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ABSTRACT

Assessing Water quality classification has become an important research area as the demand for clean and safe
water continues to grow worldwide. In recent years, Machine Learning (ML) has shown great potential in
improving how water quality is monitored and analyzed. By using ML models, researchers can process large
and complex environmental data more effectively to detect pollution, predict water conditions, and support better
management decisions. While many studies have focused on using sensors and data analytics for monitoring,
only a few have provided a full review of the different ML methods and their effectiveness in classifying water
quality. Therefore, this paper aims to achieve two main goals: (1) to conduct a Systematic Literature Review
(SLR) of existing ML techniques applied in water quality classification, and (2) to identify the main findings,
challenges, and future opportunities in this field. Through a careful review and comparison of previous research,
this paper hopes to give a clearer overview of how ML contributes to water quality analysis and guide future
work in creating more accurate and intelligent systems for real-world environmental applications.

Keywords: Machine Learning, Water Quality Monitoring, Classification, Environmental Management, Smart
Sensing Systems

INTRODUCTION

Water is a fundamental resource for life, yet its quality is increasingly threatened by pollution, climate change,
and infrastructure challenges. Traditional water-quality assessment methods such as laboratory sampling and
manual chemical testing are reliable, but they are time-consuming, expensive, and unsuitable for continuous
real-time monitoring. Recent reviews emphasize that the volume of available aquatic-environment data has
grown substantially, making advanced data-driven methods essential for efficient classification and prediction
of water quality [1].

In parallel, machine learning (ML) techniques have emerged as promising tools for water quality classification,
capable of handling large datasets, recognizing complex nonlinear relationships, and improving classification
accuracy beyond what conventional models can offer. Studies have applied a range of ML models from Support
Vector Machines and Random Forests to Deep Neural Networks and ensemble frameworks to classify water
quality based on multiple SENSOR inputs and environmental variables [2]. Despite these advances, the
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applicability of such models across different water environments remains fragmented, with variations in
parameter selection, model interpretability and data-quality issues limiting broader deployment.

Recognizing this gap, this paper presents a Systematic Literature Review (SLR) of research published between
2019 and 2025 focused on machine-learning methods for water quality classification. The objectives of this
review are two-fold: (1) to identify, categorize and compare machine learning models and their performance in
water quality classification tasks; and (2) to highlight key challenges, limitations and future research directions
in the field. By synthesizing findings from multiple studies, this review aims to provide insights for researchers
seeking to develop robust, generalizable and real-time water quality monitoring systems.

Motivation & Related Work

Several factors motivated the authors to conduct this systematic literature review (SLR). While previous studies
on machine learning for water quality classification exist, most have not provided an in-depth discussion of the
specific processes and techniques involved in data analysis and model development. Based on the study
conducted by Yang et al. the research highlights the increasing concern over water pollution, which poses serious
risks to aquatic life, human health, and overall environmental sustainability. As the demand for clean and safe
water continues to grow, traditional monitoring methods are often found to be inefficient, time-consuming, and
unable to provide real-time analysis. The authors identified limitations in current approaches, particularly in
terms of data resolution, atmospheric correction, and the general applicability of models for accurate water
quality assessment. To address these issues, the study explores the potential of machine learning (ML) as a
modern solution for classifying and predicting water quality parameters more efficiently. By leveraging
algorithms such as Support Vector Machine (SVM), Random Forest, and Artificial Neural Networks (ANNSs),
machine learning offers improved accuracy and adaptability across various environmental conditions [3].

Additionally, the integration of remote sensing and loT-based sensors has further enhanced data collection and
real-time monitoring capabilities. Overall, this research contributes valuable insights to the field of
environmental monitoring by demonstrating how machine learning can revolutionize water quality
classification, supporting sustainable water management practices and enabling faster, more reliable decision-
making processes for the protection of water resources.

Moreover, based on the study conducted by the authors Lokman et al., the research emphasizes the urgent need
for effective prediction and management of water quality, particularly in countries like Malaysia, where rapid
industrialization, agricultural runoff, and urban development have contributed significantly to water pollution.
This issue is critical because maintaining clean and sustainable water resources is essential for both
environmental balance and public health. The authors identified limitations in existing predictive models,
particularly in terms of data quality, model interpretability, and the integration of spatio-temporal and fuzzy
logic techniques, which often hinder accurate water quality assessment. To overcome these challenges, the study
focuses on the potential of machine learning (ML) approaches to enhance forecasting and classification
performance. By analyzing various ML models such as Support Vector Machines (SVM), Random Forests (RF),
Artificial Neural Networks (ANNs), and hybrid models the research aims to identify the most efficient and
interpretable algorithms for improving prediction accuracy. Overall, this paper contributes to the growing body
of work in environmental informatics by providing a comprehensive evaluation of how machine learning
techniques can advance water quality monitoring and support sustainable water management strategies in
polluted and high-risk regions [1].

