

The Role of AI in Revolutionizing Trauma-Informed Mental Health Care: Ethical, Cultural and Clinical Considerations

Adie Gabriel-Mario Ugpong

1718, Ruiru, Kenya

DOI: <https://doi.org/10.47772/IJRISS.2026.10100292>

Received: 11 January 2026; Accepted: 16 January 2026; Published: 03 February 2026

ABSTRACT

The growing incorporation of artificial intelligence (AI) into the healthcare domain has profoundly reconfigured mental health services, especially in areas like diagnosis, the customization of treatments, and therapeutic strategies. Integrating artificial intelligence (AI) into TIC presents both distinct advantages and hurdles. AI-powered instruments can improve accessibility through the automation of evaluations, the customization of treatment strategies, and the reduction of disparities in access to mental healthcare services. Nevertheless, substantial apprehensions exist regarding data confidentiality, algorithmic prejudice, and the possible detachment of care. To address these challenges, this paper examines the intersection of AI and TIC, highlighting key ethical, cultural, and clinical considerations. This study employed a theoretical analysis methodology, a thorough literature review was undertaken to consolidate current research on AI within trauma-informed mental healthcare, utilizing systematic reviews, meta-analyses, and empirical studies. This analysis explores psychological models including Cognitive-Behavioral Therapy (CBT) and Figley's Trauma Stress Model, alongside ethical AI frameworks (deontological and utilitarian ethics) and culturally sensitive AI viewpoints. The study proposes a comprehensive AI-TIC framework that balances innovation with ethical practice, focusing on ethical considerations, practical implementation, therapeutic applications, and cultural adaptation.

Keywords: Trauma-informed care, artificial intelligence, Language models, Ethical and Cultural Considerations

INTRODUCTION

The growing incorporation of artificial intelligence (AI) into the healthcare domain has profoundly reconfigured mental health services, especially in areas like diagnosis, the customization of treatments, and therapeutic strategies. There is growing interest in how AI-powered technologies such as predictive analytics, chatbots, and virtual reality (VR) therapy can be utilized within trauma-informed care (TIC) (Altman et al., 2023). Despite the widespread examination of AI in general healthcare contexts, its application within TIC is still in its early stages, particularly when it comes to addressing ethical, practical, and cultural aspects (Maitra et al., 2024). It is crucial to understand the interplay between AI and TIC, as trauma-informed approaches emphasize safety, trust, empowerment, and cultural sensitivity, principles that AI systems need to adhere to in order to prevent re-traumatization or the perpetuation of systemic biases (Chen et al., 2022).

Statement Of The Problem

Although artificial intelligence holds promise for transforming mental healthcare, a significant research deficit exists concerning its responsible and efficacious incorporation into TIC. Current AI models frequently suffer from a lack of transparency and clarity, fueling anxieties surrounding informed consent and patient confidence (Cogan, 2024). Furthermore, the reliance of AI on data triggers concerns about confidentiality, security, and potential algorithmic bias (Hutchinson & Hurley, 2017). The present scarcity of AI systems within TIC that demonstrate cultural sensitivity risks the alienation of vulnerable populations, as these models predominantly mirror Western-centric healthcare frameworks (Maude et al., 2024).

To address these challenges, this paper examines the intersection of AI and TIC, highlighting key ethical, cultural, and clinical considerations. A trauma-informed AI framework is proposed to ensure that AI-driven

mental health solutions align with the principles of TIC while maintaining ethical integrity and cultural relevance.

METHODOLOGY

This study employs a theoretical analysis methodology due to the inherent complexity of merging varied psychological, ethical, and cultural frameworks. A literature review was undertaken to consolidate current research on AI within trauma-informed mental healthcare, utilizing systematic reviews, meta-analyses, and empirical studies. This analysis explores psychological models including Cognitive-Behavioral Therapy (CBT) and Figley's Trauma Stress Model, alongside ethical AI frameworks and culturally sensitive AI viewpoints. In addition, a comparative analysis of ethical guidelines and case studies pertaining to AI within the realm of mental health was carried out. This analysis aims to evaluate practical applications and associated challenges. Sources were meticulously collected from academic databases including Google Scholar, PubMed, Springer, Wiley, ScienceDirect, Frontiers, Taylor & Francis, and ResearchGate. This rigorous approach ensured that only authentic, peer-reviewed, and high-quality materials are incorporated into the study.

Clarifying The Two Key Concepts

Artificial Intelligence in Mental Health

Artificial Intelligence (AI) is transforming the landscape of mental health care. It is improving the precision of diagnoses, tailoring treatment plans to individual needs, and broadening access to psychological support (Husnain et al., 2024). AI leverages machine learning algorithms, natural language processing (NLP), and predictive analytics, which have been incorporated into diverse mental health applications. These include chatbots, virtual reality (VR) therapy, and automated mental health screening instruments (Ayoola et al., 2025). Such tools provide ongoing, scalable, and economical mental health assistance, especially benefiting those in isolated or underserved regions (Ajayi, 2025).

Chatbots, which are automated conversational agents, represent one of the most broadly adopted AI applications within the field of mental health. These tools are crafted to deliver cognitive behavioral therapy (CBT) interventions and emotional support. Woebot and Wysa, for example, leverage natural language processing (NLP) algorithms to interact with users, furnishing them with psychoeducational materials, guided relaxation exercises, and behavioral strategies to cope with anxiety and depression (Cho & Kim, 2024). Research suggests that AI-powered chatbots can alleviate symptoms of anxiety and depression, yet their efficacy varies depending on the extent of user engagement and the intricacy of the mental health issues involved (Prajapati, 2024).

