

The Eyes of Me: How Congenitally Blind Children Construct Reality

Marithel Kate Cabungcag, Riza Mae Nobleza, Nikkie Oyanguren, June Rey Villegas

Cebu Technological University-Argao Campus, College of Arts and Sciences, Philippines

DOI: <https://doi.org/10.47772/IJRISS.2026.10100327>

Received: 17 January 2026; Accepted: 23 January 2026; Published: 05 February 2026

ABSTRACT

This case study explores how congenitally blind children construct, perceive, and give meaning to reality in the absence of sight. Motivated by the scarcity of Philippine-based research on childhood congenital blindness, the study focuses on the lived experiences of congenitally blind children from Zapatera Elementary School, examining the challenges they encounter, the impact of blindness on their well-being and quality of life, and the sensory, communicative, and social processes through which they understand their world. Using a qualitative case study design, data were gathered through validated semi-structured interviews with the children, their guardians, and their teachers, supported by reflexive thematic analysis. Findings reveal that the children face significant challenges in mobility, environmental navigation, access to visual learning, and social participation. Despite these, they demonstrate strong adaptive strategies, reliance on auditory and tactile cues, heightened curiosity through questioning, and trust in verbal descriptions provided by caregivers and teachers. Congenital blindness was shown to influence their emotional landscape, shaping experiences of dependence, occasional social isolation, and the development of selfconfidence and resilience. The study also highlights how reality construction among congenitally blind children emerges through non-visual sensory experience, consistent environmental structure, language-based meaning-making, and social interaction. This research contributes to inclusive psychological understanding, informing educators, caregivers, and policymakers on more responsive and empowering approaches to supporting blind children's development, learning, and social well-being.

Keywords: Congenital Blindness, Reality Construction, Sensory Perception, Lived Experiences, Well-being and Quality of Life

INTRODUCTION

In interacting with the physical outside world, it is necessary to process information from the surrounding environment in order to comprehend, understand and avoid any potential harm and danger. This process of comprehending and understanding the world and reality using the five senses (sight, touch, hearing, smell, taste) is completed through perception (Qiong, 2017). Perception and reality are oftentimes considered subjective and treated to be wholly dependent on “the eyes of the beholder.” The simple fact of individuality and variances in the baseline senses, perceptions, and experiences between different individuals already prove the lack of a concrete baseline to gauge experiential reality without error or bias (Armstrong, 2023).

On one hand, humanity's evolved reliance on sight and vision has made the impairment or outright loss of the ability to see render certain individuals helpless and crippled. On the other hand, according to the theory of Gibson, perception is directly shaped by an individual's interaction with their environment rather than being solely dependent on internal cognitive processes. Thus, perception is an active, action-oriented process through which individuals extract meaningful information by engaging with their surroundings. Unlike sighted individuals, who visually assess affordances, congenitally blind children perceive affordances through tactile exploration, auditory feedback, and movement-based interactions.

Throughout analysis of recent local studies on the subject, a significant gap in local academic studies exists regarding the personal experiences, challenges, and coping strategies of congenitally blind children in the Philippines. Thus, this case study aims to fill that gap by examining how a congenitally blind child in the Philippines interacts and constructs meaning with their world. The researchers would like to obtain a deeper understanding of how blind children construct reality exploring the sensory development, communication patterns, social interactions they face in their daily lives.

METHODOLOGY

Research Design

In this research study, the researchers used case study design generating an in-depth understanding of a contemporary event in a bounded system. The goal was to dig and understand the construction of reality among congenitally blind children and how they perceived and gave meaning to the world. Through the case study approach, this provided a contextualized investigation of the children's life experiences as being blind since birth. Since congenital blindness was relatively rare, a case study approach helped provide a deep understanding of this specific condition.

Respondents

The participants of this study primarily involved children aged 8 to 12 years old with inborn blindness, particularly, the researchers had a target of three cases. The participants were selected through purposive sampling. Given the nature and goals of the study as well as the demographic of the primary participants, the study also included the children's parents/guardians, as well as school staff to ensure safety. Furthermore, ethical considerations were met.

Instrument

Semi-structured interviews were conducted with the child participant, their parents or guardians, and relevant educators or caregivers. These interviews explored the child's lived experiences, cognitive strategies, and interactions with their environment, allowing for flexibility in uncovering significant themes.

Moreover, field notes and audio recordings, with proper consent, were used to capture key insights.

Procedure

Prior to data collection, potential participants were identified based on predetermined criteria and written informed consent which was obtained from parents or legal guardians, and age-appropriate assent was sought from the child participant. To ensure relevance and appropriateness, the experts reviewed the semi-structured questions for content validity, ethical sensitivity, and alignment with the study's objectives.

Interviews were conducted with the child participant, their parents or guardians, and relevant educators or caregivers. These interviews were recorded with consent and transcribed for further analysis.

Data Analysis

Descriptive analysis was applied to the gathered and transcribed interview data, utilizing the sixphase structure of the reflexive thematic analysis (Braun and Clarke, 2006; 2019) for data analysis. This process entailed familiarization with collected data, initial coding, generation of preliminary themes, review of generated themes, defining and naming the themes, and production of final report on the data analyzed. Trustworthiness of data was ensured through the use of quality assurance strategies such as triangulation of data sources and audit trail documentation.