Next, based on the study conducted by the Talukdar et al., the research underscores the growing importance of
water quality monitoring and modeling as a means to protect and improve aquatic ecosystems and their
surrounding environments. Ensuring clean and safe water resources is vital not only for ecological sustainability
but also for public health and socio-economic development. The study highlights the integration of computer
science and mathematical modeling in developing advanced algorithms capable of accurately assessing and
predicting water quality parameters an essential step toward effective environmental management. However, the
authors identified a significant gap in existing research, particularly in the comparative evaluation of different
water quality models and their effectiveness across diverse environmental conditions. To address this issue, the
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paper aims to review and analyze various machine learning and statistical models used for water quality
classification, providing insights into their strengths, limitations, and suitability for different scenarios. Overall,
this research contributes to the broader understanding of data-driven water quality management by offering
practical guidance for selecting and applying appropriate computational tools in environmental monitoring and
decision-making [4].

Based on the study conducted by Ejigu, the research focuses on the increasing challenges of water quality
modeling caused by rising water demands driven by population growth, urbanization, and industrialization,
which collectively contribute to the deterioration of water resources. Ensuring clean and sustainable water
systems has become a critical global priority, as poor water quality directly impacts human health, ecosystems,
and economic activities. The study emphasizes the importance of water quality modeling as a fundamental tool
for effective management, monitoring, and policy formulation in integrated water resource and environmental
management frameworks. However, the authors identified a notable gap in the standardization and
harmonization of modeling approaches, as existing models often differ in structure, parameterization, and
applicability. To address this issue, the paper aims to review and compare major water quality models, assessing
their strengths, limitations, and inherent uncertainties. Overall, the study contributes valuable insights toward
improving the accuracy, reliability, and adaptability of water quality models, supporting better decision-making
and sustainable water management practices [5].

Lastly, based on the study conducted by Yan et al, the research focuses on the urgent need for effective surface
water quality monitoring and management, recognizing its importance for essential human activities such as
agriculture, industry, and daily consumption. Maintaining high-quality water resources is crucial for ensuring
public health, ecological balance, and sustainable development. The study emphasizes the significance of water
quality indices (water quality classificationls, TSIs, HMIs) as key indicators for assessing and managing water
quality conditions. However, the authors identified a major gap in the integration of advanced technologies,
particularly those that enable real-time monitoring and predictive management systems.

To address this issue, the paper proposes the development of a next-generation water quality management
framework that leverages expert systems and machine learning algorithms to enhance the precision, speed, and
reliability of water quality assessments. Overall, this research contributes to the advancement of intelligent
environmental management systems, paving the way for smarter and more sustainable water resource monitoring
in the future [6].

METHODOLOGY

To structure the review process effectively, this study adopts the Systematic Literature Review (SLR)
methodology. The research framework illustrated in Figure 1 is developed based on the SLR guidelines proposed
by [7]. The methodology is divided into three main stages: (1) Preparation, (2) Organization, and (3) Results and
Discussion. Each stage consists of several systematic steps. In the Preparation stage, the tasks include
recognizing the need for the review and formulating the research questions. The Organization stage covers key
activities such as the search process, screening of relevant studies, and data extraction and synthesis. Finally, the
Results and Discussion stage focuses on analyzing, interpreting, and presenting the findings in detail. The
specific implementation and sub-stages of each phase are further elaborated in the following sections.

The discussion section shows how the author interprets the results considering what was already known, and to
explain the new understanding of the problem after taking your results into consideration. The discussion must
connect with the Introduction, so it tells how your study contributes to the body of knowledge and society.
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Figure 1. Review Research Methodology
Preparation Phase

The justification for conducting this review is explained in the previous section (Motivation and Related Works),
which examined earlier studies and review papers related to water quality assessment. From the analysis, it was
found that many existing SLRs lack detailed discussions on the machine learning algorithms currently used for
water quality classification and prediction. Therefore, this SLR was developed to address that gap by providing
a comprehensive analytical review of different algorithms highlighting their strengths, limitations, processes,
and overall effectiveness in handling various challenges related to water quality monitoring. The methodological
framework and research questions of this SLR were formulated based on the study’s main objective to enhance
understanding and application of machine learning in this domain. The following Research Questions (RQs)
have been formulated, and the rationale for each one of them is provided in Table 1.

Table 1. Research Questions (RQS)

Research Questions (RQS)

Motivations

RQ1: What types of papers are covered by the
investigation?

To identify the different sets of the finding studies in
the domain.

RQ2: What are the most commonly used or
compared machine learning algorithms for
classifying and predicting water quality?

To identify the algorithms that have been most
frequently applied or compared for water quality
classification.

RQ3: How many sensors are used, and what types
are implemented for water quality classification?

To determine the number and types of sensors typically
used in water quality classification systems.

RQ4: What are the performance metrics used to
evaluate classification algorithms in water quality
classification?

To evaluate the performance of classification
algorithms in water quality classification is essential to
determine their effectiveness, reliability, and
applicability.
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RQ5: What kind of research on water quality | To determine the field of research related to water
classification using machine learning has been | quality classification using machine learning.
conducted?