Predictive analytics stands out as another crucial domain where AI is making significant inroads. By harnessing the power of extensive datasets, it uncovers trends in mental health conditions and forecasts patient outcomes. These days, predictive models are gaining traction in evaluating the risk of suicide, the intensity of PTSD, and the chances of relapse for those grappling with depression or substance abuse issues (Zhang & Wang, 2024). Through the analysis of electronic health records and behavioral data, AI-driven predictive instruments facilitate timely interventions and tailor treatment strategies to individual needs (Husnain et al., 2024).

AI holds promise for revolutionizing mental healthcare, yet its application faces considerable hurdles. One prominent issue is algorithmic bias; numerous AI models are developed using datasets that fail to adequately represent diverse populations. Consequently, this leads to disparities along racial, gender, and socioeconomic lines in AI-generated diagnoses and treatment suggestions (Chauhan & Vaidya, 2024). Furthermore, issues surrounding data privacy, transparency, and securing informed consent present ongoing obstacles to the ethical integration of AI within mental health care settings (Ayoola et al., 2025).

Trauma-Informed Care (TIC)

Trauma-Informed Care (TIC) represents a comprehensive, evidence-supported approach crafted to acknowledge and address the widespread effects of trauma on mental well-being (Melillo et al., 2025). This framework is founded upon six fundamental principles:

1. Safety: Ensuring that care environments foster physical and psychological security for trauma survivors (McGovern et al., 2024).
2. Trust and Transparency: Establishing clear, predictable, and honest communication between mental health professionals and clients (Cunha & Gomes, 2024).
3. Peer Support: Encouraging shared experiences and community-based recovery models to enhance resilience (Robinson, 2024).
4. Collaboration and Mutuality: Promoting patient autonomy and shared decision-making in treatment plans (Hunt, 2024).
5. Empowerment, Voice, and Choice: Prioritizing individual agency in healing and recovery processes (DeMartini et al., 2024).
6. Cultural, Historical, and Gender Sensitivity: Acknowledging the intersecting influences of cultural background, race, gender, and historical trauma in mental health treatment (Hunt, 2024).

Trauma-Informed Care (TIC) has seen significant uptake in fields such as psychiatric care, school counseling, and substance abuse treatment. Studies have shown it to be effective in lowering the risk of re-traumatization and enhancing patients' commitment to treatment (Reynolds, 2024). Given that trauma survivors frequently exhibit elevated levels of anxiety and distrust, it is crucial for therapeutic methods to place primary emphasis on relational security and the validation of emotions (Hunt, 2024). Merging TIC with Artificial Intelligence (AI) opens up new possibilities but also raises certain concerns. AI-powered TIC interventions hold the potential to expand access to mental health services that are sensitive to trauma, especially for populations that are currently underserved (Melillo et al., 2025). However, concerns remain about the lack of human empathy in AI-driven therapy and the risk of re-traumatization when interacting with automated systems (McGovern et al., 2024). Given these complexities, AI applications in TIC must be developed in alignment with trauma-informed principles to ensure ethical and effective implementation (Cunha & Gomes, 2024).

Artificial intelligence is reshaping the landscape of mental health care by way of chatbots, predictive analytics, and virtual reality-based interventions, thereby creating novel avenues for enhanced accessibility and early detection. Nevertheless, challenges such as algorithmic bias, ethical concerns, and the lack of genuine human connection pose substantial obstacles to the efficacy of AI within a trauma-informed framework of mental health care. TIC furnishes a patient-centered paradigm that emphasizes safety, trust, cultural responsiveness, and patient empowerment throughout the treatment process. For AI to be seamlessly incorporated into TIC, it is imperative that its design be ethically sound, culturally sensitive, and firmly grounded in trauma-informed principles, all to better serve the comprehensive needs of trauma survivors.

Theoretical Framework

The inclusion of AI within trauma-informed care necessitates a robust theoretical groundwork. This is vital to confirm that AI-powered interventions are in harmony with established psychological models supported by evidence, adhere to ethical standards, and are sensitive to cultural nuances. This section delves into four crucial theoretical viewpoints: the intersection of Cognitive-Behavioral Therapy (CBT) and AI interventions, the application of Figley's Trauma Stress Model, frameworks for ethical AI, and AI that is culturally sound. This framework offers a structured foundation for comprehending the development of AI applications designed to aid in trauma recovery, all while considering clinical, ethical, and cultural aspects. This approach helps ensure that mental health support is provided in a fair and compassionate manner.

1. Cognitive-Behavioral Therapy (CBT) & AI Interventions

Cognitive-Behavioral Therapy, commonly known as CBT, is a frequently employed psychological strategy in the treatment of trauma, anxiety, and depression. This approach centers on recognizing and modifying negative thinking patterns, enhancing cognitive adaptability, and fostering healthy behavioral reactions to stress

(Omiyefa, 2024). Mental health interventions leveraging artificial intelligence, including chatbots and virtual reality therapy, are increasingly being designed to integrate CBT methods. This development is broadening the availability of mental healthcare and support for individuals who have experienced trauma (Olukayode et al., 2024).

AI-driven conversational agents, exemplified by Woebot and Wysa, leverage Natural Language Processing (NLP) and machine learning algorithms to facilitate real-time interactions with users. These interactions provide tailored coping mechanisms, instructor-led relaxation techniques, and interventions focused on cognitive restructuring (Ajayi, 2025). Scholarly investigations indicate that such AI-powered conversational agents can efficaciously alleviate symptoms associated with PTSD, anxiety disorders, and depression, especially benefiting those with limited access to conventional therapeutic services (Isa, 2024).

Research conducted by Rowshon et al. (2025) indicates that AI cognitive behavioral therapy (CBT) applications enhance emotional resilience and cognitive adaptability in trauma survivors. This enhancement is achieved through mechanisms such as immediate feedback, interactive journaling exercises, and the provision of psychoeducational material. Likewise, a study by Ćosić et al. (2024) reveals that virtual therapy environments, powered by AI, can effectively simulate exposure therapy and facilitate cognitive restructuring for individuals recuperating from post-traumatic stress disorder (PTSD) related to war experiences. While these technologically driven interventions show considerable promise, they are not intended to replace human therapists. Instead, they serve as a valuable adjunct, broadening access to mental health support.