Ethical Consideration

In pursuit of ethical correctness and academic vigor, researchers ensured that this study met all preestablished ethical guidelines and standards of, as well as completed a thorough review and approval process by, the academic institution's research ethics committee. Participants were duly and clearly informed of the study's contents, purposes, and procedures. Participants were also given written consent forms to read and sign in order to confirm their understanding and participation in the study. Participants were also informed of the voluntary nature of their participation, and their rights to refusal or withdrawal from the interview without facing negative consequences. Participant anonymity and confidentiality were maintained. Data collected were stored in a secure and safe storage. Researchers ensured and maintained positive attitudes and developed a safe and comfortable environment suited for positive participant experience.

RESULTS AND DISCUSSION

This section presents the results and analysis of the study where the data from interviews were coded, categorized, and developed into coherent themes and subthemes. This was done through Reflexive Thematic Analysis (RTA) as conceptualized by Braun and Clarke (2006,

2019) which was constructed and divided into three parts: (1) challenges encountered by children with congenital blindness – focused on identifying the different challenges experienced by children with congenital blindness, which were organized into major themes that capture the recurring patterns of difficulty described across participants. (2) congenital blindness and its impact on wellbeing and quality of life – reflect how congenital blindness shapes various aspects of the children's well-being and overall quality of life, with subthemes outlining specific emotional, social, and functional dimensions reported by the participants. And (3) reality construction among congenitally blind children – centered on how congenitally blind children construct their understanding of reality, leading to themes that illustrate the perceptual and interpretive processes they rely on without sight.

TABLE 1 The challenges encountered by children with congenital blindness

Theme	Subthemes
Spatial Navigation and Environmental Limitation	Reliance on Guidance and Assistance Dependence on Familiar Surroundings Fear of Injury and Loss of Balance
Barriers in Visual Learning and Perception	Dependence on Verbal Description for Understanding Curiosity and Questioning to Understand Better Challenge of Understanding Visual Information Non- visually
Limited Social interaction and Subtle Exclusion	Overprotection and Limited Social Independence Negative Peer Treatment due to Blindness

The narratives revealed that congenitally blind children encounter a constellation of challenges that influence their daily functioning, independence and social participation that, grounded in the absence of visual perception extending beyond mere physical limitations.

Spatial navigation and environmental limitation

The first significant theme which is spatial navigation and environmental limitation, illustrates how blind children rely on familiarity, memory, and guidance in order to move safely within their surroundings. The absence of sight restricts free movement and increases

the need for environmental predictability. The theme underscores that the children's dependence on familiarity and guidance is not merely a personal limitation but an adaptive response to environments that are structurally inaccessible and not attuned to their perceptual needs.

Reliance on Guidance and Assistance. The participants reveal that assistance from caregivers, teachers, and family members is not merely occasional but deeply embedded in their everyday functioning. They demonstrate that external support is a routine component of spatial mobility and task completion, thus, continuous guidance forms part of a developmental pathway where caregivers function as extensions of the child's perceptual system helping them to interpret the environment, ensure safety, and facilitate exploration.

“Most of the time, I am guided.”

“At school, my teacher helps me whenever we have activities.”

“ We’ve prepared ourselves for this... since he was little, we’ve always been there to teach and guide him.”

“ Uhmm, so far, there’s none. Mama is always there to guide me.”

Reliance on guidance emerges as both an adaptive strategy and a potential barrier. On one hand, consistent assistance enables congenitally blind children to access learning opportunities, maintain safety, and build confidence within unfamiliar or visually complex environments. On the other hand, high dependence on adult guidance may restrict opportunities for autonomous exploration, self-efficacy, and the development of independent problem-solving skills.

Dependence on Familiar Surroundings. This captures how congenitally blind children construct a sense of safety and environmental mastery through consistency and predictability in their physical spaces. Because they do not rely on visual cues to navigate their environment, the stability of spatial arrangements becomes foundational to their daily functioning. Any alterations in the environment require explicit communication to prevent disorientation. Also, this demonstrates how familiarity compensates for the absence of visual information.

“ If there are rearrangements at home, we make sure to inform him so he can be aware.”

“ I have already memorized the path around our house.”

“ I know where to place my things because the arrangement always stays the same.”

Consistency in environmental layout allows them to build reliable mental models, enhances their confidence in performing tasks independently, and minimizes anxiety associated with unexpected changes. This dependence, however, also indicates a vulnerability: when environmental familiarity is disrupted, navigation becomes challenging and may lead to decreased autonomy or increased reliance on assistance.

Fear of Injury and Loss of Balance. This reflects the children’s heightened vulnerability when exploring their environment without visual cues, revealing how concerns about physical harm shape their confidence, mobility, and overall sense of safety. Unfamiliar environments present significant challenges because they lack the predictable cues the child relies on to orient themselves. The participants’ anticipation of stumbling indicates an internalized fear of bodily harm, which naturally emerges from exploring spaces where objects, surfaces, and obstacles cannot be visually anticipated.

“It’s hard without help. For example, when walking to unfamiliar places, it’s hard. I might stumble.”

“ I always stumble.”