RQG6: What are the key challenges and limitations | To determine the challenges and limitations in applying
associated with classification algorithms in water | machine learning algorithms for water quality
quality classification using machine learning? classification.

RQ7: What are the future trends and potential | To identify new trends, future research directions, and
research directions for machine learning algorithms | innovative ideas in the field of machine learning for
in water quality classification? water quality classification.

Organization Phase

This phase involves the execution of the specified stages: a systematic methodology for pinpointing pertinent
studies, the approach utilized for selecting the articles to be included, and the process of data acquisition and
analysis. The subsequent subsections will elaborate on the implementation of each of these stages below:

Searching Process

The proper definition of the search process is essential to ensure accurate and reliable outcomes [8] In this SLR,
the identification and selection of sources are conducted systematically to gather all relevant studies related to
machine learning for water quality classification. This process is guided by two (2) main elements: 1) the use of
diverse and well-structured search strings, and 2) the selection of credible and appropriate academic databases.

The search terms are formulated in this SLR based on the listed Research Questions (RQs) and standard
procedure in which consists of the following steps. In the formulation of the search terms of this SLR, it has its
basis on the listed research questions as well as the standard procedure that entails the following steps [1]. Below
are the steps:

1) Recognizing the related keywords of these Research Questions (RQs).

2) Including the expected synonyms and spelling of the term’s alternatives.

3) Checking the appropriateness of the study search terms.

4) Compiling the search terms with Boolean OR or AND operators.

The result for the search strings after following the steps above as below:

* (“Machine Learning” OR “Artificial Intelligence”) AND “Water Quality Classification” )

+ (“Water Quality Prediction” OR “Water Quality Assessment” OR “Water Quality Monitoring”) AND
(“Machine Learning” OR “Deep Learning”)

e (“Water Quality”) AND (“Classification” OR “Prediction” OR “Detection””) AND (“Neural Network” OR
“Support Vector Machine” OR “Random Forest™)

* (“Machine Learning Models” OR “Al Models”’) AND (“Water Quality Parameters” OR “Water Pollution”)

* (“Machine Learning” OR “Artificial Intelligence”) AND (“Water Quality Classification) AND (“Supervised
Learning” OR “Unsupervised Learning” OR “Hybrid Models”)

In this SLR, the search process was conducted using three major electronic databases: Scopus, IEEE Xplore, and
ScienceDirect. These databases were selected because of their extensive coverage of high-quality research
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papers, technical reports, and review articles related to Machine Learning and Water Quality Classification.
First, Scopus serves as one of the largest multidisciplinary databases, indexing peer-reviewed journals, books,
and conference proceedings across scientific and engineering disciplines [9]. Second, IEEE Xplore, managed by
the Institute of Electrical and Electronics Engineers (IEEE), provides access to a wide collection of publications
focusing on computer science, engineering innovations, and artificial intelligence applications [10]. Lastly,
ScienceDirect, operated by Elsevier, is a comprehensive full-text database offering scientific and technical
research materials in environmental science, data analytics, and machine learning [11]. To ensure the relevance
and reliability of the findings, this review limits the search to studies published within the last five years, from
2020 to December 2025, capturing the most recent trends and developments in the field.

Screening Strategy

Another key component defined in the research methodology is the study selection strategy, which ensures that
only the most relevant and high-quality studies are included in this review. After implementing the defined
search process, a total of 60 papers were initially retrieved. To refine these results and identify the most relevant
studies related to Machine Learning for Water Quality Classification, the selection process was carried out in
two (2) stages:

1. Applying inclusion and exclusion criteria, and
2. Conducting filtering based on the Quality Standard Questions (QSQ) of the studies.

Table 2 presents the inclusion and exclusion standards established for this SLR. All retrieved studies were
screened carefully following these criteria. Research papers were included if they focused on the application of
machine learning, artificial intelligence, or data-driven models in water quality monitoring, prediction, or
classification, and provided at least one potential answer to the identified research questions based on the analysis
of their titles, keywords, and abstracts. Studies were excluded if they were published in languages other than
English, did not address water quality or machine learning, or focused on unrelated environmental or industrial
domains. Finally, a duplicate analysis was performed to remove repeated entries and ensure that only the most
recent and complete versions of each article were retained for review.

Table 2. Inclusion and Exclusion Standard

Inclusion Search Standard Exclusion Search Standard

Studies must be written in the English language. Studies that are not written in English language

Studies have potential to answer Research Questions | Studies will avoid duplicating the copies, review
(RQs) based on keywords, title, and abstract. paper, and only the complete version included
for this SLR.

