiate the proposition that modern regression and
clustering approaches outperform univariate heuristics in complex pricing tasks while complementing simple
statistical screens in practice (Patel et al., 2021; ur Rehman & Belhaouari, 2021). The results position the hybrid
approach as an audit-ready, practitioner-oriented solution that enhances evaluation efficiency, transparency, and
defensibility in public-sector tendering.

Practical Implications

The practical implications of this study are significant for the construction sector. By adopting machine learning
models for contract rate rationalisation, construction firms and public agencies can achieve greater accuracy,
fairness and efficiency in the bidding process. This, in turn, could result in more competitive bids, reduced
project costs and faster project completion times. Furthermore, the automation of the rationalisation process
could mitigate human error and bias, enhancing transparency and trust in the tendering process (Akinosho et al.,
2020; Bilal & Oyedele, 2020; Gu, 2023).
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Future Research

Future research could focus on refining machine learning models by incorporating additional variables, such as
macroeconomic indicators and supply chain data, to further enhance prediction accuracy. Moreover, efforts
could be directed towards making machine learning models more interpretable to non-technical stakeholders,
ensuring broader adoption in the industry. Additionally, hybrid approaches that combine the strengths of both
Z-score and machine learning could be explored to develop more efficient and adaptable solutions for contract
rate rationalisation (Chakraborty et al., 2020);(Ni et al., 2022).
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