For congenitally blind children, minor collisions, missteps, and loss of balance occur more often because they must depend on tactile, auditory, and proprioceptive cues. Frequent stumbling can erode confidence, heighten caution, and cultivate anxiety regarding movement, especially in unpredictable or dynamic settings. Loss of balance, stumbling, and fear of falling shape how they approach both familiar and unfamiliar environments, often prompting them to avoid certain spaces or depend heavily on adult assistance. The risk of injury becomes both a physical and psychological challenge, influencing not only how these children move through the world but also how they perceive their own capabilities within it.

Barriers in Visual Learning and Perception

The children’s experiences reveal a strong dependence on verbal description for understanding, as much of their learning is mediated through tactile and spoken explanations provided by caregivers. This reliance presents a core ecological limitation: visual materials, which afford direct perception for sighted children, do not afford the same informational value for blind learners, leaving them dependent on second-hand, socially mediated input.

Dependence on Verbal Description for Understanding. Congenitally blind children rely heavily on language as their primary channel for accessing information that sighted children typically acquire visually. Because they

cannot perceive objects, events, or spatial arrangements through sight, verbal descriptions become their main gateway to knowledge, shaping how they interpret reality. The accuracy and richness of the child's understanding is dependent on the quality of descriptions provided by others. This underscores a structural barrier: when information is delivered inconsistently, the child's cognitive representation of the world may become incomplete or ambiguous.

“It depends on how my father describes things... some are vague, others detailed.”

“ I trust the teacher because they teach us everything. They explain what they say clearly, and whenever I have questions, they always answer them, which satisfies me.”

“ Yes. Anything we share with him, he really believes. It's like my son has so much trust in us, which can be a bit pressuring because what if there's something wrong with what we shared with him.”

Verbal description functions as both a compensatory tool and a source of vulnerability. While it enables blind children to access knowledge beyond their immediate sensory experience, it also positions their understanding of reality within the limits of what others choose—or are able—to convey. Their dependence on linguistic input highlights a broader barrier: the absence of visual learning not only restricts spontaneous discovery but also creates a mediated form of perception where accuracy, completeness, and meaning depend on another person's clarity, honesty, interpretive choices, and communication skill. As a result, this subtheme illustrates how verbal descriptions are essential for learning yet inherently limited, shaping both the children's understanding of the world and the relational dynamics with those who guide them.

Curiosity and Questioning to Understand Better. Participants actively seek information through verbal inquiry as a primary means of constructing understanding and filling gaps left by the absence of visual input. Their inability to visually scan their environment means that one verbal explanation often leads to follow-up questions, each addressing a new gap created by the previous answer. This chain of inquiry reflects a sophisticated cognitive process: the child is actively assembling a coherent understanding of the world, piece by piece, through dialogic exploration. While this can be exhausting for caregivers, it underscores the child's intrinsic motivation to learn and their dependency on others' willingness to explain.

“ When we tell him something, he always has many follow-up questions.”

“ He really asks a lot of questions, ma'am. Once he starts asking, the questions just keep coming. Sometimes I even get tired of answering because he really has so many questions.”

“ He really asks a lot of questions, ma'am. That's his way of satisfying his curiosity.”

In essence, the persistent questioning shown by congenitally blind children reflects not a lack of understanding, but a powerful drive to make sense of a world they cannot visually access. Their curiosity becomes their way of seeing, allowing them to actively construct meaning through dialogue, clarification, and continuous inquiry. This shows how they actively reach outward to grasp the fullness of a world they cannot see, yet deeply strive to know.

Challenge of Understanding Visual Information Non- visually. Participants' narratives capture the fundamental difficulty congenitally blind children face when expected to comprehend content that is inherently visual. These activities — so ordinary and effortless for sighted peers, become inaccessible or abstract for a child who has never experienced vision.

.For a child who has never seen, “imagining” the visual world is not merely difficult, it is conceptually ambiguous. Without a visual reference point or stored memory of images, visionbased questions can feel unanswerable.

[*What do you imagine the world looks like right now? How do you think the world appears?...*] Silent response

Visual information cannot always be meaningfully converted into non-visual forms. While the senses of touch, hearing, movement, and verbal explanation can compensate to a degree, they cannot fully replicate the richness or immediacy of visual stimuli.

Limited social interaction and subtle exclusion

As blind children cannot perceive facial expressions, visual cues, or nonverbal signals, they often struggle to participate in spontaneous peer interactions, leading to misunderstandings, reduced social reciprocity.

Overprotection and Limited Social Independence. This highlights how deep care and protective instincts of families, though well-intentioned, can inadvertently restrict the social experiences and autonomy of congenitally blind children. Caregivers often assume full responsibility for the child's mobility, decisions, and social encounters, creating a protective bubble that limits opportunities for independent interaction.

“We've already prepared ourselves for this... ever since they were little, we've always been there to guide him.”

“ Mom, dad, and my siblings always guide me.”

When children are constantly accompanied, guided, or monitored, their opportunities for self-directed social engagement become narrow. Caregivers strive to protect, yet protection can unintentionally impede social development, creating balance between safeguarding the child and developing the independence necessary for social interaction.

