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ABSTRACT 

Assessing Water quality classification has become an important research area as the demand for clean and safe 

water continues to grow worldwide. In recent years, Machine Learning (ML) has shown great potential in 

improving how water quality is monitored and analyzed. By using ML models, researchers can process large 

and complex environmental data more effectively to detect pollution, predict water conditions, and support better 

management decisions. While many studies have focused on using sensors and data analytics for monitoring, 

only a few have provided a full review of the different ML methods and their effectiveness in classifying water 

quality. Therefore, this paper aims to achieve two main goals: (1) to conduct a Systematic Literature Review 

(SLR) of existing ML techniques applied in water quality classification, and (2) to identify the main findings, 

challenges, and future opportunities in this field. Through a careful review and comparison of previous research, 

this paper hopes to give a clearer overview of how ML contributes to water quality analysis and guide future 

work in creating more accurate and intelligent systems for real-world environmental applications. 

Keywords: Machine Learning, Water Quality Monitoring, Classification, Environmental Management, Smart 

Sensing Systems 

INTRODUCTION 

Water is a fundamental resource for life, yet its quality is increasingly threatened by pollution, climate change, 

and infrastructure challenges. Traditional water-quality assessment methods such as laboratory sampling and 

manual chemical testing are reliable, but they are time-consuming, expensive, and unsuitable for continuous 

real-time monitoring. Recent reviews emphasize that the volume of available aquatic-environment data has 

grown substantially, making advanced data-driven methods essential for efficient classification and prediction 

of water quality [1]. 

In parallel, machine learning (ML) techniques have emerged as promising tools for water quality classification, 

capable of handling large datasets, recognizing complex nonlinear relationships, and improving classification 

accuracy beyond what conventional models can offer. Studies have applied a range of ML models from Support 

Vector Machines and Random Forests to Deep Neural Networks and ensemble frameworks to classify water 

quality based on multiple SENSOR inputs and environmental variables [2]. Despite these advances, the 

http://www.rsisinternational.org/
https://doi.org/10.47772/IJRISS.2026.10100291


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue I January 2026 
 

Page 3717 

www.rsisinternational.org 

 

  

 

 

applicability of such models across different water environments remains fragmented, with variations in 

parameter selection, model interpretability and data-quality issues limiting broader deployment. 

Recognizing this gap, this paper presents a Systematic Literature Review (SLR) of research published between 

2019 and 2025 focused on machine-learning methods for water quality classification. The objectives of this 

review are two-fold: (1) to identify, categorize and compare machine learning models and their performance in 

water quality classification tasks; and (2) to highlight key challenges, limitations and future research directions 

in the field. By synthesizing findings from multiple studies, this review aims to provide insights for researchers 

seeking to develop robust, generalizable and real-time water quality monitoring systems. 

Motivation & Related Work 

Several factors motivated the authors to conduct this systematic literature review (SLR). While previous studies 

on machine learning for water quality classification exist, most have not provided an in-depth discussion of the 

specific processes and techniques involved in data analysis and model development. Based on the study 

conducted by Yang et al. the research highlights the increasing concern over water pollution, which poses serious 

risks to aquatic life, human health, and overall environmental sustainability. As the demand for clean and safe 

water continues to grow, traditional monitoring methods are often found to be inefficient, time-consuming, and 

unable to provide real-time analysis. The authors identified limitations in current approaches, particularly in 

terms of data resolution, atmospheric correction, and the general applicability of models for accurate water 

quality assessment. To address these issues, the study explores the potential of machine learning (ML) as a 

modern solution for classifying and predicting water quality parameters more efficiently. By leveraging 

algorithms such as Support Vector Machine (SVM), Random Forest, and Artificial Neural Networks (ANNs), 

machine learning offers improved accuracy and adaptability across various environmental conditions [3].  

Additionally, the integration of remote sensing and IoT-based sensors has further enhanced data collection and 

real-time monitoring capabilities. Overall, this research contributes valuable insights to the field of 

environmental monitoring by demonstrating how machine learning can revolutionize water quality 

classification, supporting sustainable water management practices and enabling faster, more reliable decision-

making processes for the protection of water resources. 

Moreover, based on the study conducted by the authors Lokman et al., the research emphasizes the urgent need 

for effective prediction and management of water quality, particularly in countries like Malaysia, where rapid 

industrialization, agricultural runoff, and urban development have contributed significantly to water pollution. 

This issue is critical because maintaining clean and sustainable water resources is essential for both 

environmental balance and public health. The authors identified limitations in existing predictive models, 

particularly in terms of data quality, model interpretability, and the integration of spatio-temporal and fuzzy 

logic techniques, which often hinder accurate water quality assessment. To overcome these challenges, the study 

focuses on the potential of machine learning (ML) approaches to enhance forecasting and classification 

performance. By analyzing various ML models such as Support Vector Machines (SVM), Random Forests (RF), 

Artificial Neural Networks (ANNs), and hybrid models the research aims to identify the most efficient and 

interpretable algorithms for improving prediction accuracy. Overall, this paper contributes to the growing body 

of work in environmental informatics by providing a comprehensive evaluation of how machine learning 

techniques can advance water quality monitoring and support sustainable water management strategies in 

polluted and high-risk regions [1]. 

Next, based on the study conducted by the Talukdar et al., the research underscores the growing importance of 

water quality monitoring and modeling as a means to protect and improve aquatic ecosystems and their 

surrounding environments. Ensuring clean and safe water resources is vital not only for ecological sustainability 

but also for public health and socio-economic development. The study highlights the integration of computer 

science and mathematical modeling in developing advanced algorithms capable of accurately assessing and 

predicting water quality parameters an essential step toward effective environmental management. However, the 

authors identified a significant gap in existing research, particularly in the comparative evaluation of different 

water quality models and their effectiveness across diverse environmental conditions. To address this issue, the 
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paper aims to review and analyze various machine learning and statistical models used for water quality 

classification, providing insights into their strengths, limitations, and suitability for different scenarios. Overall, 

this research contributes to the broader understanding of data-driven water quality management by offering 

practical guidance for selecting and applying appropriate computational tools in environmental monitoring and 

decision-making [4]. 