Studies are focusing on Water Quality Classification Studies that are not focusing on Water Quality
Classification

Studies that are reporting the issues, challenges, and future | Studies that are not clearly defined the concern
enhancements of machine learning techniques for water | of Water Quality Classification.

quality classification.
Gray Studies (Study that non-publish, non-peer

reviewed and work in progress)

The Inclusion and exclusion standard have been done to improve the quality of the search and produce final
studies. Each of the studies were precisely studied (title, abstract and full content) and evaluated according to
the Quality Standard Question (QSQ) in Table 3. The final studies will be scored as follows: Yes = 3, Moderately
= 2, and No= 1. The aggregate of the answers to all the questions determines the study's overall score.
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Table 3. Quality Standard Question (QSQ)

QSQ ID | Inclusion Search Standard Exclusion Search Standard

QSQ1 Are the aims of studies clearly stated? Yes=3 / moderate =2 /no =1

QSQ2 Are the context of studies well defined? Yes=3 / moderate =2 /no =1

QSQ3 Does the study focus on RQ in the specified domain? Yes=3 / moderate =2 /no =1

QSQ4 Are the proposed classification algorithms in studies well | Yes= 3 / moderate =2 /no =1
explained?

QSQ5 Is the proposed classification algorithm can classify the water | Yes= 3 / moderate =2 /no =1
quality pattern?

QSQ6 Is the proposed classification algorithm compared with other | Yes= 3 / moderate =2 /no =1
classification algorithm?

QSQ7 Is the result well explained? Yes= 3 / moderate =2 /no = 1

A quality score threshold of 17 was selected as it represents more than 80% of the maximum achievable score,
ensuring that only studies with sufficient methodological rigor and relevance were included. Each study was
independently assessed using the quality score questions. Any disagreements in scoring were resolved through
discussion until consensus was achieved.

Figure 2. Final Screening Result

All the authors of the present study discussed the results and compared them to resolve all contradictions and
reach a consensus. To enhance the reliability of the outcome, only the research that have quality ratings of less
than 17 (Meaning that they are less than half of the maximum quality rating score of 21) will not conduct in this
SLR. Figure 2 shows the result of the screening strategy. Table 4 shows the Quality Standard Question (QSQ)
scores for the results of 17 studies. Figure 2 shows the screening process from three electronic databases until
final collection of studies counted.

The highest-quality papers are those that achieved the maximum total QSQ score of 21, indicating full
compliance with all seven quality criteria. Specifically, studies cited as [12], [13], [14], [15], [17], [18], [19],
[21], [22], [25], and [28] were identified as the best papers, as each consistently scored 3 across all or nearly all
QSQ items. Among these, references [12], [13], [14], [15], [17], [18], [19], [20], [21], and [22] demonstrated
perfect methodological rigor with uniform maximum scores in QSQ1-QSQ?7, reflecting strong research design,
clarity of objectives, robust analysis, and reliable reporting. In contrast, studies [16], [23], [24], [26], and [28]
obtained comparatively lower scores (17-19), indicating minor methodological limitations in specific quality
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dimensions. Overall, the citation-based QSQ analysis highlights [12], [13], [14], [15], [17], [22], [25], and [27]
as the most reliable and methodologically sound references for this review.

RESULTS & DISCUSSION
Distribution of Studies (RQ1)

The total paper to be discussed are 17 studies from three electronic libraries which are Scopus, IEEE and Science
Direct as a final screening for this SLR. These final studies consist of 17 journal papers which are from the final
selected studies. Figure 3 illustrates the percentage of the publication of the final screening studies. Figure 3
shows the percentage of included studies which is IEEE is around 58.8%, Scopus is around 17.6% and Science
Direct is around 23.5%.

Science Direct
23.5%

IEEE
5HB.8%

SCOPUS
17.6%

Figure 3. Percentage Included Studies

Table 4. Number of Studies after Screening Strategies

Electronic Library Screening Screening Strategy Screening Strategy Quality
Process Exclusion Including Standard Question (QSQ)

IEEE 37 14 23 10 4

Science Direct 3 3 0 3 0

Scopus 20 6 14 4 2

Total 60 23 37 17 6

Table 4 shows the screening process of this SLR. At the initial searching process, a total of 60 studies were
screened across all three electronic libraries. After going through the “Screening Strategy Exclusion and
Including”, 23 studies are included and 37 studies are being excluded. Then “Screening Strategy Quality
Standard Question (QSQ)” filtering the studies made only 17 studies are included and another 6 studies were
excluded. Figure 4 shows the count of final collected studies over the year. The graph in Figure 4 shows the
increasing slope from year 2019 until 2025.
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Final collected studies based on year
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Figure 4. Count of Studies Over Year
Which are the most used algorithms are most commonly used for water quality classification?? (RQ?2)

From the 17 studies reviewed, Random Forest stands out as the most used algorithm, appearing in nine (9)
studies. Its popularity is no surprise Random Forest is known for being stable, reliable, and capable of handling
large and diverse datasets, which are typical in water quality analysis. It also works well when different water
indicators interact in complicated ways, making it a trusted tool for classifying and predicting water quality in
real-world environments.