Negative Peer Treatment due to Blindness. The social interactions among peers are often shaped by misconceptions, discomfort, or discriminatory attitudes surrounding visual impairment. Blindness is not always immediately visible, leading peers to misinterpret behaviors, movements, or responses, thus, when others are unaware of the disability, misunderstandings may arise.

“ Usually, when I enter a new school, they don't realize that I'm blind.”

[*Like, are there times when someone bullies or picks on you? Or none at all?..*]

“Sometimes.”

[*Like, do you sometimes feel that people are treating you badly because you're blind? That they touch or bother you because you're blind, or that they don't like you because of it? Do you ever feel that way? Or not really?.*]

“I feel that.”

Whether intentional or unintentional, these experiences contribute to feelings of social vulnerability that limit the child's opportunities to form authentic peer connections. The challenge is not merely the presence of bullying but the underlying social dynamics: peers may lack awareness or exposure to disability, leading them to treat blind children differently in ways that reinforce exclusion.

In synthesis, the findings demonstrate that the challenges encountered by congenitally blind children are not confined to physical limitations alone but branch out to a broader set of dimensions. The absence of sight compels them to use their other senses (auditory cues, tactile exploration, and verbal guidance) transforming ordinary spaces and relationships into a decisive means of orientation and understanding. This reflects the scheme that their daily lives are characterized by the need for structure, dependence on trusted relationships, and language from others. Their challenges, though profound, become pathways of resilience through which they continuously redefine what it means to see, to belong, and to be understood.

TABLE 2 Impact of congenital blindness to well-being and quality of life

Themes	Subthemes
Emotional Terrain	Social isolation and loneliness Frustration and Dependence

	Self- identity and confidence Emotional resilience
Life-Enhancing Access	Education and cognitive access Leisure and recreational engagement Social relationships and inclusion

Drawing on participants' responses, this section organizes the data into two major thematic categories that encompass the emotional and functional dimensions of their lives. The first theme, (a) emotional terrain, captures the internal emotional landscape of the children and is elaborated through subthemes describing experiences of social isolation and loneliness, frustration and dependence, the development of self-identity and confidence, and the presence of emotional resilience. The second theme, (b) life-enhancing access, addresses the broader quality-of-life domains influenced by congenital blindness and is reflected in subthemes related to education and cognitive access, engagement in leisure and recreational activities, and the nature of their social relationships and inclusion.

Emotional Terrain

The first theme captures how congenital blindness affects the emotional well-being of children, highlighting both challenges and adaptive strategies. It focuses on the internal

emotional experiences shaped by their visual impairment and how they interact with the world and construct their own reality emotionally and socially.

Children with cognitive blindness may experience a sense of isolation due to limited visual access to social cues and environments. This can make them feel left out or dependent on others to engage fully in social interactions.

“ Usually, when I enter a new school, they don’t know right away that I’m blind.”

Dependence on others is a natural effect of their impairment, affecting daily routines, mobility and learning. This dependence can be frustrating but also fosters patience, trust, and adaptation skills. Children often learn to communicate their needs and develop strategies to navigate their environment safely and efficiently.

“ For instance, at home, he already knows the setup. Once the parents rearrange things, we inform him — this is the new form, the new arrangement... That’s why as much as possible, there are no rearrangements at home. If ever there is, we really tell him about it so he’ll be aware.”

“ Ever since before, we have always helped V in everything he does. He already knows every corner and movement around our house. We always guide him, especially when he moves around, because that’s really the best way we can help him.”

Despite limitations, congenitally blind children develop self-awareness and confidence in their abilities, showing pride in accomplishment and independence. This involves recognizing personal strengths, learning strategies to manage limitations and taking pride in achievements, which is important for adapting a positive self-image and resilience.

“ I already know the way around our house. My mom, dad, and siblings always guide me,

and I also help myself in my own way. Our house has a second floor, and I’m not afraid to go up and down even when I’m carrying things (smiles).”

These children demonstrate resilience by adapting to challenges problem solving and finding joy despite limitations which supports mental well being. Emotional resilience is supported by social networks, structured routines and personal strategies that contribute to mental well-being, motivation and the capacity to pursue goals.

“ Like when I struggle with something, I just look for a solution.”

This theme emphasizes that supportive family, peers and educators are critical to helping children navigate emotional challenges, fostering adaptive coping and enhancing emotional well-being. It also shows that congenital blindness does not define limitation, but shapes growth, self-awareness and personal achievement.

Life-Enhancing Access

The second theme explores how congenital blindness affects the everyday experiences and overall well-being of children. It focuses on their daily routines, leisure activities, social relationships and inclusion emphasizing both the challenges they face and the adaptive strategies they develop. These children often navigate and construct reality differently from the sighted peers, relying more on tactile, auditory and cognitive skills. Their overall quality of life is shaped by accessibility, family support, social inclusion and personal resilience.

Access to education and cognitive development is influenced by adapted materials (e.g., Braille), supportive teachers and guidance. Children face challenges in learning independently but develop alternative strategies to enhance cognitive skills.

“ I like writing numbers like 1, 2, 3, 4, 5, 6 up to 10. I also like writing letters A, B, C, D, and so on. (pauses) I also like writing the letters DYHP.”

“ I study well. After school, I study again when I get home.”

“ I ask my sisters for help, and if I’m alone, I study using braille.”