Based on the study conducted by Ejigu, the research focuses on the increasing challenges of water quality 

modeling caused by rising water demands driven by population growth, urbanization, and industrialization, 

which collectively contribute to the deterioration of water resources. Ensuring clean and sustainable water 

systems has become a critical global priority, as poor water quality directly impacts human health, ecosystems, 

and economic activities. The study emphasizes the importance of water quality modeling as a fundamental tool 

for effective management, monitoring, and policy formulation in integrated water resource and environmental 

management frameworks. However, the authors identified a notable gap in the standardization and 

harmonization of modeling approaches, as existing models often differ in structure, parameterization, and 

applicability. To address this issue, the paper aims to review and compare major water quality models, assessing 

their strengths, limitations, and inherent uncertainties. Overall, the study contributes valuable insights toward 

improving the accuracy, reliability, and adaptability of water quality models, supporting better decision-making 

and sustainable water management practices [5]. 

Lastly, based on the study conducted by Yan et al, the research focuses on the urgent need for effective surface 

water quality monitoring and management, recognizing its importance for essential human activities such as 

agriculture, industry, and daily consumption. Maintaining high-quality water resources is crucial for ensuring 

public health, ecological balance, and sustainable development. The study emphasizes the significance of water 

quality indices (water quality classificationIs, TSIs, HMIs) as key indicators for assessing and managing water 

quality conditions. However, the authors identified a major gap in the integration of advanced technologies, 

particularly those that enable real-time monitoring and predictive management systems.  

To address this issue, the paper proposes the development of a next-generation water quality management 

framework that leverages expert systems and machine learning algorithms to enhance the precision, speed, and 

reliability of water quality assessments. Overall, this research contributes to the advancement of intelligent 

environmental management systems, paving the way for smarter and more sustainable water resource monitoring 

in the future [6]. 

METHODOLOGY 

To structure the review process effectively, this study adopts the Systematic Literature Review (SLR) 

methodology. The research framework illustrated in Figure 1 is developed based on the SLR guidelines proposed 

by [7]. The methodology is divided into three main stages: (1) Preparation, (2) Organization, and (3) Results and 

Discussion. Each stage consists of several systematic steps. In the Preparation stage, the tasks include 

recognizing the need for the review and formulating the research questions. The Organization stage covers key 

activities such as the search process, screening of relevant studies, and data extraction and synthesis. Finally, the 

Results and Discussion stage focuses on analyzing, interpreting, and presenting the findings in detail. The 

specific implementation and sub-stages of each phase are further elaborated in the following sections. 

The discussion section shows how the author interprets the results considering what was already known, and to 

explain the new understanding of the problem after taking your results into consideration. The discussion must 

connect with the Introduction, so it tells how your study contributes to the body of knowledge and society.  
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Figure 1. Review Research Methodology 

Preparation Phase 

The justification for conducting this review is explained in the previous section (Motivation and Related Works), 

which examined earlier studies and review papers related to water quality assessment. From the analysis, it was 

found that many existing SLRs lack detailed discussions on the machine learning algorithms currently used for 

water quality classification and prediction. Therefore, this SLR was developed to address that gap by providing 

a comprehensive analytical review of different algorithms highlighting their strengths, limitations, processes, 

and overall effectiveness in handling various challenges related to water quality monitoring. The methodological 

framework and research questions of this SLR were formulated based on the study’s main objective to enhance 

understanding and application of machine learning in this domain. The following Research Questions (RQs) 

have been formulated, and the rationale for each one of them is provided in Table 1. 

Table 1. Research Questions (RQs) 

Research Questions (RQs) Motivations 

RQ1: What types of papers are covered by the 

investigation? 

To identify the different sets of the finding studies in 

the domain.   

RQ2: What are the most commonly used or 

compared machine learning algorithms for 

classifying and predicting water quality? 

To identify the algorithms that have been most 

frequently applied or compared for water quality 

classification. 

RQ3: How many sensors are used, and what types 

are implemented for water quality classification? 

To determine the number and types of sensors typically 

used in water quality classification systems. 

RQ4: What are the performance metrics used to 

evaluate classification algorithms in water quality 

classification? 

To evaluate the performance of classification 

algorithms in water quality classification is essential to 

determine their effectiveness, reliability, and 

applicability. 
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RQ5: What kind of research on water quality 

classification using machine learning has been 

conducted? 

To determine the field of research related to water 

quality classification using machine learning. 

RQ6: What are the key challenges and limitations 

associated with classification algorithms in water 

quality classification using machine learning? 

To determine the challenges and limitations in applying 

machine learning algorithms for water quality 

classification. 

RQ7: What are the future trends and potential 

research directions for machine learning algorithms 

in water quality classification? 

To identify new trends, future research directions, and 

innovative ideas in the field of machine learning for 

water quality classification. 

Organization Phase 

This phase involves the execution of the specified stages: a systematic methodology for pinpointing pertinent 

studies, the approach utilized for selecting the articles to be included, and the process of data acquisition and 

analysis. The subsequent subsections will elaborate on the implementation of each of these stages below: 

Searching Process 

The proper definition of the search process is essential to ensure accurate and reliable outcomes [8] In this SLR, 

the identification and selection of sources are conducted systematically to gather all relevant studies related to 

machine learning for water quality classification. This process is guided by two (2) main elements: 1) the use of 

diverse and well-structured search strings, and 2) the selection of credible and appropriate academic databases. 

The search terms are formulated in this SLR based on the listed Research Questions (RQs) and standard 

procedure in which consists of the following steps. In the formulation of the search terms of this SLR, it has its 

basis on the listed research questions as well as the standard procedure that entails the following steps [1]. Below 

are the steps: 

1) Recognizing the related keywords of these Research Questions (RQs). 

2) Including the expected synonyms and spelling of the term’s alternatives. 

3) Checking the appropriateness of the study search terms. 

4) Compiling the search terms with Boolean OR or AND operators. 

The result for the search strings after following the steps above as below: 

• (“Machine Learning” OR “Artificial Intelligence”) AND “Water Quality Classification” ) 

• (“Water Quality Prediction” OR “Water Quality Assessment” OR “Water Quality Monitoring”) AND 

(“Machine Learning” OR “Deep Learning”) 

• (“Water Quality”) AND (“Classification” OR “Prediction” OR “Detection”) AND (“Neural Network” OR 

“Support Vector Machine” OR “Random Forest”)  

• (“Machine Learning Models” OR “AI Models”) AND (“Water Quality Parameters” OR “Water Pollution”)  

• (“Machine Learning” OR “Artificial Intelligence”) AND (“Water Quality Classification”) AND (“Supervised 

Learning” OR “Unsupervised Learning” OR “Hybrid Models”) 

In this SLR, the search process was conducted using three major electronic databases: Scopus, IEEE Xplore, and 

ScienceDirect. These databases were selected because of their extensive coverage of high-quality research 
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papers, technical reports, and review articles related to Machine Learning and Water Quality Classification. 