While offering numerous advantages, AI-powered cognitive behavioral therapy (CBT) interventions face certain constraints. Olawade et al. (2024) point out that chatbots may find it challenging to grasp intricate emotional subtleties, potentially hindering the customization of therapy. Furthermore, issues surrounding data confidentiality, the ethical oversight of AI, and algorithmic bias have been raised.

2. Figley's Traumatic Stress Model & AI's Role in Clinical Support

Charles Figley's Trauma Stress Model offers a valuable framework for comprehending psychological issues such as compassion fatigue and secondary traumatic stress (STS) (Figley, 2013). For instance, professionals such as clinicians, first responders, and caregivers who assist trauma survivors face the risk of emotional depletion and diminished empathy, potentially resulting in burnout and less effective treatment (Adie et al., 2024). The implementation of AI-driven interventions is currently being investigated as a means of providing support to alleviate secondary trauma and enhance the well-being of those who experience it.

AI tools, such as predictive analytics and clinician wellness applications, are being developed to lessen administrative loads, identify early indicators of burnout, and offer digital mental health support for professionals (Spytska, 2025). For instance, Sun et al. (2023) discovered that AI-driven self-care platforms providing personalized mindfulness practices, workload monitoring, and stress evaluations could assist clinicians in handling emotional depletion and sustaining professional resilience. Coetzee and Laschinger's (2018) research indicated that the implementation of AI-driven, real-time feedback mechanisms had the potential to enhance the quality of therapists' clinical judgment while simultaneously lessening their cognitive burden. In a comparable vein, Rushforth et al. (2023) investigation revealed that AI-powered tools, designed for monitoring the mental well-being of clinicians operating under significant stress, proved successful in pinpointing precursors to burnout and compassion fatigue.

Beyond applications designed for individual well-being, artificial intelligence is also being investigated within peer-support frameworks aimed at people who encounter trauma. Creed et al. (2022) analyzed the function of AI in streamlining debriefing sessions by employing automated sentiment assessment and organized reflective practices. These AI-powered platforms assist individuals in managing emotional turmoil subsequent to exposure to distressing situations, thereby mitigating the enduring repercussions of traumatic stress.

3. Ethical AI Frameworks: Deontological vs. Utilitarian Ethics

Despite these advancements, AI's role in mental health presents ethical challenges. Gonzalez & Matias (2025) caution that AI-generated mental health recommendations must be transparent and ethically governed to avoid misdiagnosing stress levels or over-relying on automated assessments. Additionally, Page & Robertson (2022) highlight the risk of depersonalization in AI-assisted clinician support systems, emphasizing the need for human oversight in AI-driven interventions.

The use of AI within the realm of mental healthcare throws up some ethical questions, ones that need a thorough look at different ethical viewpoints. From a deontological perspective, which ties back to Kantian philosophy, the focus is on adhering firmly to moral principles and protecting patients' rights. This means making sure AI tools are transparent, respect patients' freedom to make choices, and are fair (Poszler & Lange, 2024). Conversely, a utilitarian approach is all about getting the best results for most people. So, it pushes for AI models that improve mental health for many, even if it means overriding individual autonomy in some cases (Hindocha & Badea, 2022).

Deontologically speaking, artificial intelligence needs to operate in a manner that upholds human dignity and autonomy, avoiding any breaches of informed consent and data privacy. Mobarak et al. (2024) contend that AI-powered mental health interventions should offer complete clarity about data collection practices, how algorithms make decisions, and any possible risks to patients. Furthermore, ethically sound AI systems should be subject to human scrutiny, ensuring that we do not become overly dependent on AI for crucial mental health evaluations, as Jedličková (2024) points out. Moreover, Hayes et al. (2024) highlight concerns regarding algorithmic bias, where AI systems may disproportionately misdiagnose or misinterpret symptoms among racial minorities due to non-diverse training datasets. From a deontological standpoint, this necessitates rigorous bias audits and regulatory oversight to prevent ethical violations.

Conversely, utilitarian ethics emphasizes AI's capacity to enhance accessibility and ameliorate mental health outcomes for the greatest number of individuals. Guo and Kühler (2024) contend that AI-driven mental health chatbots and predictive analytics alleviate therapist workloads and furnish round-the-clock support, thereby benefiting patients who might otherwise be devoid of access to mental health services. Nevertheless, Stahl (2021) cautions that an exclusively utilitarian framework could engender ethical concessions, such as AI systems according deference to efficiency at the expense of patient-focused care. Yew (2021) further emphasizes the extant trust chasm between patients and AI-driven therapeutic instruments, asserting that while AI can optimize efficiency, it must concurrently preserve a human-centric modality in mental health treatment.

Considering the inherent tension between deontological and utilitarian principles, scholars recommend adopting a composite ethical framework that merges these two viewpoints. Lawrence and Appelbaum (2024) put forward the idea of AI-powered mental health interventions that reconcile individual patient autonomy, a cornerstone of deontology, with the pursuit of wider public health advantages, a key concern of utilitarianism. This approach aims to guarantee the ethical integration of AI within clinical settings. Likewise, Meier et al. (2022) argue that guidelines for AI ethics should incorporate robust regulatory structures and ongoing ethical evaluations to effectively navigate the ethical dilemmas that are sure to arise. Consequently, the ethical implementation of AI in the realm of mental health necessitates a multi-faceted strategy that is in harmony with human rights, achieves clinical efficacy, and fosters patient confidence.