Participation in leisure activities stimulates cognitive, emotional and social well-being. Congenitally blind children engage in tactile, auditory or social activities to explore creativity, enjoy fun and develop independence.

“ Because of adventure, exploring new places, the thrill, and the experience of discovering things there.”

“ There’s a thrill. For example, sky biking... if you can see, you’re usually afraid of heights, but if you can’t see, your fear lessens.”

“ I want to become a singer.”

“ Yes, I really like going to different places! Because it’s a new experience and memory for us!” (smiling).”

Strong social support from family, teachers and peers foster belonging, confidence and emotional security. These children may rely on guidance for interactions but actively participate in social life, showing cooperative and inclusive behaviors.

“ No. Because I have my mom who guides me, and there are also many people who love me.”

“ That’s really true. Wherever we go, many people really love V. Even here at school, everyone loves her. V is a kind and sweet child.”

The themes presented illustrate the emotional world of children with congenital blindness, revealing how their lived experiences are shaped by both challenges and adaptive strengths.

Feelings of social isolation, frustration, and dependence highlight the emotional vulnerabilities that arise when children navigate a world structured for visual interaction, while struggles with self-identity and confidence reflect the internal negotiations they make in understanding themselves in relation to others.

Yet, alongside these difficulties, the presence of emotional resilience demonstrates their capacity to cope, adjust, and find stability within their circumstances. The second theme proves that despite the challenges posed by congenital blindness, children actively adapt and participate in daily life, maintaining cognitive development, social interaction and emotional well-being.

Table 3 Reality Construction Among Congenitally Blind Children

Theme	Subthemes
Knowledge acquisition through experiences	Learning through direct experience and exploration Guided experiential learning Confidence through real- world engagement
Unique cognitive process	Mental conceptualization through description Abstract sensory-based imagery

In the analysis of collected data from the participants, relevant themes and subthemes had been generated from various statements from participant interviews in connection to the discussion of reality construction among congenitally blind children. Two (2) main overarching themes were generated, along with their respective sub-themes. These themes are as follows: (a) knowledge acquisition through experiences, and (b) unique cognitive process. These four themes are presented in order in the succeeding sections, along with their corresponding subthemes and relevant statements.

Knowledge Acquisition through Experience

The first relevant theme to be discussed in this section is about the various means and manifestations in which each participant's personal experiences modeled and contributed to their individual knowledge acquisition and comprehension of the world. This theme suggests that experience is an important tool for knowledge acquisition and learning for individuals with vision impairments or loss. The subthemes that belong under this theme will be stated and explored below.

Learning through Direct Experience and Exploration. The participants mentioned instances in their lives when their personal experiences helped shape how they perceive and

conceive the world around them. Most participants profess that experience allows for the best form of learning in the real world.

“Because of the adventure, exploring new places, and the thrill, and to experience what you discover there. ... 60 percent really comes from experience.”

“Yes, I really love going to different places! ... Because there's new experiences and memory for us!”

The statements above indicate that congenitally blind children learned the importance of their personal experiences to their learning process, and how these experiences shaped the way they perceive, sense, and live the world around them. This provides important insight on integrating effective means of instruction and teaching that would be most effective for blind children.

Guided Experiential Learning. Another significant recurring subtheme across participants' statements on their learning process is the presence of a guardian or assistant accompanying them during their exploration of the world around them. All blind participants as well as their parents or guardians stated the necessity and significance of having a parent, guardian, teacher, or classmate that helps in assisting the blind children in their exploration as well as answer questions and queries about the world around them.

“We always guide them, especially with their movement, because that’s one good thing that we can do for them.”

“My mother taught me how to look after my sister. The same way my mom guides me in writing, where she eventually lets go of my hand so I can figure it out on my own.”

Though the statements and information presented above infer dependence towards other people in the learning and discovery process of congenitally blind children, it is worth noting that autonomy is still exercised during this exploratory period. The blind children were allowed to make decisions and actions on their own, and the assistance of family members or peers served as supplement to their personal learning and development rather than a crutch. The safety ensured by the presence of familiar companions allowed the blind children to navigate and learn about the world in the most natural and organic manner without fear of danger while still keeping autonomy of choice. This insight indicates that substantial learning for congenitally blind children is most feasible when autonomy of choice is supported by a safe and secure environment which can be achieved with the presence and help of familiar individuals. The presence of these elements allows for blind children to have a more productive and meaningful time learning through experience.

Confidence through Real-World Engagement. The third sub-theme discusses a positive byproduct that congenitally blind children achieve through experience-centered learning, which is the improvement. Through time and consistency, participants gained confidence in navigating familiar spaces and, with one instance, trying out new things.

“I’m already familiar with the structure of our house. Mother and Father always guides me as well as my siblings, and I also help myself navigate in my own way. Our house has a second floor, and I am not afraid of going up and down even if I am carrying some things.”

“I feel thrilled. For example, sky bike. Like, if you can see, usually you get scared of heights, but if you can’t see, your phobia is lessened. You can enjoy it more instead of getting scared.”

The statements presented above exemplify the benefit of experience-based learning as a means to develop the confidence of congenitally blind children. The autonomy and freedom given to a child by allowing them to experience the world around them is beneficial to their self-esteem. This in turn encourages them even more to try new experiences and learn new things. It is to be noted that guidance as well as familiarity of space are positive factors to the development of congenitally blind children’s confidence.