First, Scopus serves as one of the largest multidisciplinary databases, indexing peer-reviewed journals, books, 

and conference proceedings across scientific and engineering disciplines [9]. Second, IEEE Xplore, managed by 

the Institute of Electrical and Electronics Engineers (IEEE), provides access to a wide collection of publications 

focusing on computer science, engineering innovations, and artificial intelligence applications [10]. Lastly, 

ScienceDirect, operated by Elsevier, is a comprehensive full-text database offering scientific and technical 

research materials in environmental science, data analytics, and machine learning [11]. To ensure the relevance 

and reliability of the findings, this review limits the search to studies published within the last five years, from 

2020 to December 2025, capturing the most recent trends and developments in the field. 

Screening Strategy 

Another key component defined in the research methodology is the study selection strategy, which ensures that 

only the most relevant and high-quality studies are included in this review. After implementing the defined 

search process, a total of 60 papers were initially retrieved. To refine these results and identify the most relevant 

studies related to Machine Learning for Water Quality Classification, the selection process was carried out in 

two (2) stages: 

1. Applying inclusion and exclusion criteria, and 

2. Conducting filtering based on the Quality Standard Questions (QSQ) of the studies. 

Table 2 presents the inclusion and exclusion standards established for this SLR. All retrieved studies were 

screened carefully following these criteria. Research papers were included if they focused on the application of 

machine learning, artificial intelligence, or data-driven models in water quality monitoring, prediction, or 

classification, and provided at least one potential answer to the identified research questions based on the analysis 

of their titles, keywords, and abstracts. Studies were excluded if they were published in languages other than 

English, did not address water quality or machine learning, or focused on unrelated environmental or industrial 

domains. Finally, a duplicate analysis was performed to remove repeated entries and ensure that only the most 

recent and complete versions of each article were retained for review. 

Table 2. Inclusion and Exclusion Standard 

Inclusion Search Standard Exclusion Search Standard 

Studies must be written in the English language. Studies that are not written in English language 

Studies have potential to answer Research Questions 

(RQs) based on keywords, title, and abstract. 

Studies will avoid duplicating the copies, review 

paper, and only the complete version included 

for this SLR. 

Studies are focusing on Water Quality Classification Studies that are not focusing on Water Quality 

Classification 

Studies that are reporting the issues, challenges, and future 

enhancements of machine learning techniques for water 

quality classification. 

Studies that are not clearly defined the concern 

of Water Quality Classification. 

Gray Studies (Study that non-publish, non-peer 

reviewed and work in progress) 

The Inclusion and exclusion standard have been done to improve the quality of the search and produce final 

studies. Each of the studies were precisely studied (title, abstract and full content) and evaluated according to 

the Quality Standard Question (QSQ) in Table 3. The final studies will be scored as follows: Yes = 3, Moderately 

= 2, and No= 1. The aggregate of the answers to all the questions determines the study's overall score. 
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Table 3. Quality Standard Question (QSQ) 

QSQ ID Inclusion Search Standard Exclusion Search Standard 

QSQ1 Are the aims of studies clearly stated? Yes= 3 / moderate = 2 / no = 1 

QSQ2 Are the context of studies well defined? Yes= 3 / moderate = 2 / no = 1 

QSQ3 Does the study focus on RQ in the specified domain? Yes= 3 / moderate = 2 / no = 1 

QSQ4 Are the proposed classification algorithms in studies well 

explained? 

Yes= 3 / moderate = 2 / no = 1 

QSQ5 Is the proposed classification algorithm can classify the water 

quality pattern? 

Yes= 3 / moderate = 2 / no = 1 

QSQ6 Is the proposed classification algorithm compared with other 

classification algorithm? 

Yes= 3 / moderate = 2 / no = 1 

QSQ7 Is the result well explained? Yes= 3 / moderate = 2 / no = 1 

A quality score threshold of 17 was selected as it represents more than 80% of the maximum achievable score, 

ensuring that only studies with sufficient methodological rigor and relevance were included. Each study was 

independently assessed using the quality score questions. Any disagreements in scoring were resolved through 

discussion until consensus was achieved. 

 

Figure 2. Final Screening Result 

All the authors of the present study discussed the results and compared them to resolve all contradictions and 

reach a consensus. To enhance the reliability of the outcome, only the research that have quality ratings of less 

than 17 (Meaning that they are less than half of the maximum quality rating score of 21) will not conduct in this 

SLR. Figure 2 shows the result of the screening strategy. Table 4 shows the Quality Standard Question (QSQ) 

scores for the results of 17 studies. Figure 2 shows the screening process from three electronic databases until 

final collection of studies counted. 

The highest-quality papers are those that achieved the maximum total QSQ score of 21, indicating full 

compliance with all seven quality criteria. Specifically, studies cited as [12], [13], [14], [15], [17], [18], [19], 

[21], [22], [25], and [28] were identified as the best papers, as each consistently scored 3 across all or nearly all 

QSQ items. Among these, references [12], [13], [14], [15], [17], [18], [19], [20], [21], and [22] demonstrated 

perfect methodological rigor with uniform maximum scores in QSQ1–QSQ7, reflecting strong research design, 

clarity of objectives, robust analysis, and reliable reporting. In contrast, studies [16], [23], [24], [26], and [28] 

obtained comparatively lower scores (17–19), indicating minor methodological limitations in specific quality 
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dimensions. Overall, the citation-based QSQ analysis highlights [12], [13], [14], [15], [17], [22], [25], and [27] 

as the most reliable and methodologically sound references for this review. 

RESULTS & DISCUSSION 

Distribution of Studies (RQ1) 

The total paper to be discussed are 17 studies from three electronic libraries which are Scopus, IEEE and Science 

Direct as a final screening for this SLR. These final studies consist of 17 journal papers which are from the final 

selected studies. Figure 3 illustrates the percentage of the publication of the final screening studies. Figure 3 

shows the percentage of included studies which is IEEE is around 58.8%, Scopus is around 17.6% and Science 

Direct is around 23.5%. 