Closely following Random Forest, several other algorithms like Support Vector Machines (SVM), XGBoost,
and Atrtificial Neural Networks (ANN) also appear frequently across the reviewed water quality studies. Their
repeated use shows that researchers rely on these models for their strong performance, especially when dealing
with complex and diverse water quality indicators such as pH, dissolved oxygen, turbidity, and nutrient levels.
The popularity of SVM, for example, reflects its ability to handle non-linear patterns, which are common in
environmental datasets where water conditions can change quickly due to weather, pollution, or human activities.

k-Nearest Neighbour (KNN) also appears in several studies, suggesting that simple and easy-to-interpret models
still play an important role in water quality monitoring. KNN is especially useful when fast decision-making is
needed, such as in real-time water quality alerts for drinking water or river monitoring. ANN-based methods, on
the other hand, continue to gain traction because of their ability to learn deeper relationships between multiple
water quality indicators, particularly when supported by good data preprocessing and feature engineering.

Deep learning approaches including Convolutional Neural Networks (CNN) and Long Short-Term Memory
(LSTM) networks are not as widely used yet, but their presence in the studies shows growing interest in more
advanced modelling techniques. CNNs are particularly useful when working with structured or time-patterned
sensor data, while LSTMs are designed to capture changes over time, making them promise for continuous water
monitoring systems where conditions shift daily or even hourly. This trend indicates a gradual move toward
models that can understand both spatial and temporal behaviour in water bodies.

Other noteworthy algorithms include Decision Trees, Logistic Regression, Gradient Boosting, Gaussian Process
Regression, and Gating Mechanisms. These methods are often chosen for their stability, transparency, and strong
performance on structured environmental datasets. XGBoost, specifically, stands out as a high-performing and
efficient gradient boosting technique, valued for its accuracy and reliability even in noisy or incomplete datasets
conditions common in field-based water monitoring.

Less frequently used methods such as Federated Learning, Stochastic Gradient Descent, Back-Propagation
Neural Networks, and optimization-based models like Whale Optimization or Inverse Distance Weighted
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methods appear only once or twice. Their limited use suggests that they are still experimental in this field, but
their inclusion demonstrates ongoing exploration into new modelling strategies that might support future water
quality monitoring challenges, especially as 10T sensors and distributed monitoring networks become more
common.

Overall, the algorithm choices across the studies show two clear patterns: continued trust in well-established
models such as Random Forest, SVM, and ANN, and a growing shift toward more sophisticated deep learning
methods as datasets become larger and more complex. This diversity also highlights that there is no single “best”
algorithm for water quality classification. Instead, researchers select models based on the nature of their dataset,
the water indicators being measured, the availability of computational resources, and the specific goals of their
monitoring system. As technology evolves, future studies are likely to combine classical machine learning with
deep learning and hybrid techniques to build more accurate, scalable, and intelligent water quality prediction
systems. Table 5 shows the summary of the discussion.

Table 5. Classification Algorithm for Water Quality

References Algorithm Count
[12], [14], [16], [18], [21], [22], Random Forest 9
[25], [26], [28]
[12], [16], [18], [21], [22], [23], Support Vector Machines (SVM) Based 8
[25], [28]
[12], [14], [16], [18], [26], [28] XGBoost (EXtreme Gradient Boosting) algorithm 6
[14], [16], [20], [22], [25] Artificial Neural Network (ANN) Based 5
[14], [15], [16], [18], [28] Decision Tree (DT) 5
[13], [15], [16], [28] k-Nearest Neighbour (KNN) 4
[15], [18], [19], [21] Logistic Regression (LR) 4
[16], [19], [28] CatBoost 3
[13], [16], [27] Long Short-Term Memory (LSTM) 3
[18], [28], [29] AdaBoost 3
[13], [16], [27] Convolutional Neural Network (CNN) based 3
[19], [28] Perceptron and Multilayer Perceptron (MLP) 1
Classifier
[14] Transformer-Based Model (TFM) 1
[17] Gating Mechanism 1
[17] Gated Liquid Neural Network (Gated-LNN) 1
[17] Liquid Neural Network (LNN) 1
[20] Random Tree (RT) 1
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[20] M5P 1
[20] Reduced Error Pruning Tree (REPT) 1
[14], [19], [28] Gradient Boosting Machine (GBM) 1
[24] Privacy-Preserving Algorithms 1
[24] Federated Learning (FL) 1
[25] Gaussian Process Regression (GPR) 1
[15], [26] Gaussian Naive Bayes (GNB) 1
[27] Gated Recurrent Unit (GRU) 1
[15] Stochastic Gradient Descent Classifier (SGDC) 1
[16] Bayesian Networks 1
[19] Support Vector Classifier (SVC) 1
[20] Back-Propagation Neural Network (BPNN) 2
[23] Inverse Distance Weighted (IDW) 1
[27] Whale Optimization Algorithm (WOA) 1

How many sensors are used, and what types are implemented for water quality classification? (RQ3)

Different types of sensors, as well as the technique by which sensor data will be utilized to create a machine
learning—based water quality classification model(s) such as depth of installation, will alter both the accuracy
and reliability of the model, because the type of sensors utilized will determine the system's ability to detect
changes in variable water quality characteristics such as: pH, turbidity, dissolved oxygen, temperature, and
nutrient levels. Therefore, knowing how many types of sensors were used in past studies is essential to assessing
the overall reliability of the data used to develop a machine learning—based water quality classification model
and robustness of the classification model(s), because of the different ways that sensor types (optical,
electrochemical, ion-selective) respond to changing environmental conditions.