4. Culturally Attuned AI: The African Voice in Mental Health

AI-powered mental health support tools need to be carefully adapted for different cultural groups, especially in African settings. Currently, many AI models are built with a Western focus and do not properly account for the unique cultural, language, and social factors that affect mental health in Africa (Forane et al., 2025; Ugar, 2022). Studies show that most AI tools for mental health are trained on data from Western populations, making them less effective when used in African cultures. Barron & Abdallah (2025) found that these AI models often miss key cultural signs needed to accurately identify trauma-related issues in African patients, which can lead to incorrect diagnoses and treatments that do not work well. Furthermore, Lee et al. (2023) argue that AI-driven cognitive behavioral therapy (CBT) models overlook community-based healing traditions that are integral to

African mental healthcare. In many African societies, mental well-being is deeply interconnected with communal support systems, whereas Western AI frameworks prioritize individualized treatment models.

To bridge these divides, Herrenkohl and Hong (2019) champion the development of AI models that integrate indigenous healing traditions and employ multilingual NLP algorithms, enabling them to comprehend local dialects and culturally specific manifestations of distress. Likewise, Jemal et al. (2020) suggest the incorporation of Afrocentric psychological perspectives into AI-driven trauma interventions, guaranteeing culturally congruent therapeutic approaches. AI-based mental health initiatives in Africa should place trauma-informed care (TIC) at the forefront, especially in areas impacted by conflict, displacement, and historical trauma. O'Brien and Charura (2024) highlight the necessity for AI-powered trauma recovery tools to be designed with cultural sensitivity, weaving African spiritual and communal resilience strategies into the fabric of therapeutic interventions. Additionally, Walton et al. (2024) argue that culturally attuned AI must be co-designed with African mental health professionals, ensuring that AI systems align with local values and mental health paradigms. This aligns with Kalokhe et al. (2023), who highlight the importance of African-led research and AI governance frameworks to prevent the imposition of Western-centric AI solutions.

Despite the promise of culturally sensitive AI in African mental health, several challenges remain: First is the lack of African representation in AI research & development (Helling & Chandler, 2019). Secondly, there are ethical concerns regarding data privacy in African mental health AI projects (Lanphier & Anani, 2022). Lastly, there is need for more funding and research into Afri-centric AI mental health solutions (Forane et al., 2025). Future efforts should focus on developing AI models that reflect African realities, ensuring equitable access to culturally competent mental health care.

Merging AI And Trauma-Informed Care: A Proposed Framework

The integration of AI in TIC presents a transformative opportunity to improve mental health interventions, expand accessibility, and enhance clinical decision-making. However, this integration must address ethical, practical, and therapeutic challenges while ensuring cultural sensitivity. This section proposes a comprehensive AI-TIC framework that balances innovation with ethical practice, focusing on ethical considerations, practical implementation, therapeutic applications, and cultural adaptation.

1. Ethical Considerations in AI-Trauma Care

To ethically integrate AI into trauma-informed care, a methodical strategy is necessary, upholding data confidentiality, informed consent, algorithmic openness, and bias reduction. As AI models in mental health grow more independent, ethical considerations and accountability become crucial to their creation and application (Firmin et al., 2024). These AI-driven mental health instruments depend on vast amounts of personal information, prompting worries about privacy and security. Galderisi et al. (2024) highlight the need for informed consent, guaranteeing that patients are fully aware of how AI systems utilize, store, and examine their mental health information. This is especially vital in trauma-informed care, where patients' sensitivities could be abused if AI is employed without their explicit approval.

Secondly, algorithmic bias continues to pose a major obstacle in the field of AI-powered mental health interventions. Kennedy and Hickman (2025) contend that AI models developed using Western-centric datasets may inaccurately diagnose symptoms in individuals from non-Western backgrounds, resulting in discriminatory treatment outcomes. Abdulai (2025) further cautions that generative AI models have the potential to amplify racial and socio-economic biases, thereby perpetuating inequities within trauma care. To mitigate biased AI outputs, it is crucial to prioritize algorithmic fairness by employing diverse training datasets and maintaining human oversight. The ethical integration of AI into trauma-informed mental health care necessitates transparency and accountability. Meier et al. (2022) propose a hybrid model, where AI-powered mental health assessments are always reviewed by human clinicians before being used in treatment planning. This ensures that AI-driven recommendations remain trustworthy, ethical, and aligned with human values.

2. The Role of the Clinician: Integrating AI into Trauma-Informed Clinical Practice

Artificial intelligence, despite its many benefits, faces both hurdles and potential when implemented in trauma care. Effective integration necessitates that AI augment, rather than supplant, human-centric therapy (Perivolaris et al., 2025). Current applications of AI within trauma-informed clinical environments showcase its capacity to aid clinicians and enhance patient results. AI-driven chatbots, exemplified by Wysa and Woebot, deliver real-time cognitive behavioral therapy (CBT) to trauma survivors, furnishing accessible and immediate psychological aid (Babu & Joseph, 2024). Furthermore, predictive analytics for diagnosing post-traumatic stress disorder (PTSD) assist clinicians in identifying trauma-related conditions at an earlier stage, facilitating more prompt and focused interventions (Fernández-Jiménez & Acquadro Maran, 2024). Furthermore, automated risk assessment tools leverage AI to screen trauma patients for high-risk factors, facilitating early intervention strategies and reducing long-term mental health complications. While these AI applications show great promise, they must be implemented responsibly, ensuring that human oversight and ethical considerations remain at the forefront of trauma-informed care.