 

Figure 3. Percentage Included Studies 

Table 4. Number of Studies after Screening Strategies 

Electronic Library  Screening 

Process  

Screening Strategy 

Exclusion Including 

Screening Strategy Quality 

Standard Question (QSQ) 

IEEE 37 14 23 10 4 

Science Direct 3 3 0 3 0 

Scopus 20 6 14 4 2 

Total 60 23 37 17 6 

Table 4 shows the screening process of this SLR. At the initial searching process, a total of 60 studies were 

screened across all three electronic libraries. After going through the “Screening Strategy Exclusion and 

Including”, 23 studies are included and 37 studies are being excluded. Then “Screening Strategy Quality 

Standard Question (QSQ)” filtering the studies made only 17 studies are included and another 6 studies were 

excluded. Figure 4 shows the count of final collected studies over the year. The graph in Figure 4 shows the 

increasing slope from year 2019 until 2025. 
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Figure 4. Count of Studies Over Year 

Which are the most used algorithms are most commonly used for water quality classification?? (RQ2) 

From the 17 studies reviewed, Random Forest stands out as the most used algorithm, appearing in nine (9) 

studies. Its popularity is no surprise Random Forest is known for being stable, reliable, and capable of handling 

large and diverse datasets, which are typical in water quality analysis. It also works well when different water 

indicators interact in complicated ways, making it a trusted tool for classifying and predicting water quality in 

real-world environments. 

Closely following Random Forest, several other algorithms like Support Vector Machines (SVM), XGBoost, 

and Artificial Neural Networks (ANN) also appear frequently across the reviewed water quality studies. Their 

repeated use shows that researchers rely on these models for their strong performance, especially when dealing 

with complex and diverse water quality indicators such as pH, dissolved oxygen, turbidity, and nutrient levels. 

The popularity of SVM, for example, reflects its ability to handle non-linear patterns, which are common in 

environmental datasets where water conditions can change quickly due to weather, pollution, or human activities. 

k-Nearest Neighbour (kNN) also appears in several studies, suggesting that simple and easy-to-interpret models 

still play an important role in water quality monitoring. kNN is especially useful when fast decision-making is 

needed, such as in real-time water quality alerts for drinking water or river monitoring. ANN-based methods, on 

the other hand, continue to gain traction because of their ability to learn deeper relationships between multiple 

water quality indicators, particularly when supported by good data preprocessing and feature engineering. 

Deep learning approaches including Convolutional Neural Networks (CNN) and Long Short-Term Memory 

(LSTM) networks are not as widely used yet, but their presence in the studies shows growing interest in more 

advanced modelling techniques. CNNs are particularly useful when working with structured or time-patterned 

sensor data, while LSTMs are designed to capture changes over time, making them promise for continuous water 

monitoring systems where conditions shift daily or even hourly. This trend indicates a gradual move toward 

models that can understand both spatial and temporal behaviour in water bodies. 

Other noteworthy algorithms include Decision Trees, Logistic Regression, Gradient Boosting, Gaussian Process 

Regression, and Gating Mechanisms. These methods are often chosen for their stability, transparency, and strong 

performance on structured environmental datasets. XGBoost, specifically, stands out as a high-performing and 

efficient gradient boosting technique, valued for its accuracy and reliability even in noisy or incomplete datasets 

conditions common in field-based water monitoring. 

Less frequently used methods such as Federated Learning, Stochastic Gradient Descent, Back-Propagation 

Neural Networks, and optimization-based models like Whale Optimization or Inverse Distance Weighted 
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methods appear only once or twice. Their limited use suggests that they are still experimental in this field, but 

their inclusion demonstrates ongoing exploration into new modelling strategies that might support future water 

quality monitoring challenges, especially as IoT sensors and distributed monitoring networks become more 

common. 

Overall, the algorithm choices across the studies show two clear patterns: continued trust in well-established 

models such as Random Forest, SVM, and ANN, and a growing shift toward more sophisticated deep learning 

methods as datasets become larger and more complex. This diversity also highlights that there is no single “best” 

algorithm for water quality classification. Instead, researchers select models based on the nature of their dataset, 

the water indicators being measured, the availability of computational resources, and the specific goals of their 

monitoring system. As technology evolves, future studies are likely to combine classical machine learning with 

deep learning and hybrid techniques to build more accurate, scalable, and intelligent water quality prediction 

systems. Table 5 shows the summary of the discussion. 

Table 5. Classification Algorithm for Water Quality 

References Algorithm Count 

[12], [14], [16], [18], [21], [22], 

[25], [26], [28] 

Random Forest 9 

[12], [16], [18], [21], [22], [23], 

[25], [28] 

Support Vector Machines (SVM) Based 8 

[12], [14], [16], [18], [26], [28] XGBoost (EXtreme Gradient Boosting) algorithm 6 

[14], [16], [20], [22], [25] Artificial Neural Network (ANN) Based 5 

[14], [15], [16], [18], [28] Decision Tree (DT) 5 

[13], [15], [16], [28] k-Nearest Neighbour (kNN) 4 

[15], [18], [19], [21] Logistic Regression (LR) 4 

[16], [19], [28] CatBoost 3 

[13], [16], [27] Long Short-Term Memory (LSTM) 3 

[18], [28], [29] AdaBoost 3 

[13], [16], [27] Convolutional Neural Network (CNN) based 3 

[19], [28] Perceptron and Multilayer Perceptron (MLP) 

Classifier 

1 

[14] Transformer-Based Model (TFM) 1 

[17] Gating Mechanism 1 

[17] Gated Liquid Neural Network (Gated-LNN) 1 

[17] Liquid Neural Network (LNN) 1 

[20] Random Tree (RT) 1 
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[20] M5P 1 

[20] Reduced Error Pruning Tree (REPT) 1 

[14], [19], [28] Gradient Boosting Machine (GBM) 1 

[24] Privacy-Preserving Algorithms 1 

[24] Federated Learning (FL) 1 

[25] Gaussian Process Regression (GPR) 1 

[15], [26] Gaussian Naïve Bayes (GNB) 1 

[27] Gated Recurrent Unit (GRU) 1 

[15] Stochastic Gradient Descent Classifier (SGDC) 1 

[16] Bayesian Networks 1 

[19] Support Vector Classifier (SVC) 1 

[20] Back-Propagation Neural Network (BPNN) 2 

[23] Inverse Distance Weighted (IDW) 1 

[27] Whale Optimization Algorithm (WOA) 1 

How many sensors are used, and what types are implemented for water quality classification? (RQ3) 

Different types of sensors, as well as the technique by which sensor data will be utilized to create a machine 

learning–based water quality classification model(s) such as depth of installation, will alter both the accuracy 

and reliability of the model, because the type of sensors utilized will determine the system's ability to detect 

changes in variable water quality characteristics such as: pH, turbidity, dissolved oxygen, temperature, and 

nutrient levels. Therefore, knowing how many types of sensors were used in past studies is essential to assessing 

the overall reliability of the data used to develop a machine learning–based water quality classification model 

and robustness of the classification model(s), because of the different ways that sensor types (optical, 

electrochemical, ion-selective) respond to changing environmental conditions. 