The dimensionality of the dataset also depends on how many sensors were used to gather the data. Therefore,
the higher the dimensionality of the dataset, the more complex the required machine learning solution and the
overall system design. To identify best practices, locate common patterns, and identify where further
improvement can be made to the current water quality monitoring approach; we are looking at the types and
number of sensors that have been used in water quality monitoring to determine what sensors may have been
most effective for water quality classifications.

There is a great deal of variation between sensor types used in the Machine Learning Applications for Water
Quality Classification research studies. A standard and proven approach to the above compilation of studies is
to use 4 sensors, as observed from Zhao & O’Loughlin (2025), who combined satellite multispectral sensors
(Sentinel-2 MSI, Landsat-8 OLI, and MODIS) with in-situ sensors (pH, conductivity, ORP and dissolved
oxygen); and Thakkar et al. (2024), who employed in-situ analysers. The use of 4 sensors offers a good balance
providing the necessary water quality parameters while still maintaining system simplicity and cost-
effectiveness.
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Apart from the traditional sensor configuration, various investigations have utilized specific and extensive sensor
configurations to enable better characterization of the water quality. An example of this is a study by Mridha et
al., 2025, who combined seven specific sensors (including SENO0161, pH; DS18B20, temperature; turbidity
sensors) and a webcam for visual monitoring of the water. In another example, Aderemi et al., 2025 developed
an even more comprehensive configuration with twelve different sensors measuring a wide range of parameters
(pH, dissolved oxygen, turbidity, nitrates, heavy metals, Biochemical/Chemical Oxygen Demand). Azzova et
al., 2025, also used six different industrial type sensors (DMA25, CAS51) for accurate chemical analysis, and
Durgun 2024, used a single multispectral sensor (AS7265X) to provide spectral information for evaluation of
the water.

Interestingly, many entries in the table contain no sensor information. Aslam et al. (2022) say they only used
satellite images, not physical sensors; Reddy et al. (2025) mention an 10T system where many sensors exist,
although the exact number of sensors was not listed. The difference between how these two studies reported
what types of data were collected demonstrates a lack of transparency regarding methodology and may make it
difficult to replicate findings or compare results between studies.

It appears, from the trends that have been noted so far, that researchers primarily prefer using lower-cost,
compact sensor arrays for scalable monitoring. Researchers appear to prefer the four-sensor configurations for
most applications. This trend holds true for most applications; however, about the need for a greater degree of
resolution or an overall better, broader profile of the monitored area, especially for complicated and/or
contaminated environments, researchers will very often use larger, multidimensional multi-parameter sensor
arrays. Although multi-parameter sensor arrays produce richer information, they tend to lead to issues
surrounding power consumption, complex calibration processes, and hardware durability, which results in them
primarily being used in research scenarios instead of for routine or day-to-day operations.

It can be concluded from this literature review of all the studies using soft sensors to predict water quality, that
the type and number of sensors used in ML-based studies of water quality differ significantly because of differing
research goals, environmental conditions, and practical limitations. This variability highlights the necessity for
researchers to clearly document sensor specifications to enable the creation of transparent, reproducible, and
sustainable water quality monitoring systems. Table 6 shows the number of sensors and types.

Table 6. Number of Sensor and Type of Sensors Applied

References | Number Sensor Applied | Type of Sensor

[12] 4 Sentinel-2 MSI, Landsat-8 OLI, MODIS (on Terra), MODIS (on
Aqua)

[13] 7 SENO161, DS18B20, SEN-06617, SEN0237-A, SEN0244, TDS
sensor, C525 HD Webcam

[15] 4 pH analyzer, conductivity analyzer, ORP analyzer, DO analyzer

[16] 12 pH sensors, Dissolved Oxygen (DO) sensors, Turbidity sensors,

Temperature sensors, Conductivity / Total Dissolved Solids (TDS)
sensors, Nitrate sensors, Chlorophyll-a sensors, Heavy metal
detection sensors (e.g., for fluoride, arsenic), Chemical Oxygen
Demand (COD) sensors, Biochemical Oxygen Demand (BOD)
sensors, Ammonia (NHs-N) sensors, Total Phosphorus (TP) sensors

[17] 6 Dissolved oxygen sensor, pH sensor, conductivity sensor, plus lab-
based measurements for BOD, nitrate, and coliforms.

[22] 1 multispectral sensor unit (AS7265X)
[24] 6 DMA25, CAS51D, CUS52D, CPS11D, CPS12D, CLS21D
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Research Question 4-7

According to Table 6, the authors present thorough evaluations of the methodologies and their corresponding
metrics used to study various aspects of Water Quality. Additionally, an equivalent overview table summarises
the authors' recommendations for future research in water quality classification addresses challenges associated
with sensor noise, calibration issues, inconsistent sampling methods, limited cross sensitivities, and lack of
standardisation in testing. Nonetheless, small imbalanced dataset issues continue to present challenges to the
generalisation of model performance in practice.