In whole, the data gathered from the study proves the undeniable positive influence that personal experiences offer to congenitally blind children in their learning and knowledge acquisition process. Moreover, familiarity and positive support are great contributors to experience-centered learning.

Unique Cognitive Process

The second theme under this topic explores the comparison of the cognitive or mental processes between congenitally blind children and their sighted counterparts. This section aims to narrate how the participants’ conditions altered and affected the methods and processes that they use to gather, analyze, interpret, and comprehend information, stimuli, ideas, and concepts around them. The two (2) subthemes within this theme include (a) mental visualization through description and (b) abstract and sensory-based imagery.

Mental Conceptualization through Descriptions. Analysis of collected data from the participants presented a particular trend: congenitally blind children are capable of forming concepts and comprehending ideas mentally, though the modes and the process were not explicitly mentioned. In this instance the term “visualization” has been changed into “conceptualization” in order to have a more appropriate word association given the participants’ lack of vision. In the case of this study, participants have mentioned how other people’s descriptions have helped them formulate concrete ideas about different things around them.

“There’s some bad ones. There’s some that are bad descriptions, there’s others that are detailed.”

“Because that’s what the Teacher told us, that the planet is round and has a lot of colors.”

Upon observation, it can be surmised that amid the lack of visual capabilities and faculties, the participants are still receptive to and comprehends visual cues and descriptors, as can be read from Participant T's statement. Moreover, another excerpt from Participant T's interview revealed another interesting detail. Refer to the excerpt below.

(“So T, how do you know that that is a pencil?”)

“It's long and hard. Also sharp.”

In the example above, we can infer that not only are congenitally blind children able to comprehend and mentally create objects and concepts using visual descriptors, they are also capable of utilizing other forms of descriptive methods to help conceptualize and recreate the object or idea in their head.

The data above tells us that congenitally blind children are still capable of comprehending and using visual cues and sight-dependent descriptors in order to gain knowledge and understanding about the world around them. However, it is also important to consider the type of descriptors that are most comfortable and easiest for the individual to understand. Thus, efforts should be made in order to formulate and promote adaptive, modular systems that cater to the needs and preferences of the blind individual.

Abstract Sensory-Based Imagery. This subtheme explores the unique and unconventional ways that congenitally blind children create objects within their personal cognitive spaces. Though this subtheme originated from a short excerpt from Participant T's interview, the implications gathered from this excerpt is worthy of proper analysis.

(“T, may I ask how you form figures in your mind? Like for example, the figure of a person?”)

“Um like shadows. I form them through shadows. ... Like for example, while we're talking to each other I have formed a picture in my mind. You are sitting on a chair and we are facing each other.”

(“Oh! And they look like shadows forming? Like pure black and it has no, how do you say this ... ”)

Just shadows. Simple shadows.

Whether intentional or unintentional, these experiences contribute to feelings of social vulnerability that limit the child's opportunities to form authentic peer connections. The challenge is not merely the presence of bullying but the underlying social dynamics: peers

may lack awareness or exposure to disability, leading them to treat blind children differently in ways that reinforce exclusion.

In synthesis, the findings demonstrate that the challenges encountered by congenitally blind children are not confined to physical limitations alone but branches out to a broader set of dimensions. The absence of sight compels them to use their other senses (auditory cues, tactile exploration, and verbal guidance) transforming ordinary spaces and relationships into a decisive means of orientation and understanding. This reflects the scheme that their daily lives are characterized by the need for structure, dependence on trusted relationships, and language from others. Their challenges, though profound, become pathways of resilience through which they continuously redefine what it means to see, to belong, and to be understood.

CONCLUSION

Through qualitative analysis guided by Gibson's ecological theory of perception, it was found that blindness does not hinder the child's ability to comprehend the world but rather transforms the manner in which perception occurs. The experiences of the participants revealed that congenital blindness is not inherently a condition of loss, but a different way of being in the world. Their construction of reality is not passive nor deficient, rather, it is a dynamic and adaptive process shaped by continuous engagement with their surroundings strengthened by the relationships they form with others. With this, the study concludes that reality, as experienced by congenitally blind children, is as complete and authentic as that of the sighted. Their world is not dark but profoundly

illuminated by sound, touch, and movement. Through their lived experiences, they redefine what it means to perceive—to see not with the eyes, but with awareness, trust, and acceptance. The lessons drawn from their lives remind that human construction of reality, in all its forms, is a testament to adaptability and meaning-making. Indeed, to be blind from birth is not to live in absence, but to live in another way of presence, where understanding transcends vision, and where the world is constructed not by sight, but by experience and connection.