The dimensionality of the dataset also depends on how many sensors were used to gather the data. Therefore, 

the higher the dimensionality of the dataset, the more complex the required machine learning solution and the 

overall system design. To identify best practices, locate common patterns, and identify where further 

improvement can be made to the current water quality monitoring approach; we are looking at the types and 

number of sensors that have been used in water quality monitoring to determine what sensors may have been 

most effective for water quality classifications. 

There is a great deal of variation between sensor types used in the Machine Learning Applications for Water 

Quality Classification research studies. A standard and proven approach to the above compilation of studies is 

to use 4 sensors, as observed from Zhao & O’Loughlin (2025), who combined satellite multispectral sensors 

(Sentinel-2 MSI, Landsat-8 OLI, and MODIS) with in-situ sensors (pH, conductivity, ORP and dissolved 

oxygen); and Thakkar et al. (2024), who employed in-situ analysers. The use of 4 sensors offers a good balance 

providing the necessary water quality parameters while still maintaining system simplicity and cost-

effectiveness. 
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Apart from the traditional sensor configuration, various investigations have utilized specific and extensive sensor 

configurations to enable better characterization of the water quality. An example of this is a study by Mridha et 

al., 2025, who combined seven specific sensors (including SEN0161, pH; DS18B20, temperature; turbidity 

sensors) and a webcam for visual monitoring of the water. In another example, Aderemi et al., 2025 developed 

an even more comprehensive configuration with twelve different sensors measuring a wide range of parameters 

(pH, dissolved oxygen, turbidity, nitrates, heavy metals, Biochemical/Chemical Oxygen Demand). Azzova et 

al., 2025, also used six different industrial type sensors (DMA25, CAS51) for accurate chemical analysis, and 

Durgun 2024, used a single multispectral sensor (AS7265X) to provide spectral information for evaluat ion of 

the water. 

Interestingly, many entries in the table contain no sensor information. Aslam et al. (2022) say they only used 

satellite images, not physical sensors; Reddy et al. (2025) mention an IoT system where many sensors exist, 

although the exact number of sensors was not listed. The difference between how these two studies reported 

what types of data were collected demonstrates a lack of transparency regarding methodology and may make it 

difficult to replicate findings or compare results between studies. 

It appears, from the trends that have been noted so far, that researchers primarily prefer using lower-cost, 

compact sensor arrays for scalable monitoring. Researchers appear to prefer the four-sensor configurations for 

most applications. This trend holds true for most applications; however, about the need for a greater degree of 

resolution or an overall better, broader profile of the monitored area, especially for complicated and/or 

contaminated environments, researchers will very often use larger, multidimensional multi-parameter sensor 

arrays. Although multi-parameter sensor arrays produce richer information, they tend to lead to issues 

surrounding power consumption, complex calibration processes, and hardware durability, which results in them 

primarily being used in research scenarios instead of for routine or day-to-day operations. 

It can be concluded from this literature review of all the studies using soft sensors to predict water quality, that 

the type and number of sensors used in ML-based studies of water quality differ significantly because of differing 

research goals, environmental conditions, and practical limitations. This variability highlights the necessity for 

researchers to clearly document sensor specifications to enable the creation of transparent, reproducible, and 

sustainable water quality monitoring systems. Table 6 shows the number of sensors and types. 

Table 6. Number of Sensor and Type of Sensors Applied 

References Number Sensor Applied Type of Sensor 

[12] 4 Sentinel-2 MSI, Landsat-8 OLI, MODIS (on Terra), MODIS (on 

Aqua) 

[13] 7 SEN0161, DS18B20, SEN-06617, SEN0237-A, SEN0244, TDS 

sensor, C525 HD Webcam 

[15] 4 pH analyzer, conductivity analyzer, ORP analyzer, DO analyzer 

[16] 12 pH sensors, Dissolved Oxygen (DO) sensors, Turbidity sensors, 

Temperature sensors, Conductivity / Total Dissolved Solids (TDS) 

sensors, Nitrate sensors, Chlorophyll-a sensors, Heavy metal 

detection sensors (e.g., for fluoride, arsenic), Chemical Oxygen 

Demand (COD) sensors, Biochemical Oxygen Demand (BOD) 

sensors, Ammonia (NH₃-N) sensors, Total Phosphorus (TP) sensors 

[17] 6 Dissolved oxygen sensor, pH sensor, conductivity sensor, plus lab-

based measurements for BOD, nitrate, and coliforms. 

[22] 1 multispectral sensor unit (AS7265X) 

[24] 6  DMA25, CAS51D, CUS52D, CPS11D, CPS12D, CLS21D 
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Research Question 4-7 

According to Table 6, the authors present thorough evaluations of the methodologies and their corresponding 

metrics used to study various aspects of Water Quality. Additionally, an equivalent overview table summarises 

the authors' recommendations for future research in water quality classification addresses challenges associated 

with sensor noise, calibration issues, inconsistent sampling methods, limited cross sensitivities, and lack of 

standardisation in testing. Nonetheless, small imbalanced dataset issues continue to present challenges to the 

generalisation of model performance in practice.  

Several key areas of potential growth in the classification of water quality are identified in the Future Trends 

column, including deep learning models that can automatically extract features from the data, improvements to 

high-sensitivity sensors; and integration of platform technologies using the Internet of Things (IoT) for 

continued, real-time water quality monitoring. The table provides an overview of the state of current research 

and highlights potential new technologies, each of which poses considerable technical challenges for future 

development before they will be operational as the next generation of water quality classification systems, 

accordingly, the table is also useful for answering key research questions while identifying areas of advancement 

in the water quality classification field. 