Several key areas of potential growth in the classification of water quality are identified in the Future Trends
column, including deep learning models that can automatically extract features from the data, improvements to
high-sensitivity sensors; and integration of platform technologies using the Internet of Things (loT) for
continued, real-time water quality monitoring. The table provides an overview of the state of current research
and highlights potential new technologies, each of which poses considerable technical challenges for future
development before they will be operational as the next generation of water quality classification systems,
accordingly, the table is also useful for answering key research questions while identifying areas of advancement
in the water quality classification field.

Research Field of Final Collected

Environmental Agricultural

@ Health
20

15

10

Number of Collected Paper

Enwirconmental Agricultural Health

Field of Research

Figure 5. Research Field of Final Collected Paper

Based of Figure 5W, Environmental sensing and monitoring (ESM) are the greatest focus of the 17 studies
reviewed; 15 are dedicated to the research of ESM. ESM is becoming more popular as pollution in the water
ecosystem must be identified and tracked in real-time due to the increasing need to protect ecological and human
health and well-being from contaminated water. Environmental sensors, such as artificial intelligence (Al)
models, Internet of Things (1oT) sensors, and hybrid algorithm-based sensors, will assist researchers in realizing
more accurate and faster methods of assessing the quality of water. These tools will allow researchers to conduct
timely identification and monitoring of water contaminants, pathogens, and chemical shifts, thereby providing
them the ability to actively manage and maintain the environment.

Agricultural sustainability (AS) is the second focus of this group of researchers; two of the studies reviewed
pertain to AS. With AS, researchers emphasise smart on-farm water usage, i.e., the use of available water
resources for irrigation as well as determining the best crops to grow based on water quality and potential yield.
Therefore, the two research areas of ESM and AS demonstrate how researchers are using technology to maintain
both human and ecological health and support an intelligent method of managing and utilizing water.
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The graph shown in this report indicates a growing interest in protecting ecosystem & biodiversity (EBP) through
the use of predictive-modeling techniques for assessing river and watershed health (WS/MH) and the link
between that and protecting our river systems. Protecting our river systems supports two areas of human activity:
1) the need for clean drinking water for human consumption and 2) the need for healthy and balanced ecosystems
through inclusive and sustainable water management practices. Thus, EBP is an example of an integrated and
holistic model of water management that incorporates consideration of both social and economic factors along
with environmental and ecosystem needs, thereby achieving an ecological balance. Table 7 show the
summarization of Research Question from 4 until 7.

Table 7. Summarization of RQ 4-7

Ref | Metric Limitation Future Trend
[12] | The primary | - Single-sensor images often fail for | - The multiplatform approach enhances water
evaluation long-term monitoring needs. quality monitoring capabilities
metric used is
the Fl-macro | - Remote sensing is limited by image | - Future work includes improving model
score. acquisition time and cloud cover. accuracy and cross-validation across sensor.
- Machine learning  models
underestimated eutrophic cases due to
limited training data.
[13] | Accuracy - Environmental noise and lighting | - Enhanced image preprocessing techniques
variability may distort image | will be explored.
classification
- The sensor array will be upgraded with
- Periodic model retraining may be | industrial-grade components.
necessary for variable effluent
compositions - Future research will deploy the system in real
industrial environments.
- Non-industrial-grade sensors may
affect long-term reliability in field
deployments
[14] | - Accuracy - The ensemble model's complexity | - Future work includes external validation with
increases interpretability challenges | diverse water quality datasets.
- Precision and resource requirements.
- The model will be tested across different
- Recall - Model performance relies heavily on | Indian states and international repositories.
data quality and representativeness
- F1-Score - Integration with IoT devices for real-time
- Maintenance and updates of the | data acquisition is planned.
model can be resource-intensive.
- Applicability to other regions is
limited due to training data from one
state.
[15] |- Accuracy - Water quality assessment relies on | - Future research will focus on advancing
subjective analysis and limited | hybrid models for better prediction accuracy.
- Precision attributes.
- Integration of Al and blockchain technology
- F1 score - External factors significantly | is proposed for water treatment management.
challenge water potability
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determination.

- Inaccurate reporting can lead to
serious health issues.

[16]

- none

- Traditional models struggle with
complex water systems and missing
data.

- Limited generalizability due to
region-specific data and small sample
sizes.

- Access inequity in sensor networks
affects  model  training and
performance.

- Lack of transparency in Al models
complicates interpretation.

- Future research will integrate XAI with
digital twins and edge computing.

- Multimodal frameworks are emerging to
tackle data heterogeneity

[17]

-Parameters
- Ratings

- Weights

- The model may struggle with
extreme heterogeneity in datasets.

- Errors in data pre-processing can
adversely impact outcomes.

- Future work will enhance computational
efficiency and generalization tests on diverse
datasets.

- The adaptability of the model to different
regions is a key consideration.