Case studies demonstrate both successes and limitations in AI-based trauma care: Fernández-Jiménez & Acquadro Maran (2024) found that AI-assisted therapy in workplace mental health programs improved early trauma identification, reducing long-term psychological distress. Perivolaris et al. (2025) highlight a pilot study where AI-enabled PTSD assessments reduced clinician workload but lacked emotional nuance, necessitating human oversight in final evaluations. These findings suggest that AI can enhance trauma-informed interventions but should not operate independently of human expertise. Babu and Joseph (2024) suggest that although AI can simulate therapeutic empathy, it falls short of forming a real human bond. Galderisi et al. (2024) emphasize that AI-powered mental health tools cannot substitute human therapists, as they miss non-verbal emotional signals vital for trauma healing. To overcome these shortcomings, AI should act as a supplementary tool, not a replacement. Kennedy and Hickman (2025) put forward a cooperative AI-therapist framework, where AI aids in clinical decision-making while therapists retain oversight of treatment strategies.

3. Framework Proposal: AI-TIC Model

Based on the discussions above, this paper proposes a comprehensive AI-TIC framework that integrates ethical, practical, and therapeutic dimensions into AI-driven trauma-informed care. A cornerstone of this approach is ethical AI governance, vital for ensuring these systems respect data privacy, actively work against biases, and operate under human supervision, all of which fosters openness and trust. Moreover, this study emphasizes the need for AI that is culturally aware and inclusive. This involves training AI on a wide range of data and integrating local African mental health perspectives to boost both its relevance and impact, as highlighted by Forane et al. (2025). Lastly, this study advocates for a collaborative model of therapy that combines human and AI efforts, where AI assists clinicians instead of substituting them. This approach safeguards the therapeutic bond and keeps empathy and emotional connection at the heart of trauma care. A visual framework can illustrate the intersection of ethical, practical, and therapeutic considerations, providing a structured approach for responsibly integrating AI into trauma-informed mental health care.



Figure 1: AI-Trauma Informed Care (AI-TIC) Framework

Artificial intelligence holds the potential to significantly transform trauma-informed care, yet its implementation must adhere to ethical principles, practical considerations, and close collaboration with human practitioners. AI can support personalized therapies, predictive diagnostics, and improve accessibility, but ensuring transparency, fairness, and cultural competence is paramount. The suggested AI-TIC framework offers a systematic method for incorporating AI into trauma recovery, emphasizing the preservation of human-centered therapy. Further research should prioritize the development of culturally sensitive AI models, the reinforcement of ethical guidelines, and the refinement of collaborative efforts between humans and AI to advance trauma-informed care on a global scale.

Future Considerations And Research Gaps

Artificial Intelligence (AI) is still in the early stages of being incorporated into trauma-informed care, leaving substantial areas unexplored and offering exciting prospects for future work. This section delves into the major shortcomings of current research on AI's role in trauma care and highlights the necessity of collaborative efforts across disciplines to guarantee that AI tools used in trauma care are not only effective clinically but also ethical and mindful of cultural differences.

1. Identifying Gaps in AI and Trauma-Informed Care

While AI has made strides in mental health application, it still grapples with considerable drawbacks that demand more research. Key areas needing further exploration are the cross-cultural validation of AI models, studies on their long-term efficacy, and ethical concerns in practical, real-world application (Gameon & Skewes, 2020). A critical area requiring further investigation is the deficiency of cross-cultural validation within AI-powered trauma interventions. AI models frequently utilize Western-centric datasets for training, which diminishes their efficacy for varied global populations (Denier & Gastmans, 2013). Theodosopoulos et al. (2024) emphasizes the necessity of AI models that incorporate culturally diverse trauma reactions, guaranteeing equitable mental health support across various demographic groups. The absence of culturally sensitive AI raises the potential for inaccurate diagnosis or interpretation of trauma reactions within non-Western communities.

Secondly, the long-term impact of AI-trauma care are, for the most part, yet to be thoroughly investigated. Although AI-powered tools like chatbots and predictive models have shown promise in providing immediate benefits for crisis management and identifying PTSD, questions linger regarding their durability and efficacy over longer timeframes (Kwok et al., 2024). Hence, longitudinal studies should be carried out on the efficacy of AI-TIC on patients.

Lastly, ethical considerations surrounding AI's application in trauma care are substantial, especially regarding data privacy, the transparency of algorithms, and securing patient consent. Wang & Li (2024) highlight the absence of definitive regulatory frameworks for AI within trauma-sensitive mental health contexts, necessitating the urgent formulation of robust governance policies that place paramount importance on patient welfare, privacy, and equitable treatment.

2. The Need for Interdisciplinary Collaboration

For AI to be successfully integrated into trauma-informed care, it necessitates collaboration among AI developers, mental health professionals, and ethicists (Theodosopoulos et al., 2024). The intricate nature of trauma care requires multidisciplinary expertise to guarantee that AI is not just technologically advanced but also clinically and ethically robust. To address this, interdisciplinary research groups should incorporate mental health professionals who can provide valuable insights into AI development. This collaboration ensures that AI-based interventions adhere to trauma-informed principles, such as safety, trustworthiness, and empowerment (Gameon & Skewes, 2020). Collaborative research should focus on:

- Developing AI tools that complement, rather than replace, human therapists.
- Enhancing AI's ability to recognize non-verbal trauma cues.

- Ensuring AI is culturally adaptable to diverse trauma populations.

Also, considering the ethical implications of AI within healthcare, ethicists should hold a pivotal position in forming AI guidelines, guaranteeing its deployment is both responsible and patient-focused. AI must be designed with inherent ethical guidelines that emphasize data confidentiality and informed consent, guaranteeing patients a comprehensive understanding of their data's application and safeguarding (Potash et al., 2017).

CONCLUSION

This research aimed to explore how artificial intelligence can be integrated into mental healthcare that is sensitive to trauma, while also carefully considering the ethical issues this integration raises. The paper has put forward an AI-TIC framework, designed to ensure that AI tools are used in a way that is trauma-sensitive, ethically sound, and respectful of cultural differences. The first objective which involved scrutinizing the function of AI within trauma-informed care, was achieved via a comprehensive analysis of AI-powered interventions. These included chatbots, predictive analytics, and automated risk assessment instruments. While demonstrating potential in their assistance to trauma survivors, these technologies also exhibit constraints regarding emotional profundity, sustained effectiveness, and cultural versatility.