REFERENCES

1. Afonso, A., Blum, A., Katz, B. F., Tarroux, P., Borst, G., & Denis, M. (2010). Structural properties of spatial representations in blind people: Scanning images constructed from tactile exploration or from locomotion in a 3-D small-scale space. *Memory & Cognition*, 38, 591–604.
2. Alhusayni, F. A. F., & Alsoliman, B. S. H. (2025). Enhancing quality of life: Insights from a family with inherited cases of blindness. *Research in Developmental Disabilities*, 167, 105159. <https://doi.org/10.1016/j.ridd.2025.105159>
3. Almeda San Jose, M. Z., & Pthiaka, H. (2022). A narrative analysis of the experiences of teachers with disabilities in the Philippines. Universitat Autònoma de Barcelona. Facultat de Ciències Polítiques i de Sociologia.
4. Armstrong, D. M. (2023). Perception and the physical world. Routledge.
5. Barrett, L. F. (2023, July 10). How your brain creates reality, explained by a neuroscientist. Big Think. <https://bigthink.com/the-well/what-is-reality/>
6. Bonsaksen, T., Brunes, A. & Heir, T. (2025) Quality of life in people with visual impairment compared with the general population. *Journal of Public Health (Berlin)* 33, 23–31.
7. <https://doi.org/10.1007/s10389-023-01995-1>
8. Brambring, M. (2006). Divergent development of gross motor skills in children who are blind or sighted. *Journal of Visual Impairment & Blindness*, 100(10), 620–634.
9. Brunes, A. & Heir, T. (2020). Visual impairment and depression: Age-specific prevalence, associations with vision loss, and relation to life satisfaction. *World Journal of Psychiatry*, 10(6); 139-149. doi: 10.5498/wjp.v10.i6.139.
10. Bulk, L. Y., Smith, A., Nimmon, L., & Jarus, T. (2020). A closer look at opportunities for blind adults: Impacts of stigmatization and ocularcentrism. *British Journal of Visual Impairment*, 38(3), 270-283.
11. Carollo, A., Stanzione, A. M., Fong, S., Gabrieli, G., Lee, A., & Esposito, G. (2023). Culture and the assumptions about appearance and reality: A scientometric look at a century of research. *Frontiers in Psychology*, 14. <https://doi.org/10.3389/fpsyg.2023.1140298>
12. Cattaneo, Z., & Vecchi, T. (2011). Blind vision: The Neuroscience of Visual Impairment. MIT Press. <https://doi.org/10.7551/mitpress/8882.003.0004>
13. DeCarlo, D. K., McGwin, G., Jr., Bixler, M. L., Wallander, J., & Owsley, C. (2012). Impact of pediatric vision impairment on daily life: Results of focus groups. *Optometry and Vision Science*, 89(9), 1409–1416. <https://doi.org/10.1097/OPX.0b013e318264f1dc>
14. De Jaeger, H. (2009). Social understanding through direct perception by interacting. *Consciousness and Cognition*, 18(2), 535-542.
15. Demmin, D. L., & Silverstein, S. M. (2020). Visual Impairment and Mental Health: Unmet Needs and Treatment Options. *Clinical Ophthalmology*, 14, 4229–4251. <https://doi.org/10.2147/OPTH.S258783>
16. Elsman, E. B. M., Koel, M., van Nispen, R. M. A., & van Rens, G. H. M. B. (2021). Quality of life and participation of children with visual impairment: Comparison with population reference scores. *Investigative Ophthalmology & Visual Science*, 62(7), 14. <https://doi.org/10.1167/iovs.62.7.14>
17. Faraon, E. S. (2024). Self-Reliance of Blind and Visually Impaired Massage Therapists for Socio-Economic Sustainability. *Asia Pacific Journal of Advanced Education and Technology*, 3(3).
18. Ferrell, K. A. (2011). Reach out and teach: Helping your child who is visually impaired learn and grow (2nd ed.). AFB Press.
19. Guthrie, C. (2016). A pastoral theology of suffering. *Reformed Faith & Practice: The Journal of Reformed Theological Seminary*, 1(2), 5–16.
20. Hoffman, H. F. (2020). Quantum causality relations and the emergence of reality from coherent superpositions. 2001.11617. <https://arxiv.org/pdf/2001.11617>
21. Hoffman, N. V. (2021). Faith physics: a new theory of everything. Universal-Publishers.

21. Iezzoni, L. I., Rao, S. R., Ressalam, J., Bolcic-Jankovic, D., Agaronnik, N. D., Donelan, K., Lagu, T., & Campbell, E. G. (2021). Physicians' Perceptions Of People With Disability And Their Health Care. *Health Affairs*, 40(2), 297-306.

22. Kapperman, G., & Sticken, J. (2003). Access to mathematics by blind students and issues related to braille and tactile graphics. *Journal of Visual Impairment & Blindness*, 97(10), 628– 631.

23. Kaski, D. (2002). Revision: Sensory compensation: A phenomenon in search of data. *Journal of Neurology, Neurosurgery & Psychiatry*, 73(4), 439–443.

24. Landau, B., & Gleitman, L. (1985). Language and experience: Evidence from the blind child. Harvard University Press.

25. Lanza, M., Incagli, F., Ceccato, C., Reffo, M. E., Mercuriali (2024). Quality of life, functioning and participation of children and adolescents with visual impairment: A scoping review. *Research in Developmental Disabilities*, 151, 104772. <https://doi.org/10.1016/j.ridd.2024.104772>

26. Marques, A. P., Ramke, J., Cairns, J., Butt, T., Zhang, J. H., Muirhead, D., Jones, I., Ah

27. Tonag, B. A. M., Swenor, B. K., Faal, H., Bourne, R. R. A., Frick, K. D., & Burton, M. J. (2021). Global economic productivity losses from vision impairment and blindness. *EClinicalMedicine*, 35(100852).