[18]

- Accuracy
- Rates
- Precision

-Recall

- The model's performance could
improve with advanced optimization
techniques.

- Limitations include not using
dimensionality reduction methods
like PCA.

- Future studies may focus on advanced
optimization techniques for better predictions.

- Machine learning enhances water quality
classification accuracy and efficiency.

- Incorporating Deep Learning techniques like
CNN can enhance quality assessment.

models  with
outperform

- Ensemble
hyperparameters
models.

optimized
individual

[19]

-Accuracy

-Precision

- Incomplete temporal or spatial
metadata compromises classification
reliability.

- MLP classifier
distinguish eutrophic
noneutrophic reservoirs.

struggles  to
from

- Future studies will leverage temporal depth
for detailed analyses of eutrophication
variability.

- The methodology allows for continuous
assessment as new data becomes available.

[20]

-Accuracy
-Error
-Prediction

-Performance

- The study used a smaller dataset
over two years, limiting long-term
analysis.

- Statistical and ML algorithms were
used; deep learning could enhance
results.

- Future research can utilize long-term datasets
over multiple years.

- Incorporating water quality classification
parameters like COD and BOD is
recommended.

- Deep learning algorithms could enhance
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predictive accuracy.
[21] | -Accuracy - Combining water indices masks | - Future applications may include advanced
individual parameter effects on | data analytics and cloud services.
irrigation quality.
- The study proposes a real-time water
- Sensitivity values of some networks | monitoring network using Machine Learning
were unsuitable for effective | tools.
communication.
[22] | -Accuracy - Challenges exist in applying | - Advanced machine learning algorithms will
techniques to varied water types and | enhance water quality monitoring systems.
-Precision conditions.
- Integration of Al and spectral analysis is a
-Recall - Long-term studies are required to | promising future trend.
assess reliability and consistency.
-F1 score - High-resolution remote sensing data will play
- Broader validation across different | a significant role in water quality assessment.
environments is needed for these
methods.
[24] | -Accuracy - High complexity in applying | - Differential privacy can enhance water
differential privacy requires further | quality monitoring accuracy with minimal
-Precision auditing methods. performance loss.
-Recall - Heterogeneous data in federated | - Future research may explore more neural
learning presents unresolved | network architectures with DP applications.
-F1 score challenges for differential privacy.
- The study indicates potential for improved
anomaly detection in water monitoring
systems.
[23] | -Error - Unequal distribution of water | - The study recommends combining Entropy,
sample types affects accuracy. TOPSIS, SMOTE, and SVM methodologies
-Precision for forecasting.
- Limited data restricts widespread
-Accuracy application  of  water  quality
classification models.
- Historical data limits model training
effectiveness.
[25] | -Accuracy - Machine learning faces challenges | - Future forecasting of water quality is possible
with data quality and model | with machine learning advancements.
-Error interpretability.
-Precision - Scalability issues require careful
consideration in real-world
-F1 score applications.
-Various - Complex relationships in water
quality factors complicate
predictions.
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[26] | -Accuracy - Regional data variability introduces | - The framework supports rapid decision-
uncertainty in predictions. making for farmers and agricultural agencies.
-Precision
- Current recommendations rely on | - It utilizes machine learning for real-time
-Recall static mappings, limiting decision | predictions and crop recommendations.
precision.
-F1 score

- IoT sensor noise can compromise
prediction reliability.

[27] | -Accuracy - Traditional methods face limitations | - Future research will focus on data accuracy
like single-model approaches and | and veracity.
-Recall inadequate data processing
capabilities. - The study aims to enhance water quality
-F1 score prediction model performance.
. - These limitations hinder effective
-Presicion water  quality monitoring  and

prediction accuracy.

[28] | -Accuracy - Data availability and computational | - Future innovations include explainable Al
. complexity hinder machine learning | and AutoML for improved predictions.
-Precision applications.
-Recall - Model interpretability remains a
significant challenge for widespread
-F1 score adoption.
-Model - Lack of standardized evaluation

metrics affects model generalization.

CONCLUSION

This systematic literature review provides an overview of sensor technologies and classification algorithms for
assessing water quality. The Random Forest, Support Vector Machine (SVM), (ANN), and k-Nearest Neighbor
(KNN) are the models most used because they can process complicated and nonlinear data associated with water
quality. Additionally, there are several examples of multi-parameter sensors that measure multiple parameters
such as pH, turbidity, Dissolved Oxygen (DO), and EC; these devices offer a good trade-off between the cost,
input and output accuracy, and ease of deployment. Although advances have been made in this area, many
challenges still exist, such as sensor calibration issues, inconsistent evaluation methods, and limited application
of the models across various water sources. Future studies should explore Al-based adaptive learning systems,
compact and low power sensor designs, and innovative data fusion methods to improve reliability and provide
real-time decision-support. In addition, establishing a standardized benchmarking framework and promoting
collaboration between disciplines will be essential in increasing the scalability and utilization of these
technologies. Thus, this review provides the basis for improving the classification of water quality and smart
monitoring systems.
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