To address the second objective, concerning the assessment of ethical considerations, the study pinpointed crucial issues related to data privacy, algorithmic bias, and informed consent. The findings highlight the pressing necessity for robust governance frameworks to oversee the application of AI within mental healthcare, especially to safeguard susceptible populations from potential risks of misuse. The third objective focused on the development of an AI-TIC framework, which focuses on the integration of ethical, practical, and therapeutic considerations into a cohesive model. This model carefully balances technological advancements with established ethical guidelines. Furthermore, this framework emphasizes the critical need for collaborative efforts among AI specialists, mental health practitioners, and policymakers, ensuring that AI systems are culturally sensitive, clinically validated, and ethically robust. Ultimately, while AI offers promising prospects for transforming trauma-informed mental healthcare, its efficacy hinges upon responsible deployment, collaborative efforts between humans and AI, and sustained ethical monitoring.

BIBLIOGRAPHY

1. Abdulai, A. F. (2025). Is Generative AI Increasing the Risk for Technology-Mediated Trauma Among Vulnerable Populations?. *Nursing Inquiry*, 32(1), e12686.
2. Adie, U. G. M., Tucholski, H., & Muraya, P. (2024). Relationship between Secondary Traumatic Stress and Social Support among Healthcare Personnel in Private Hospitals in Juja Sub-County, Kiambu County Kenya. *International Journal of Research and Innovation in Social Science*, 8(10), 1739-1748.
3. Ajayi, R. (2025). AI-powered innovations for managing complex mental health conditions and addiction treatments. *Int Res J Modern Eng Technol Sci*, 7(1), 87.
4. Arogundade, Babatola & Adebayo, Adebowale & Kalu, Ogechi & Olukayode, Shulammite. (2024). DIGITAL MENTAL HEALTH INTERVENTIONS AND AI IN THERAPY. *International Research Journal of Modernization in Engineering Technology and Science*. 06. 2890-2907.
5. Ayoola, Ayoola & Adeoye, Oloruntobi & Ayoola, Abayomi & Joy, Akinremi. (2025). Telepsychiatry and Digital Mental Health Interventions: The Future of Psychiatric Nursing. *International Journal of Pharma Growth Research Review*. 2. 28-38. 10.54660/IJPGR.2025.2.1.28-38.
6. Babu, A., & Joseph, A. P. (2024). Artificial intelligence in mental healthcare: transformative potential vs. the necessity of human interaction. *Frontiers in Psychology*, 15, 1378904.
7. Barron, I., & Abdallah, G. (2024). Capacity building trauma-specific school counseling in occupied Palestine: A narrative review (2009–2024). *International Journal of School & Educational Psychology*, 13(1), 36–50. <https://doi.org/10.1080/21683603.2024.2443456>
8. Chauhan, S. N., & Vaidya, A. K. (2024). Challenges and Opportunities. *International Journal of Nursing Education and Research*, 12(4).

9. Chen, J. X., McDonald, A., Zou, Y., Tseng, E., Roundy, K. A., Tamersoy, A., ... & Dell, N. (2022, April). Trauma-informed computing: Towards safer technology experiences for all. In Proceedings of the 2022 CHI conference on human factors in computing systems (pp. 1-20).
10. Cho, C. H., Lee, H. J., & Kim, Y. K. (2024). The New Emerging Treatment Choice for Major Depressive Disorders: Digital Therapeutics. Recent Advances and Challenges in the Treatment of Major Depressive Disorder, 307-331.
11. Coetzee, S. K., & Laschinger, H. K. (2018). Toward a comprehensive, theoretical model of compassion fatigue: A n integrative literature review. *Nursing & health sciences*, 20(1), 4-15.
12. Cogan, N. (2024). Psychotraumatology and artificial intelligence: A public health approach. *Public Health Open Access*, 8(1).
13. Creed, T. A., Salama, L., Slevin, R., Tanana, M., Imel, Z., Narayanan, S., & Atkins, D. C. (2022). Enhancing the quality of cognitive behavioral therapy in community mental health through artificial intelligence generated fidelity feedback (Project AFFECT): a study protocol. *BMC health services research*, 22(1), 1177.
14. Cunha, C., & Gomes, M. (2024). The Imperative of Trauma-Informed Care: A Comprehensive Review and Strategies for Implementation in Health Services. *European Psychiatry*, 67(S1), S815-S815.
15. DeMartini, S. E., Gallegos, M. I., Altenburger, L., & Carone, N. (2024). Family men: fathers as coparents in diverse contexts and family structures, volume II. *Frontiers in Psychology*, 15, 1504391.
16. Figley, C. R. (2013). Compassion fatigue: Coping with secondary traumatic stress disorder in those who treat the traumatized. Routledge.
17. Firmin, C., Langhoff, K., Eyal-Lubling, R., Maglajlic, R. A., & Lefevre, M. (2024). 'Known to services' or 'Known by professionals': Relationality at the core of trauma-informed responses to extra-familial harm. *Children and Youth Services Review*, 160, 107595.
18. Forane, S. G., Ezugwu, A. E., & Igwe, K. (2025). Digital Sovereignty through Africa-Centric Emotional Intelligence: A Proof of Concept for AI-Enhanced Mental Health Support. *Procedia Computer Science*, 254, 269-278.
19. Founds, S. D. (2024). Trauma-informed librarianship: An exploratory literature review of trauma-informed approaches in school, academic and public libraries. *Reference Services Review*, 52(1), 7-22.
20. Galderisi, S., Appelbaum, P.S., Gill, N., Gooding, P., Herrman, H., Melillo, A., Myrick, K., Pathare, S., Savage, M., Szmukler, G. and Torous, J. (2024), Ethical challenges in contemporary psychiatry: an overview and an appraisal of possible strategies and research needs. *World Psychiatry*, 23: 364-386. <https://doi.org/10.1002/wps.21230>
21. Gonzalez, A., & Matias, J. N. (2025). Measuring the Mental Health of Content Reviewers, a Systematic Review. *arXiv preprint arXiv:2502.00244*.
22. Guo, Y., Kühler, M. (2024). History, AI and utilitarianism. *AI Ethics*. <https://doi.org/10.1007/s43681-024-00581-9>
23. Hayes, P., Fitzpatrick, N., & Ferrández, J. M. (2024). From applied ethics and ethical principles to virtue and narrative in AI practices. *AI and Ethics*, 1-23.
24. Helling, J., & Chandler, G. E. (2019). Meeting the Psychological Health & Growth Needs of Black College Students: Culture, Resonance and Resilience. *Journal of College Student Psychotherapy*, 35(2), 152–180. <https://doi.org/10.1080/87568225.2019.1660291>
25. Herrenkohl, T.I., Hong, S. and Verbrugge, B. (2019), Trauma-Informed Programs Based in Schools: Linking Concepts to Practices and Assessing the Evidence. *Am J Community Psychol*, 64: 373-388. <https://doi.org/10.1002/ajcp.12362>
26. Hindocha, S., & Badea, C. (2022). Moral exemplars for the virtuous machine: the clinician's role in ethical artificial intelligence for healthcare. *AI and Ethics*, 2(1), 167-175.
27. Hunt, E. (2024). Childhood trauma and trauma-informed care in early intervention in psychosis.
28. Husnain, A., Ahmad, A., Saeed, A., & Din, S. M. U. (2024). Harnessing AI in depression therapy: Integrating technology with traditional approaches. *International Journal of Science and Research Archive*, 12(2), 2585-2590.
29. Isa, Aisha. (2024). Exploring digital therapeutics for mental health: AI-driven innovations in personalized treatment approaches. *World Journal of Advanced Research and Reviews*. 24. 2733-2749. 10.30574/wjarr.2024.24.3.3997.