  

Figure 5. Research Field of Final Collected Paper 

Based of Figure 5W, Environmental sensing and monitoring (ESM) are the greatest focus of the 17 studies 

reviewed; 15 are dedicated to the research of ESM. ESM is becoming more popular as pollution in the water 

ecosystem must be identified and tracked in real-time due to the increasing need to protect ecological and human 

health and well-being from contaminated water. Environmental sensors, such as artificial intelligence (AI) 

models, Internet of Things (IoT) sensors, and hybrid algorithm-based sensors, will assist researchers in realizing 

more accurate and faster methods of assessing the quality of water. These tools will allow researchers to conduct 

timely identification and monitoring of water contaminants, pathogens, and chemical shifts, thereby providing 

them the ability to actively manage and maintain the environment.  

Agricultural sustainability (AS) is the second focus of this group of researchers; two of the studies reviewed 

pertain to AS. With AS, researchers emphasise smart on-farm water usage, i.e., the use of available water 

resources for irrigation as well as determining the best crops to grow based on water quality and potential yield. 

Therefore, the two research areas of ESM and AS demonstrate how researchers are using technology to maintain 

both human and ecological health and support an intelligent method of managing and utilizing water. 
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The graph shown in this report indicates a growing interest in protecting ecosystem & biodiversity (EBP) through 

the use of predictive-modeling techniques for assessing river and watershed health (WS/MH) and the link 

between that and protecting our river systems. Protecting our river systems supports two areas of human activity: 

1) the need for clean drinking water for human consumption and 2) the need for healthy and balanced ecosystems 

through inclusive and sustainable water management practices. Thus, EBP is an example of an integrated and 

holistic model of water management that incorporates consideration of both social and economic factors along 

with environmental and ecosystem needs, thereby achieving an ecological balance. Table 7 show the 

summarization of Research Question from 4 until 7. 

Table 7. Summarization of RQ 4-7 

Ref Metric Limitation Future Trend 

[12] The primary 

evaluation 

metric used is 

the F1-macro 

score.  

- Single-sensor images often fail for 

long-term monitoring needs. 

- Remote sensing is limited by image 

acquisition time and cloud cover. 

- Machine learning models 

underestimated eutrophic cases due to 

limited training data. 

- The multiplatform approach enhances water 

quality monitoring capabilities 

- Future work includes improving model 

accuracy and cross-validation across sensor. 

[13] Accuracy - Environmental noise and lighting 

variability may distort image 

classification 

- Periodic model retraining may be 

necessary for variable effluent 

compositions 

- Non-industrial-grade sensors may 

affect long-term reliability in field 

deployments  

- Enhanced image preprocessing techniques 

will be explored. 

- The sensor array will be upgraded with 

industrial-grade components. 

- Future research will deploy the system in real 

industrial environments. 

 

[14] - Accuracy 

- Precision 

- Recall 

- F1-Score 

- The ensemble model's complexity 

increases interpretability challenges 

and resource requirements. 

- Model performance relies heavily on 

data quality and representativeness 

- Maintenance and updates of the 

model can be resource-intensive. 

- Applicability to other regions is 

limited due to training data from one 

state. 

- Future work includes external validation with 

diverse water quality datasets. 

- The model will be tested across different 

Indian states and international repositories. 

- Integration with IoT devices for real-time 

data acquisition is planned. 

[15] - Accuracy 

- Precision 

- F1 score 

- Water quality assessment relies on 

subjective analysis and limited 

attributes. 

- External factors significantly 

challenge water potability 

- Future research will focus on advancing 

hybrid models for better prediction accuracy. 

- Integration of AI and blockchain technology 

is proposed for water treatment management. 
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determination. 

- Inaccurate reporting can lead to 

serious health issues. 

[16] - none - Traditional models struggle with 

complex water systems and missing 

data. 

- Limited generalizability due to 

region-specific data and small sample 

sizes. 

- Access inequity in sensor networks 

affects model training and 

performance. 

- Lack of transparency in AI models 

complicates interpretation. 

-  Future research will integrate XAI with 

digital twins and edge computing. 

- Multimodal frameworks are emerging to 

tackle data heterogeneity 

 

 

[17] -Parameters 

- Ratings 

- Weights 

- The model may struggle with 

extreme heterogeneity in datasets. 

- Errors in data pre-processing can 

adversely impact outcomes. 

- Future work will enhance computational 

efficiency and generalization tests on diverse 

datasets. 

- The adaptability of the model to different 

regions is a key consideration. 

[18] - Accuracy 

- Rates 

- Precision 

-Recall 

 

- The model's performance could 

improve with advanced optimization 

techniques. 

- Limitations include not using 

dimensionality reduction methods 

like PCA. 

 

- Future studies may focus on advanced 

optimization techniques for better predictions. 

- Machine learning enhances water quality 

classification accuracy and efficiency. 

- Incorporating Deep Learning techniques like 

CNN can enhance quality assessment. 

- Ensemble models with optimized 

hyperparameters outperform individual 

models. 

[19] -Accuracy 

-Precision 

- Incomplete temporal or spatial 

metadata compromises classification 

reliability. 

- MLP classifier struggles to 

distinguish eutrophic from 

noneutrophic reservoirs. 

- Future studies will leverage temporal depth 

for detailed analyses of eutrophication 

variability. 

- The methodology allows for continuous 

assessment as new data becomes available. 

[20] -Accuracy 

-Error 

-Prediction 

-Performance 

- The study used a smaller dataset 

over two years, limiting long-term 

analysis. 

- Statistical and ML algorithms were 

used; deep learning could enhance 

results. 

- Future research can utilize long-term datasets 

over multiple years. 

- Incorporating water quality classification 

parameters like COD and BOD is 

recommended. 

- Deep learning algorithms could enhance 
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predictive accuracy. 

[21] -Accuracy - Combining water indices masks 

individual parameter effects on 

irrigation quality. 

- Sensitivity values of some networks 

were unsuitable for effective 

communication. 

- Future applications may include advanced 

data analytics and cloud services. 

- The study proposes a real-time water 

monitoring network using Machine Learning 

tools. 

[22] -Accuracy 

-Precision 

-Recall 

-F1 score 

- Challenges exist in applying 

techniques to varied water types and 

conditions. 

- Long-term studies are required to 

assess reliability and consistency. 

- Broader validation across different 

environments is needed for these 

methods. 

- Advanced machine learning algorithms will 

enhance water quality monitoring systems. 

- Integration of AI and spectral analysis is a 

promising future trend. 