28. Martiniello, N., Haririsanati, L., & Wittich, W. (2022). Enablers and barriers encountered by working-age and older adults with vision impairment who pursue braille training. *Disability and Rehabilitation*, 44(11), 2347-2362.

29. Millar, S. (2004). Understanding and representing space: Theory and evidence from studies with blind and sighted children. Oxford University Press.

30. Mitra, M., Long-Bellil, L., Moura, I., Miles, A., & Kaye, H. S. (2022). Advancing Health Equity And Reducing Health Disparities For People With Disabilities In The United States. *Health Affairs*, 41(10), 1379-1386.

31. Miyauchi, H. (2020). A Systematic Review on Inclusive Education of Students with Visual Impairment. *Education Sciences*, 10(11), 346. <https://doi.org/10.3390/educsci10110346>

32. Nickerson, C. (2024). Social construction of reality. Simply Psychology. <https://www.simplypsychology.org/social-construction-of-reality.html>

33. Occelli, V., Spence, C., & Zampini, M. (2013). Audiotactile interactions in front and rear space. *Consciousness and Cognition*, 22(2), 756–770.

34. Oberes, F., Rabaya, C. D., Rago, A. T., Sasam, C. D. H., & Cabanilla Jr, A. B. (2023). A Meta-Synthesis on the Employment of Visually Impaired Individuals in the Philippines. *International Journal for Research in Applied Science and Engineering Technology*, 11(4):1958-1968.

35. Pasqualotto, A., & Proulx, M. J. (2012). The role of visual experience for the neural basis of spatial cognition. *Neuroscience & Biobehavioral Reviews*, 36(4), 1179–1187.

36. Pérez-Pereira, M., & Conti-Ramsden, G. (2013). Language development and social interaction in blind children. Psychology Press.

37. Prasad, N. R. (2021). Perception and reality. In V. Kreinovich (Ed.), *Statistical and fuzzy approaches to data processing, with applications to econometrics and other areas* (pp. 245257). Springer.

38. Qiong, O. U. (2017). A brief introduction to perception. *Studies in literature and language*, 15(4), 18- 28. DOI:10.3968/10055

39. Renieri, L., Pizzorusso, T., & Cecchini, A. (2024). Imagery without vision: Cognitive and neural insights from congenital blindness. *Cognition*, 242, 105521.

40. Roe, J., & Webster, A. (2002). Children with visual impairments: Social interaction, language and learning. *British Journal of Special Education*, 29(4), 196–201.

41. Sandu, A., & Nistor, P. (2020). Individual versus Social in Psycho-Sociology. *The Social Construction of Reality. Moldavian Journal for Education and Social Psychology*, 4(2), 44-49. <https://doi.org/10.18662/mjesp/4.2/21>

42. Schinazi, V. R., Thrash, T., & Chebat, D. R. (2016). Spatial navigation by congenitally blind individuals. *Wiley Interdisciplinary Reviews: Cognitive Science*, 7(1), 37–58.

43. Shpigelman, C. N., & Vorobioff, M. (2019). Romantic relationship and psychological wellbeing: the experiences of young individuals with visual impairment. *Disability and Rehabilitation*, 43(9), 1228– 1236. <https://doi.org/10.1080/09638288.2019.1661036>

44. Solebo, A. L., Teoh, L., & Rahi, J. (2017). Epidemiology of blindness in children. *Archives of disease in childhood*, 102(9), 853-857.

45. Steinkuller, P. G., Du, L., Gilbert, C., Foster, A., Collins, M. L., & Coats, D. K. (1999). Childhood blindness. *Journal of American Association for Pediatric Ophthalmology and Strabismus*, 3(1), 26-32.
46. Thinus-Blanc, C., & Gaunet, F. (1997). Representation of space in blind persons: Vision as a spatial sense? *Psychological Bulletin*, 121(1), 20-42.
47. Vervloed, M. P., van den Broek, E. C., & van Eijden, A. J. (2020). Critical review of setback in development in young children with congenital blindness or visual impairment. *International Journal of Disability, Development and Education*, 67(3), 336-355.
48. Vinter, A., Fernandes, V., & Morgan, G. (2018). Non-visual cognition in blind children: The role of language, memory, and spatial coding. *Child Development*, 89(3), 950-964.
49. Youvan, D. C. (2024). Reality as data: Understanding perception, information, and the nature of the observable universe. <https://www.researchgate.net/publication/383621809>
50. Zapata, M. A. (2022). Group identity in blindness groups predicts life satisfaction and lower anxiety and depression. *Rehabilitation Psychology*, 67(1), 42-52. <https://doi.org/10.1037/rep0000432>
51. Zell, E., J. E., & Lane, T. (2020). Self-evaluation motives: A meta-analysis of selfenhancement and self-verification. *Psychological Bulletin*, 146(6), 512-542. <https://doi.org/10.1037/bul0000232>
52. Zhang, H. (2023). Perception and reality: The intricate web of cognitive processes. *Journal of Psychology and Cognition*, 8(6), 206.