30. Jedličková, A. (2024). Ethical approaches in designing autonomous and intelligent systems: a comprehensive survey towards responsible development. *AI & SOCIETY*, 1-14.

31. Jemal, A., Gunn, A., & Inyang, C. (2019). Transforming responses: Exploring the treatment of substance-using African American women. *Journal of Ethnicity in Substance Abuse*, 19(4), 659–687. <https://doi.org/10.1080/15332640.2019.1579141>

32. Kalokhe, A. S., Adam, E., Colasanti, J., Livingston III, M., Root, C., & Sales, J. M. (2023). Differences in trauma-informed care implementation by clinic-level factors across Ryan White HIV clinics in the Southeastern United States. *AIDS care*, 35(2), 222-229.

33. Kapur, I., Kennedy, R., & Hickman, C. (2025). Artificial Intelligence Algorithms, Bias, and Innovation: Implications for Social Work. *Journal of Evidence-Based Social Work*, 1–23. <https://doi.org/10.1080/26408066.2025.2470903>

34. Kok Wah, Jack Ng. (2025). Revolutionizing e-health: the transformative role of AI-powered hybrid chatbots in healthcare solutions. *Frontiers in Public Health*. 13. 10.3389/fpubh.2025.1530799.

35. Kwok, W. H., Zhang, Y., & Wang, G. (2024). Artificial intelligence in perinatal mental health research: A scoping review. *Computers in Biology and Medicine*, 108685.

36. Lanphier, E., & Anani, U. E. (2021). Trauma Informed Ethics Consultation. *The American Journal of Bioethics*, 22(5), 45–57. <https://doi.org/10.1080/15265161.2021.1887963>

37. Lawrence, R. E., & Appelbaum, P. S. (2024). Ethics in placebo-controlled, acute treatment trials in schizophrenia: Two rival ethical frameworks. *Schizophrenia Research*, 264, 372-377.

38. Lee, A. T., Chin, P., Nambiar, A., & Hill Haskins, N. (2023). Addressing intergenerational trauma in Black families: Trauma-informed socioculturally attuned family therapy. *Journal of Marital and Family Therapy*, 49, 447–462. <https://doi.org/10.1111/jmft.12632>

39. Lukas J. Meier, Alice Hein, Klaus Diepold & Alena Buyx (2022) Algorithms for Ethical Decision-Making in the Clinic: A Proof of Concept, *The American Journal of Bioethics*, 22:7, 4-20, DOI: 10.1080/15265161.2022.2040647

40. Maitra, S., Sleep, L., Fay, S., & Henman, P. (2024). Building a trauma-informed algorithmic assessment toolkit.

41. Maude, P., James, R., & Searby, A. (2024). The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review. *Journal of Psychiatric and Mental Health Nursing*, 31(4), 681-698.

42. McGovern, R., Balogun-Katung, A., Artis, B., Alderson, H., Brown, E., Diggle, T., ... & Kaner, E. (2024). Co-producing an intervention to prevent mental health problems in children and young people in contact with child welfare services. *BMC Public Health*, 24(1), 2276.

43. Meier, L. J., Hein, A., Diepold, K., & Buyx, A. (2022). Algorithms for ethical decision-making in the clinic: A proof of concept. *The American Journal of Bioethics*, 22(7), 4-20.

44. Melillo, A., Sansone, N., Allan, J., Gill, N., Herrman, H., Cano, G. M., ... & Galderisi, S. (2025). Recovery-oriented and trauma-informed care for people with mental disorders to promote human rights and quality of mental health care: a scoping review. *BMC psychiatry*, 25, 125.