- High-resolution remote sensing data will play 

a significant role in water quality assessment. 

[24] -Accuracy 

-Precision 

-Recall 

-F1 score 

- High complexity in applying 

differential privacy requires further 

auditing methods. 

- Heterogeneous data in federated 

learning presents unresolved 

challenges for differential privacy. 

- Differential privacy can enhance water 

quality monitoring accuracy with minimal 

performance loss. 

- Future research may explore more neural 

network architectures with DP applications. 

- The study indicates potential for improved 

anomaly detection in water monitoring 

systems. 

[23] -Error 

-Precision 

-Accuracy 

- Unequal distribution of water 

sample types affects accuracy. 

- Limited data restricts widespread 

application of water quality 

classification models. 

- Historical data limits model training 

effectiveness. 

- The study recommends combining Entropy, 

TOPSIS, SMOTE, and SVM methodologies 

for forecasting. 

 

[25] -Accuracy 

-Error 

-Precision 

-F1 score 

-Various 

- Machine learning faces challenges 

with data quality and model 

interpretability. 

- Scalability issues require careful 

consideration in real-world 

applications. 

- Complex relationships in water 

quality factors complicate 

predictions. 

- Future forecasting of water quality is possible 

with machine learning advancements. 
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[26] -Accuracy 

-Precision 

-Recall 

-F1 score 

- Regional data variability introduces 

uncertainty in predictions. 

- Current recommendations rely on 

static mappings, limiting decision 

precision. 

- IoT sensor noise can compromise 

prediction reliability. 

- The framework supports rapid decision-

making for farmers and agricultural agencies. 

- It utilizes machine learning for real-time 

predictions and crop recommendations. 

 

[27] -Accuracy 

-Recall 

-F1 score 

-Presicion 

 

- Traditional methods face limitations 

like single-model approaches and 

inadequate data processing 

capabilities. 

- These limitations hinder effective 

water quality monitoring and 

prediction accuracy. 

- Future research will focus on data accuracy 

and veracity. 

- The study aims to enhance water quality 

prediction model performance. 

[28] -Accuracy 

-Precision 

-Recall 

-F1 score 

-Model 

- Data availability and computational 

complexity hinder machine learning 

applications. 

- Model interpretability remains a 

significant challenge for widespread 

adoption. 

- Lack of standardized evaluation 

metrics affects model generalization. 

- Future innovations include explainable AI 

and AutoML for improved predictions. 

CONCLUSION 

This systematic literature review provides an overview of sensor technologies and classification algorithms for 

assessing water quality. The Random Forest, Support Vector Machine (SVM), (ANN), and k-Nearest Neighbor 

(kNN) are the models most used because they can process complicated and nonlinear data associated with water 

quality. Additionally, there are several examples of multi-parameter sensors that measure multiple parameters 

such as pH, turbidity, Dissolved Oxygen (DO), and EC; these devices offer a good trade-off between the cost, 

input and output accuracy, and ease of deployment. Although advances have been made in this area, many 

challenges still exist, such as sensor calibration issues, inconsistent evaluation methods, and limited application 

of the models across various water sources. Future studies should explore AI-based adaptive learning systems, 

compact and low power sensor designs, and innovative data fusion methods to improve reliability and provide 

real-time decision-support. In addition, establishing a standardized benchmarking framework and promoting 

collaboration between disciplines will be essential in increasing the scalability and utilization of these 

technologies. Thus, this review provides the basis for improving the classification of water quality and smart 

monitoring systems. 

ACKNOWLEDGMENTS 

The authors express deepest gratitude to Universiti Teknikal Malaysia Melaka (UTeM) for their unwavering 

support and encouragement throughout this research journey under Grant PJP/2024/FTMK/PERINTIS/SA0036. 

Their facilities, resources, and academic environment have been instrumental in the successful completion of 

this work. Also, to Universiti Malaysia Pahang Al-Sultan Abdullah and Universitas Amikom for the contribution 

in this article. 

http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue I January 2026 
 

Page 3733 

www.rsisinternational.org 

 

  

 

 

REFERENCES 

1. A. Lokman, W. Z. W. Ismail, and N. A. A. Aziz, “A Review of Water Quality Forecasting and 

Classification Using Machine Learning Models and Statistical Analysis,” Aug. 01, 2025, 

Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/w17152243. 

2. W. Chen, D. Xu, B. Pan, Y. Zhao, and Y. Song, “Machine Learning-Based Water Quality Classification 

Assessment,” Water (Switzerland), vol. 16, no. 20, Oct. 2024, doi: 10.3390/w16202951. 

3. H. Yang, J. Kong, H. Hu, Y. Du, M. Gao, and F. Chen, “A Review of Remote Sensing for Water Quality 

Retrieval: Progress and Challenges,” Remote Sens (Basel), vol. 14, no. 8, Apr. 2022, doi: 

10.3390/rs14081770. 

4. P. Talukdar, B. Kumar, and V. V. Kulkarni, “A review of water quality models and monitoring methods 

for capabilities of pollutant source identification, classification, and transport simulation,” Sep. 01, 2023, 

Springer Science and Business Media B.V. doi: 10.1007/s11157-023-09658-z. 

5. M. T. Ejigu, “Overview of water quality modeling,” Cogent Eng, vol. 8, no. 1, 2021, doi: 

10.1080/23311916.2021.1891711. 

6. T. Yan, S. L. Shen, and A. Zhou, “Indices and models of surface water quality assessment: Review and 

perspectives,” Sep. 01, 2022, Elsevier Ltd. doi: 10.1016/j.envpol.2022.119611. 

7. B. Kitchenham et al., “Systematic literature reviews in software engineering-A tertiary study,” 2010, 

Elsevier B.V. doi: 10.1016/j.infsof.2010.03.006. 

8. A. F. J. AL-Gburi, M. Z. A. Nazri, M. R. Bin Yaakub, and Z. A. A. Alyasseri, “A systematic review of 

symbiotic organisms search algorithm for data clustering and predictive analysis,” Jan. 01, 2024, Walter 

de Gruyter GmbH. doi: 10.1515/jisys-2023-0267. 

9. B. Hammouti et al., “Bibliometric analysis of global research trends on UMI using Scopus database and 

VOS viewer from 1987-2024,” J. Mater. Environ. Sci, vol. 2025, no. 4, pp. 548–561, 2025, [Online]. 