45. Mobarak, M. H., Hasan, M. J., Rahman, M., Rana, M., Saikat, A. S., & Tasnim, R. (2024). Ethical and Social Consideration in Mechatronics. In *Mechatronics: Fundamentals and Applications* (pp. 161-196). Singapore: Springer Nature Singapore.

46. Muskett, C. (2014). Trauma-informed care in inpatient mental health settings: A review of the literature. *International journal of mental health nursing*, 23(1), 51-59.

47. O'Brien, C., & Charura, D. (2024). Object elicitation: A compassionate and culturally informed method for psychotherapy research. *Counselling and Psychotherapy Research*, 24, 39–50. <https://doi.org/10.1002/capr.12703>

48. Olawade, D. B., Wada, O. Z., Odetayo, A., David-Olawade, A. C., Asaolu, F., & Eberhardt, J. (2024). Enhancing mental health with Artificial Intelligence: Current trends and future prospects. *Journal of medicine, surgery, and public health*, 100099.

49. Omiyefa, Seye. (2025). Artificial Intelligence and Machine Learning in Precision Mental Health Diagnostics and Predictive Treatment Models. *International Journal of Research Publication and Reviews*. 6. 85-99.

50. Page, J., & Robertson, N. (2022). Extent and predictors of work-related distress in community correction officers: a systematic review. *Psychiatry, Psychology and Law*, 29(2), 155-182.

51. Perivolaris, A., Rueda, A., Parkington, K. B., Soni, A., Rambhatla, S., Samavi, R., ... & Bhat, V. (2025). Opinion: Mental health research: to augment or not to augment. *Frontiers in Psychiatry*, 16, 1539157.
52. Potash, J. S., Bardot, H., Moon, C. H., Napoli, M., Lyonsmith, A., & Hamilton, M. (2017). Ethical implications of cross-cultural international art therapy. *The Arts in Psychotherapy*, 56, 74-82.
53. Poszler, F., & Lange, B. (2024). The impact of intelligent decision-support systems on humans' ethical decision-making: A systematic literature review and an integrated framework. *Technological Forecasting and Social Change*, 204, 123403.
54. Prajapati, A. K. (2024). **INTERACTION OF ARTIFICIAL INTELLIGENCE (AI) AND MENTAL HEALTH: A SYSTEMATIC REVIEW**. Archives.
55. Reynolds, J. (2024). Guidelines for a Trauma-Informed Approach to Non-Suicidal-Injury for Crisis Evaluators. *Clinical Social Work Journal*, 1-7.
56. Robinson, U. (2024). "You are a taonga, and when you are with me, I want you to know that"- Psychologists' Constructions and Negotiations of Trauma-Informed Practice (Doctoral dissertation, Open Access Te Herenga Waka-Victoria University of Wellington).
57. Rowshon, Mantaka & Mosaddeque, Ananna & Ahmed, Tamim & Twaha, Umma & Pub, Anfo. (2025). Exploring the Impact of Generative AI and Virtual Reality on Mental Health: Opportunities, Challenges, and Implications for Well-being. *International Journal of Multidisciplinary Research and Growth Evaluation*. 06. 784-796. 10.54660/.IJMRGE.2022.3.1.784-796.
58. Rushforth, A., Durk, M., Rothwell-Blake, G. A., Kirkman, A., Ng, F., & Kotera, Y. (2023). Self-compassion interventions to target secondary traumatic stress in healthcare workers: a systematic review. *International Journal of Environmental Research and Public Health*, 20(12), 6109.
59. Shamaskin-Garroway, A. M., McLaughlin, E. A., Quinn, N., & Buono, F. D. (2020). Trauma-informed primary care for medical residents. *The Clinical Teacher*, 17(2), 200-204.
60. Spytska, L. (2025). The use of artificial intelligence in psychotherapy: development of intelligent therapeutic systems. *BMC psychology*, 13(1), 175.
61. Stahl, B. C., & Stahl, B. C. (2021). Concepts of ethics and their application to AI. *Artificial Intelligence for a better future: an ecosystem perspective on the Ethics of AI and emerging Digital Technologies*, 19-33.
62. Stillerman, A., Altman, L., Peña, G., Cua, G., Goben, A., Walden, A. L., & Atkins, M. S. (2023). Advancing trauma-informed care in hospitals: the time is now. *Perm J*, 27(1), 16-20.
63. Sun, J., Dong, Q. X., Wang, S. W., Zheng, Y. B., Liu, X. X., Lu, T. S., ... & Han, Y. (2023). Artificial intelligence in psychiatry research, diagnosis, and therapy. *Asian journal of psychiatry*, 87, 103705.
64. Theodosopoulos, L., Fradelos, E. C., Panagiotou, A., Dreliozi, A., & Tzavella, F. (2024). Delivering Culturally Competent Care to Migrants by Healthcare Personnel: A Crucial Aspect of Delivering Culturally Sensitive Care. *Social Sciences*, 13(10), 530.
65. Ugar, E. (2022). Artificial intelligence and African normative accounts of personhood. *Bioethics, Neuroethics, & AI Ethics in a Post Pandemic World*. Editora Fundação Fenix.
66. Walton, J. R., Wood, A., Walker, V. P., & Wells, J. M. (2024). From striving to thriving: mitigating anti-Black family racism to maximize health outcomes in Black children. *Academic Pediatrics*, 24(7), S132-S138.
67. Wilson, A., Hutchinson, M., & Hurley, J. (2017). Literature review of trauma-informed care: Implications for mental health nurses working in acute inpatient settings in Australia. *International Journal of Mental Health Nursing*, 26(4), 326-343.
68. Yew, G. C. K. (2021). Trust in and ethical design of carebots: the case for ethics of care. *International Journal of Social Robotics*, 13(4), 629-645.
69. Zhang, Z., & Wang, J. (2024). Can AI replace psychotherapists? Exploring the future of mental health care. *Frontiers in Psychiatry*, 15, 1444382.