Available: http://www.jmaterenvironsci.comhttp://www.jmaterenvironsci.com 

10. M. Kumar and S. A. Librarian, “Scientific Research on Cutting-Edge Technology : a scientometric 

approach on IEEE Xplore Digital Library.” 

11. A. Capari, H. Azarbonyad, G. Tsatsaronis, Z. Afzal, and J. Dunham, “ScienceDirect Topic Pages: A 

Knowledge Base of Scientific Concepts Across Various Science Domains,” in SIGIR 2024 - Proceedings 

of the 47th International ACM SIGIR Conference on Research and Development in Information 

Retrieval, Association for Computing Machinery, Inc, Jul. 2024, pp. 2976–2980. doi: 

10.1145/3626772.3661353. 

12. M. Zhao and F. O’Loughlin, “A Multiplatform Approach for Chlorophyll Level Estimation for Irish 

Lakes,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 18, pp. 8261–8274, 2025, doi: 

10.1109/JSTARS.2025.3546060. 

13. M. J. H. Mridha et al., “A Real-Time ETP Outlet Monitoring Framework Leveraging Environmental IoT, 

Colorimetry, and Learning Theory,” IEEE Access, vol. 13, pp. 98729–98746, 2025, doi: 

10.1109/ACCESS.2025.3576826. 

14. J. K. Pandya, S. S. Khandelwal, R. K. Tipu, and K. S. Pandya, “Advancing Water Quality Management: 

An Integrated Approach Using Ensemble Machine Learning and Real-Time Interactive Visualization,” 

IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3573589. 

15. D. S. Thakkar et al., “Blockchain-Orchestrated Intelligent Water Treatment Plant Profiling Framework 

to Enhance Human Life Expectancy,” IEEE Access, vol. 12, pp. 49151–49166, 2024, doi: 

10.1109/ACCESS.2024.3384607. 

16. I. A. Aderemi, T. O. Kehinde, U. Daniel Okwor, K. H. Ahmad, K. Y. Adjei, and C. Cyriacus Ekechi, 

“Explainable AI for Water Quality Monitoring: A Systematic Review of Transparency, Interpretability, 

and Trust,” IEEE Sensors Reviews, vol. 2, pp. 419–443, Aug. 2025, doi: 10.1109/sr.2025.3595500. 

17. S. Chadalavada et al., “Gated-LNN: Gated Liquid Neural Networks for Accurate Water Quality Index 

Prediction and Classification,” IEEE Access, vol. 13, pp. 69500–69512, 2025, doi: 

10.1109/ACCESS.2025.3561593. 

18. Z. Karami Lawal et al., “Optimized Ensemble Methods for Classifying Imbalanced Water Quality Index 

Data,” IEEE Access, vol. 12, pp. 178536–178551, 2024, doi: 10.1109/ACCESS.2024.3502361. 

19. R. Usamentiaga, J. Sal, and P. Elvira, “Remote Sensing and Machine Learning for Eutrophication 

Detection: Assessing the Trophic State in Reservoirs Using Multispectral Indices and Deep Learning,” 

http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue I January 2026 
 

Page 3734 

www.rsisinternational.org 

 

  

 

 

IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 18, pp. 16206–16226, 2025, doi: 

10.1109/JSTARS.2025.3583761. 

20. B. Aslam, A. Maqsoom, A. H. Cheema, F. Ullah, A. Alharbi, and M. Imran, “Water Quality Management 

Using Hybrid Machine Learning and Data Mining Algorithms: An Indexing Approach,” IEEE Access, 

vol. 10, pp. 119692–119705, 2022, doi: 10.1109/ACCESS.2022.3221430. 

21. O. O. Ajayi, A. B. Bagula, H. C. Maluleke, Z. Gaffoor, N. Jovanovic, and K. C. Pietersen, “WaterNet: 

A Network for Monitoring and Assessing Water Quality for Drinking and Irrigation Purposes,” IEEE 

Access, vol. 10, pp. 48318–48337, 2022, doi: 10.1109/ACCESS.2022.3172274. 

22. Y. Durgun, “Real-time water quality monitoring using AI-enabled sensors: Detection of contaminants 

and UV disinfection analysis in smart urban water systems,” J King Saud Univ Sci, vol. 36, no. 9, Oct. 

2024, doi: 10.1016/j.jksus.2024.103409. 

23. A. Das, “Water quality assessment and geospatial techniques for the delineation of surface water 

potential zones: A data-driven approach using machine learning models,” Desalination Water Treat, vol. 

324, Oct. 2025, doi: 10.1016/j.dwt.2025.101461. 

24. A. Arzovs, S. Parshutin, V. Urbanovics, J. Rubulis, and S. Dejus, “Application of differential privacy to 

sensor data in water quality monitoring task,” Ecol Inform, vol. 86, May 2025, doi: 

10.1016/j.ecoinf.2025.103019. 

25. D. Irwan et al., “River water quality monitoring using machine learning with multiple possible in-situ 

scenarios,” Environmental and Sustainability Indicators, vol. 26, Jun. 2025, doi: 

10.1016/j.indic.2025.100620. 

26. C. Reddy, V. V. Reddy, J. Chetan Vikas, and K. Priyadarsini, “AI-Driven Water Quality Assessment and 

Crop Suitability System,” in 2025 International Conference on Data Science and Business Systems, 

ICDSBS 2025, Institute of Electrical and Electronics Engineers Inc., 2025. doi: 

10.1109/ICDSBS63635.2025.11031738. 

27. M. Wu and E. B. Blancaflor, “Research on Watershed Water Quality Classification Prediction Based on 

WOA-CNN-GRU Model,” in E3S Web of Conferences, EDP Sciences, Oct. 2024. doi: 

10.1051/e3sconf/202458001007. 

28. N. Arunachalam, S. Nilakhe, and V. Dhing, “Water Quality Prediction Using Machine Learning 

Models,” in Proceedings of the 2025 11th International Conference on Communication and Signal 

Processing, ICCSP 2025, Institute of Electrical and Electronics Engineers Inc., 2025, pp. 53–58. doi: 

10.1109/ICCSP64183.2025.11088772. 

29. C. Cheng et al., “Urban Fine-Grained Water Quality Monitoring Based on Stacked Machine Learning 

Approach,” IEEE Access, vol. 12, pp. 77156–77170, 2024, doi: 10.1109/ACCESS.2024.3404068. 

 

 

http://www.rsisinternational.org/

